X-ray fluorescence spectrometry was used to detect the content of eight elements in metal coating smeared on waste plastics,and effects of sample cups,elements in plastic substrate,and interaction of elements in metal...X-ray fluorescence spectrometry was used to detect the content of eight elements in metal coating smeared on waste plastics,and effects of sample cups,elements in plastic substrate,and interaction of elements in metal coating on detection results were analyzed. The results show that the RSD of the method used to detect element content in the metal coating smeared on the waste plastics ranged from 0.008% to 0.044%; the determination range of the eight elements was 0.002%-52.0%,and their detection limit ranged from 0.0002% to 0.0008%. The determination results of X-ray fluorescence spectrometry were consistent with that of ICP-AES. The method can provide technical support for the determination of damage and pollution caused by metal coating smeared on waste plastics.展开更多
A method based on the combination of coprecipitation with inductively coupledplasma atomic emission spectrometry (ICP-AES) was developed for the determination of impurities inhigh-purity sodium tungstate. Six elements...A method based on the combination of coprecipitation with inductively coupledplasma atomic emission spectrometry (ICP-AES) was developed for the determination of impurities inhigh-purity sodium tungstate. Six elements (Co, Cu, Fe, Mn, Ni, and Pb) were coprecipitated bylanthanum hydroxide so as to be concentrated and separated from the tungsten matrix. Effects of somefactors on the recoveries of the analytes and on the residual amount of sodium tungstate wereinvestigated, and the optimum conditions for the coprecipitation were proposed. Matrix-matchingcalibration curve method was used for the analysis. It is shown that the elements mentioned abovecan be quantitatively recovered. The detection limits for Co, Cu, Fe, Mn, Ni, and Pb are 0.07, 0.4,0.2, 0.1, 0.6, and 1.3 μg·g^(-1), respectively. The recoveries vary from 92.5% to 108%, and therelative standard deviations (RSDs) are in the range of 3.1%-5.5%.展开更多
Direct analysis of copper-base alloys using laser ablation techniques is an increasingly common procedure in cultural heritage studies. However, main discussions remain focused on the possibility of using non-matrix m...Direct analysis of copper-base alloys using laser ablation techniques is an increasingly common procedure in cultural heritage studies. However, main discussions remain focused on the possibility of using non-matrix matched external reference materials. To evaluate the occurrence of matrix effects during in situ microanalysis of copper-base materials, using near infrared femtosecond laser ablation techniques (NIR fs-LA-ICP-MS), two bronzes, i.e., (Sn-Zn)-ternary and (Sn)-binary copper-matrix reference materials, as well as a reference synthetic glass (NIST-SRM-610) have been analyzed. The results have been compared to data obtained on a sulfide-matrix reference material. Similar values in relative sensitivity averages of 63Cu, 118Sn and 66Zn, as well as in 118Sn/63Cu and 66Zn/63Cu ratios were obtained, for all analyzed matrix types, i.e., copper-base-, silicate-, and sulfide-reference materials. Consequently, it is possible to determinate major and minor element concentrations in copper alloys, i.e., Cu, Sn and Zn, using silicate and sulfide reference materials as external calibrators, without any matrix effect and over a wide range of concentrations (from wt.% to ppm). Equally, Cu, Sn and Zn concentrations can be precisely determined in sulfides using homogeneous alloys (reference) materials as an external calibrator. Thus, it is possible to determine Cu, Sn and Zn in copper-base materials and their ore minerals, mostly sulfides, in a single analytical session, without requiring specific external calibrators for each matrix type. In contrast, immiscible elements in copper matrix, such as Pb and Fe show notable differences in their relative sensitivity values and ratios for different matrix-materials analyzed, implying that matrix-matched external calibrations remain to be applied for their trace quantification.展开更多
An inductively coupled plasma mass spectrometry (ICP-MS) or inductively coupled plasma atomic emission spectrometry (ICP-AES) was developed to determine 19 elements in safflower, a traditional Chinese medicinal he...An inductively coupled plasma mass spectrometry (ICP-MS) or inductively coupled plasma atomic emission spectrometry (ICP-AES) was developed to determine 19 elements in safflower, a traditional Chinese medicinal herb from Xinjiang Autonomous Region and Henan Province of China. Totally 19 elements in safflower included heavy metals, i.e. As, Cd, Cu, Hg and Pb, and wholesome elements, i.e. Al, Ca, Co, Cr, Fe, Mg, Mn, Mo, Ni, P, Se, Sr, V and Zn. The results showed that the concentrations of heavy metals in safflower samples were both low, all of which met the national hygiene standards except for Pb in Xinjiang sample. Meanwhile, the distribution tendency of elements in the two samples was similar, which indicated that the plant might absorb given elements in a proportional way. The method can be used for the quality control of elements in safflower, and it provides a way for the determination of the contents of safflower from Xinjiang and Henan.展开更多
Concentration of heavy metals in blood and urine of rabbit after inhaling three different kinds of cigarette was studied through the animal passive smoking pattern. The samples were prepared by nitric acid solution di...Concentration of heavy metals in blood and urine of rabbit after inhaling three different kinds of cigarette was studied through the animal passive smoking pattern. The samples were prepared by nitric acid solution digestion and determination of seven kinds of heavy metals including Hg, Se, Sn, Pb, Cd, Ni and Cr was performed by inductively coupled plasma-atomic emission spectrometry (ICP-AES). The ICP-AES method was established with good precision and accuracy, relative standard deviation (n=6) was between 2.9% and 5.9%, and the recovery was in the range of 95.0%-104.2%. Concentration of six heavy metals increases in some extent in blood and urine after period of smoking and the increasing of heavy metals in blood and urine all shows time dependence. Significantly higher heavy metal levels are observed in the blood and urine of the cigarette inhaling rabbits in the exposed group. The concentration of six kinds of heavy metals in the blood of the rabbit increases after 16 weeks exposing to cigarette smoking. Three times of rig, ten times of Se and trace amount ofPb, Cd, Ni and Cr are detected in the blood after 16 weeks of smoking. For urine samples, about three times of Hg, two times of Se, five times of Pb and trace amount of Cd are detected after 16 weeks of inhalation of cigarette. Comparatively, higher concentration of heavy metals are detected after inhaling of Nise cigarette.展开更多
[Objectives] To determine 29 kinds of inorganic elements in samples of Paris daliensis H.Li et V.G.Souku and P. dulongensis H.Li et S.Kuritap produced in different regions, and to measure the content of 10 key inorgan...[Objectives] To determine 29 kinds of inorganic elements in samples of Paris daliensis H.Li et V.G.Souku and P. dulongensis H.Li et S.Kuritap produced in different regions, and to measure the content of 10 key inorganic elements: chromium(Cr), manganese(Mn), iron(Fe), copper(Cu), mercury(Hg), zinc(Zn), arsenic(As), antimony(Sr), cadmium(Cd) and lead(Pb). [Methods] The wet digestion and technique of inductively coupled plasma optical emission spectrometry(ICP-OES) were employed. [Results] Under the experimental conditions, elements were not related to each other, and many kinds of elements could be measured at the same time; toxic and heavy metals in samples of P. daliensis H.Li et V.G.Souku and P. dulongensis H.Li et S.Kuritap did not exceed the limit; Hg was not detected in all samples. [Conclusions] This method is simple, easy to operate and reproducible. It can be used for the detection of inorganic elements in P. daliensis H.Li et V.G.Souku and P. dulongensis H.Li et S.Kuritap; the heavy metals and Hg of the rhizome meet the requirements of the limit of medicinal materials.展开更多
基金Supported by Project of Ningbo Entry-Exit Inspection and Quarantine Bureau(K21-2013)
文摘X-ray fluorescence spectrometry was used to detect the content of eight elements in metal coating smeared on waste plastics,and effects of sample cups,elements in plastic substrate,and interaction of elements in metal coating on detection results were analyzed. The results show that the RSD of the method used to detect element content in the metal coating smeared on the waste plastics ranged from 0.008% to 0.044%; the determination range of the eight elements was 0.002%-52.0%,and their detection limit ranged from 0.0002% to 0.0008%. The determination results of X-ray fluorescence spectrometry were consistent with that of ICP-AES. The method can provide technical support for the determination of damage and pollution caused by metal coating smeared on waste plastics.
文摘A method based on the combination of coprecipitation with inductively coupledplasma atomic emission spectrometry (ICP-AES) was developed for the determination of impurities inhigh-purity sodium tungstate. Six elements (Co, Cu, Fe, Mn, Ni, and Pb) were coprecipitated bylanthanum hydroxide so as to be concentrated and separated from the tungsten matrix. Effects of somefactors on the recoveries of the analytes and on the residual amount of sodium tungstate wereinvestigated, and the optimum conditions for the coprecipitation were proposed. Matrix-matchingcalibration curve method was used for the analysis. It is shown that the elements mentioned abovecan be quantitatively recovered. The detection limits for Co, Cu, Fe, Mn, Ni, and Pb are 0.07, 0.4,0.2, 0.1, 0.6, and 1.3 μg·g^(-1), respectively. The recoveries vary from 92.5% to 108%, and therelative standard deviations (RSDs) are in the range of 3.1%-5.5%.
文摘Direct analysis of copper-base alloys using laser ablation techniques is an increasingly common procedure in cultural heritage studies. However, main discussions remain focused on the possibility of using non-matrix matched external reference materials. To evaluate the occurrence of matrix effects during in situ microanalysis of copper-base materials, using near infrared femtosecond laser ablation techniques (NIR fs-LA-ICP-MS), two bronzes, i.e., (Sn-Zn)-ternary and (Sn)-binary copper-matrix reference materials, as well as a reference synthetic glass (NIST-SRM-610) have been analyzed. The results have been compared to data obtained on a sulfide-matrix reference material. Similar values in relative sensitivity averages of 63Cu, 118Sn and 66Zn, as well as in 118Sn/63Cu and 66Zn/63Cu ratios were obtained, for all analyzed matrix types, i.e., copper-base-, silicate-, and sulfide-reference materials. Consequently, it is possible to determinate major and minor element concentrations in copper alloys, i.e., Cu, Sn and Zn, using silicate and sulfide reference materials as external calibrators, without any matrix effect and over a wide range of concentrations (from wt.% to ppm). Equally, Cu, Sn and Zn concentrations can be precisely determined in sulfides using homogeneous alloys (reference) materials as an external calibrator. Thus, it is possible to determine Cu, Sn and Zn in copper-base materials and their ore minerals, mostly sulfides, in a single analytical session, without requiring specific external calibrators for each matrix type. In contrast, immiscible elements in copper matrix, such as Pb and Fe show notable differences in their relative sensitivity values and ratios for different matrix-materials analyzed, implying that matrix-matched external calibrations remain to be applied for their trace quantification.
文摘An inductively coupled plasma mass spectrometry (ICP-MS) or inductively coupled plasma atomic emission spectrometry (ICP-AES) was developed to determine 19 elements in safflower, a traditional Chinese medicinal herb from Xinjiang Autonomous Region and Henan Province of China. Totally 19 elements in safflower included heavy metals, i.e. As, Cd, Cu, Hg and Pb, and wholesome elements, i.e. Al, Ca, Co, Cr, Fe, Mg, Mn, Mo, Ni, P, Se, Sr, V and Zn. The results showed that the concentrations of heavy metals in safflower samples were both low, all of which met the national hygiene standards except for Pb in Xinjiang sample. Meanwhile, the distribution tendency of elements in the two samples was similar, which indicated that the plant might absorb given elements in a proportional way. The method can be used for the quality control of elements in safflower, and it provides a way for the determination of the contents of safflower from Xinjiang and Henan.
基金Project(11JJ5053) supported by the Provincial Natural Science Foundation of Hunan Province,China
文摘Concentration of heavy metals in blood and urine of rabbit after inhaling three different kinds of cigarette was studied through the animal passive smoking pattern. The samples were prepared by nitric acid solution digestion and determination of seven kinds of heavy metals including Hg, Se, Sn, Pb, Cd, Ni and Cr was performed by inductively coupled plasma-atomic emission spectrometry (ICP-AES). The ICP-AES method was established with good precision and accuracy, relative standard deviation (n=6) was between 2.9% and 5.9%, and the recovery was in the range of 95.0%-104.2%. Concentration of six heavy metals increases in some extent in blood and urine after period of smoking and the increasing of heavy metals in blood and urine all shows time dependence. Significantly higher heavy metal levels are observed in the blood and urine of the cigarette inhaling rabbits in the exposed group. The concentration of six kinds of heavy metals in the blood of the rabbit increases after 16 weeks exposing to cigarette smoking. Three times of rig, ten times of Se and trace amount ofPb, Cd, Ni and Cr are detected in the blood after 16 weeks of smoking. For urine samples, about three times of Hg, two times of Se, five times of Pb and trace amount of Cd are detected after 16 weeks of inhalation of cigarette. Comparatively, higher concentration of heavy metals are detected after inhaling of Nise cigarette.
基金Supported by The National Key Research and Development Program of China during the 13th Five-Year Plan Period(2018ZX09301060)Fourth National Survey of Traditional Chinese Medicine Resources Program(2017)+1 种基金Science and Technology Condition Capacity Building and Technology Extension Demonstration Project of Aba Prefecture(18TJPT0004)Innovating Research Program of Postgraduates of Southwest Minzu University in 2019(CX2019SZ180)
文摘[Objectives] To determine 29 kinds of inorganic elements in samples of Paris daliensis H.Li et V.G.Souku and P. dulongensis H.Li et S.Kuritap produced in different regions, and to measure the content of 10 key inorganic elements: chromium(Cr), manganese(Mn), iron(Fe), copper(Cu), mercury(Hg), zinc(Zn), arsenic(As), antimony(Sr), cadmium(Cd) and lead(Pb). [Methods] The wet digestion and technique of inductively coupled plasma optical emission spectrometry(ICP-OES) were employed. [Results] Under the experimental conditions, elements were not related to each other, and many kinds of elements could be measured at the same time; toxic and heavy metals in samples of P. daliensis H.Li et V.G.Souku and P. dulongensis H.Li et S.Kuritap did not exceed the limit; Hg was not detected in all samples. [Conclusions] This method is simple, easy to operate and reproducible. It can be used for the detection of inorganic elements in P. daliensis H.Li et V.G.Souku and P. dulongensis H.Li et S.Kuritap; the heavy metals and Hg of the rhizome meet the requirements of the limit of medicinal materials.