We present an eight component integrable Hamiltonian hierarchy, based on a reduced seventh order matrix spectral problem, with the aim of aiding the study and classification of multicomponent integrable models and the...We present an eight component integrable Hamiltonian hierarchy, based on a reduced seventh order matrix spectral problem, with the aim of aiding the study and classification of multicomponent integrable models and their underlying mathematical structures. The zero-curvature formulation is the tool to construct a recursion operator from the spatial matrix problem. The second and third set of integrable equations present integrable nonlinear Schrödinger and modified Korteweg-de Vries type equations, respectively. The trace identity is used to construct Hamiltonian structures, and the first three Hamiltonian functionals so generated are computed.展开更多
We make a systematic study of two-parameter models of δ ′ s -sphere interaction and δ ′ s -sphere plus a Coulomb interaction. Where δ ′ s interaction denotes the δ ′ -sphere interaction of the second kind. We ...We make a systematic study of two-parameter models of δ ′ s -sphere interaction and δ ′ s -sphere plus a Coulomb interaction. Where δ ′ s interaction denotes the δ ′ -sphere interaction of the second kind. We provide the mathematical definitions of Hamiltonians and obtain new results for both models, in particular the resolvents equations, spectral properties and some scattering quantities.展开更多
文摘We present an eight component integrable Hamiltonian hierarchy, based on a reduced seventh order matrix spectral problem, with the aim of aiding the study and classification of multicomponent integrable models and their underlying mathematical structures. The zero-curvature formulation is the tool to construct a recursion operator from the spatial matrix problem. The second and third set of integrable equations present integrable nonlinear Schrödinger and modified Korteweg-de Vries type equations, respectively. The trace identity is used to construct Hamiltonian structures, and the first three Hamiltonian functionals so generated are computed.
文摘We make a systematic study of two-parameter models of δ ′ s -sphere interaction and δ ′ s -sphere plus a Coulomb interaction. Where δ ′ s interaction denotes the δ ′ -sphere interaction of the second kind. We provide the mathematical definitions of Hamiltonians and obtain new results for both models, in particular the resolvents equations, spectral properties and some scattering quantities.