期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Speech endpoint detection in low-SNRs environment based on perception spectrogram structure boundary parameter 被引量:9
1
作者 WU Di ZHAO Heming +4 位作者 HUANG Chengwei XIAO Zhongzhe ZHANG Xiaojun XU Yishen TAO Zhi 《Chinese Journal of Acoustics》 2014年第4期428-440,共13页
The Perception Spectrogram Structure Boundary(PSSB)parameter is proposed for speech endpoint detection as a preprocess of speech or speaker recognition.At first a hearing perception speech enhancement is carried out... The Perception Spectrogram Structure Boundary(PSSB)parameter is proposed for speech endpoint detection as a preprocess of speech or speaker recognition.At first a hearing perception speech enhancement is carried out.Then the two-dimensional enhancement is performed upon the sound spectrogram according to the difference between the determinacy distribution characteristic of speech and the random distribution characteristic of noise.Finally a decision for endpoint was made by the PSSB parameter.Experimental results show that,in a low SNR environment from-10 dB to 10 dB,the algorithm proposed in this paper may achieve higher accuracy than the extant endpoint detection algorithms.The detection accuracy of 75.2%can be reached even in the extremely low SNR at-10 dB.Therefore it is suitable for speech endpoint detection in low-SNRs environment. 展开更多
关键词 Speech endpoint detection in low-SNRs environment based on perception spectrogram structure boundary parameter
原文传递
Wheeze detecting method based on spectrogram entropy analysis 被引量:5
2
作者 LI Jiarui HONG Ying 《Chinese Journal of Acoustics》 CSCD 2016年第4期508-515,共8页
In order to eliminate the subjectivity of wheeze diagnosis and improve the accuracy of objective detecting methods,this paper introduces a wheeze detecting method based on spectrogram entropy analysis.This algorithm m... In order to eliminate the subjectivity of wheeze diagnosis and improve the accuracy of objective detecting methods,this paper introduces a wheeze detecting method based on spectrogram entropy analysis.This algorithm mainly comprises three steps which are preprocessing,features extracting and wheeze detecting based on support vector machine(SVM).Herein,the preprocessing consists of the short-time Fourier transform(STFT) decomposition and detrending.The features are extracted from the entropy of spectrograms.The step of detrending makes the difference of the features between wheeze and normal lung sounds more obvious.Moreover,compared with the method whose decision is based on the empirical threshold,there is no uncertain detecting result any more.Results of two testing experiments show that the detecting accuracy(AC) are 97.1%and 95.7%,respectively,which proves that the proposed method could be an efficient way to detect wheeze. 展开更多
关键词 NLS Wheeze detecting method based on spectrogram entropy analysis STFT SVM
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部