期刊文献+
共找到62,039篇文章
< 1 2 250 >
每页显示 20 50 100
Determination of Mecruy at Trace Level in Natural Water Samples by Hydride Generation Atomic Absorption Spectrophotometry after Cloud Point Extraction Preconcentration 被引量:2
1
作者 Ji Ying SONG Ming HOU Li Xiang ZHANG 《Chinese Chemical Letters》 SCIE CAS CSCD 2006年第9期1217-1220,共4页
A method for the determination of trace mercury in water samples by hydride generation atomic absorption spectrophotometry after cloud point extraction was proposed in the present work. The effects of pH, concentratio... A method for the determination of trace mercury in water samples by hydride generation atomic absorption spectrophotometry after cloud point extraction was proposed in the present work. The effects of pH, concentration of surfactant, and equilibration time on cloud point extraction were discussed. The enhancement factor of 20 and the detection limit of 0.039 μg/L were obtained for mercury with relative standard deviation of 4.8% (n = 11). 展开更多
关键词 Cloud point extraction MERCURY hydride generation atomic absorption spectrophotometry.
下载PDF
Concentration determination of gold nanoparticles by flame atomic absorption spectrophotometry 被引量:1
2
作者 Yuhong Fu Quan Wan +4 位作者 Zonghua Qin Shanshan Li Sen Li Ji Wang Wei Zhang 《Acta Geochimica》 EI CAS CSCD 2021年第4期498-506,共9页
While engineered nanoparticles are widely used and maybe eventually released into the environment,natural nanoparticles are also commonly found in the Earth system.Nanoparticles may critically affect the geochemical m... While engineered nanoparticles are widely used and maybe eventually released into the environment,natural nanoparticles are also commonly found in the Earth system.Nanoparticles may critically affect the geochemical migration of associated elements and pose potential threats to the ecological environment.It is necessary to establish an accurate and reliable method for measuring the concentration of nanoparticles.AAS is one of the most commonly used methods for the concentration determination of nanoparticles.However,till now,there has been no systematic report on how experimental variables affect AAS measurements.In this study,we used gold nanoparticles(AuNPs) as an example and studied the influences of a list of factors on the concentration determination of AuNPs by AAS,including digestion method,ionization interference,acidic medium,background correction method,and organic matter.We demonstrate that all these factors may have varying degrees of influence on the measured gold concentrations.When the gold colloid is digested at room temperature for more than 8 h or at 60℃ for more than 2 h,and the system contains a low concentration of organic matter,AAS can accurately measure the AuNP concentration at ppm-level.The deuterium lamp background deduction method is not recommended to use for samples with lower gold concentrations. 展开更多
关键词 Gold nanoparticles atomic absorption spectrophotometry Quantitative analysis Organic matter
下载PDF
Separation/Enrichment of Copper and Silver Using Titanium Dioxide Nanoparticles Coated with Poly-Thiophene and Their Analysis by Flame Atomic Absorption Spectrophotometry 被引量:1
3
作者 Mohammad Behbahani Meysam Babapour +4 位作者 Mostafa M. Amini Omid Sadeghi Akbar Bagheri Mani Salarian Banafsheh Rafiee 《American Journal of Analytical Chemistry》 2013年第2期90-98,共9页
We report on the use of titanium dioxide nanoparticles (NPs) coated with poly-thiophene for the preconcentration of copper and silverions. The NPs were prepared by first modifying the surface of TiO2 NPs with vinyl gr... We report on the use of titanium dioxide nanoparticles (NPs) coated with poly-thiophene for the preconcentration of copper and silverions. The NPs were prepared by first modifying the surface of TiO2 NPs with vinyl groups and then copolymerizing them with vinyl thiophen. The resulting TiO2-polythiophene core-shell NPs were characterized by thermogravimetry, differential thermal analysis, scanning electron microscopy, Fourier transform infrared spectrometry and X-ray diffraction. The experimental conditions such as pH value, adsorption and desorption time, type, concentration and volume of the eluent, break through volume, and effect of potentially interfering ions were optimized. The ions were then desorbed with hydrochloric acid and determined by FAAS. The limits of detection are 0.4 and 1.2 μg·L_1 for Cu(II) and Ag(I), respectively, and recoveries and precisions are >98.0% 展开更多
关键词 Novel Poly-Thiophene-TiO2 Nanoparticles COPPER SILVER Flame atomic Absorption spectrophotometry
下载PDF
Content Determination of Trace Elements in Several Vegetables by Atomic Absorption Spectrophotometry
4
作者 Zhaoying ZHANG Kuiliang SHEN 《Asian Agricultural Research》 2019年第3期62-65,共4页
The contents of Mn,Zn and Cu,three essential trace elements for human body,in Laminaria japonica,Auricularia auricula( L. ex Hook.) Underwood,Porphyra,Cucurbita pepo L.,Spinacia oleracea L. and Coriandrum sativum were... The contents of Mn,Zn and Cu,three essential trace elements for human body,in Laminaria japonica,Auricularia auricula( L. ex Hook.) Underwood,Porphyra,Cucurbita pepo L.,Spinacia oleracea L. and Coriandrum sativum were determined by atomic absorption spectrophotometry. Vegetable samples were processed by wet digestion. The results showed that among the six vegetables,Mn had the highest content in A. auricula( 26. 60 μg/g) and the lowest content in C. pepo( 1. 22 μg/g); Zn had the highest content in Porphyra( 38. 07 μg/g)and the lowest content in L. japonica( 10. 32 μg/g); and Cu had the highest content in Porphyra( 10. 35 μg/g) and the lowest content in S. oleracea( 0. 61 μg/g). Each determination was repeated five times. The value of RSD was less than 10%,indicating high accuracy. 展开更多
关键词 atomic absorption spectrophotometry VEGETABLE Mn Zn Cu
下载PDF
Evaluation of Analytical Procedures in the Determination of Trace Metals in Heavy Crude Oils by Flame Atomic Absorption Spectrophotometry
5
作者 Mahmood M. Barbooti 《American Journal of Analytical Chemistry》 2015年第4期325-333,共9页
In the present work, four trace metals, V, Ni, Cu and Fe, have been determined in five crude oil samples of Eastern Baghdad area, Iraq by flame atomic absorption spectrophotometry. The crude oils are characterized wit... In the present work, four trace metals, V, Ni, Cu and Fe, have been determined in five crude oil samples of Eastern Baghdad area, Iraq by flame atomic absorption spectrophotometry. The crude oils are characterized with API gravity values in the range, 25 - 15. The V/Ni ratios for the studied crudes were in the range 3.7 to 5.4 and indicated a typical of the sapropelic-type organic matter. The Ni and V contents were correlated with API gravity where an increase of metal contents with the decrease in the API values could be observed. The plots of V and Ni versus sulfur indicated linear correlation. This is attributed to the increase of porphyrinic structures of the metals. The method of direct dilution (DD) with organic solvent and the standard addition (SA) were evaluated as compared with standard dry ashing-acid dissolution (DA). In most cases the DD method gave V and Ni concentrations that are higher than DA and for the heavier crude oil (API = 15) the DD results were significantly smaller than those of the DA method. The SA method can be a good solution to determine the trace metals in heavy crude oils provided that the addition must not exceed the levels of the metal concentration in the diluted samples. 展开更多
关键词 CRUDE Oil Analysis atomic Absorption TRACE METALS Analytical Procedures
下载PDF
Atomic Quantum Mechanics Based on Atomic Functions
6
作者 Sergei Yu. Eremenko 《Journal of Applied Mathematics and Physics》 2024年第11期3941-3963,共23页
Based on theorems, the Atomic AString Functions theory, evolving since the 1970s, is introduced into Quantum Mechanics to represent a wave function via the shifts and stretches of smooth finite Atomic Function pulses/... Based on theorems, the Atomic AString Functions theory, evolving since the 1970s, is introduced into Quantum Mechanics to represent a wave function via the shifts and stretches of smooth finite Atomic Function pulses/solitonic atoms. It leads to a novel ‘atomic interpretation’ where wave functions become the superpositions of localized Atomic Wave Functions, which can also describe collapsed wave functions, represent Gaussians, uphold Heisenberg’s uncertainly principle, and a more generic concept of Atomic Harmonic Oscillator. Atomic Functions can solve the boundary wave function discontinuity problem for particle-in-a-box and other solutions by introducing atomic wave packets. It highlights some limitations of the Schrödinger equation, yielding harmonic representations that may not be flexible enough to satisfy complex boundary conditions. The theory follows more generic research on Atomic Spacetime, quantum gravity, and field theories to derive common mathematical blocks of unified fields similar to loop quantum gravity and strings theories. 展开更多
关键词 Quantum Mechanics atomic Function atomic Wave Function atomic Oscillator atomic Spacetime Unified Theories
下载PDF
Atomic Dispersed Hetero‑Pairs for Enhanced Electrocatalytic CO_(2)Reduction
7
作者 Zhaoyong Jin Meiqi Yang +13 位作者 Yilong Dong Xingcheng Ma Ying Wang Jiandong Wu Jinchang Fan Dewen Wang Rongshen Xi Xiao Zhao Tianyi Xu Jingxiang Zhao Lei Zhang David J.Singh Weitao Zheng Xiaoqiang Cui 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第1期55-67,共13页
Electrochemical carbon dioxide reduction reaction(CO_(2)RR)involves a variety of intermediates with highly correlated reaction and ad-desorption energies,hindering optimization of the catalytic activity.For example,in... Electrochemical carbon dioxide reduction reaction(CO_(2)RR)involves a variety of intermediates with highly correlated reaction and ad-desorption energies,hindering optimization of the catalytic activity.For example,increasing the binding of the*COOH to the active site will generally increase the*CO desorption energy.Breaking this relationship may be expected to dramatically improve the intrinsic activity of CO_(2)RR,but remains an unsolved challenge.Herein,we addressed this conundrum by constructing a unique atomic dispersed hetero-pair consisting of Mo-Fe di-atoms anchored on N-doped carbon carrier.This system shows an unprecedented CO_(2)RR intrinsic activity with TOF of 3336 h−1,high selectivity toward CO production,Faradaic efficiency of 95.96%at−0.60 V and excellent stability.Theoretical calculations show that the Mo-Fe diatomic sites increased the*COOH intermediate adsorption energy by bridging adsorption of*COOH intermediates.At the same time,d-d orbital coupling in the Mo-Fe di-atom results in electron delocalization and facilitates desorption of*CO intermediates.Thus,the undesirable correlation between these steps is broken.This work provides a promising approach,specifically the use of di-atoms,for breaking unfavorable relationships based on understanding of the catalytic mechanisms at the atomic scale. 展开更多
关键词 CO_(2)reduction reaction atomic dispersed catalyst Hetero-diatomic pair Ad-desorption energy Linear scaling relation
下载PDF
Strong synergy between physical and chemical properties:Insight into optimization of atomically dispersed oxygen reduction catalysts 被引量:8
8
作者 Yifan Zhang Linsheng Liu +4 位作者 Yuxuan Li Xueqin Mu Shichun Mu Suli Liu Zhihui Dai 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期36-49,共14页
Atomically dispersed catalysts exhibit significant influence on facilitating the sluggish oxygen reduction reaction(ORR)kinetics with high atom economy,owing to remarkable attributes including nearly 100%atomic utiliz... Atomically dispersed catalysts exhibit significant influence on facilitating the sluggish oxygen reduction reaction(ORR)kinetics with high atom economy,owing to remarkable attributes including nearly 100%atomic utilization and exceptional catalytic functionality.Furthermore,accurately controlling atomic physical properties including spin,charge,orbital,and lattice degrees of atomically dispersed catalysts can realize the optimized chemical properties including maximum atom utilization efficiency,homogenous active centers,and satisfactory catalytic performance,but remains elusive.Here,through physical and chemical insight,we review and systematically summarize the strategies to optimize atomically dispersed ORR catalysts including adjusting the atomic coordination environment,adjacent electronic orbital and site density,and the choice of dual-atom sites.Then the emphasis is on the fundamental understanding of the correlation between the physical property and the catalytic behavior for atomically dispersed catalysts.Finally,an overview of the existing challenges and prospects to illustrate the current obstacles and potential opportunities for the advancement of atomically dispersed catalysts in the realm of electrocatalytic reactions is offered. 展开更多
关键词 atomically dispersed catalysts Coordination environment Electronic orbitals Inter-site distance effect Oxygen reduction reaction
下载PDF
Synthesis and Modulation of Low-Dimensional Transition Metal Chalcogenide Materials via Atomic Substitution 被引量:1
9
作者 Xuan Wang Akang Chen +3 位作者 XinLei Wu Jiatao Zhang Jichen Dong Leining Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第9期49-94,共46页
In recent years,low-dimensional transition metal chalcogenide(TMC)materials have garnered growing research attention due to their superior electronic,optical,and catalytic properties compared to their bulk counterpart... In recent years,low-dimensional transition metal chalcogenide(TMC)materials have garnered growing research attention due to their superior electronic,optical,and catalytic properties compared to their bulk counterparts.The controllable synthesis and manipulation of these materials are crucial for tailoring their properties and unlocking their full potential in various applications.In this context,the atomic substitution method has emerged as a favorable approach.It involves the replacement of specific atoms within TMC structures with other elements and possesses the capability to regulate the compositions finely,crystal structures,and inherent properties of the resulting materials.In this review,we present a comprehensive overview on various strategies of atomic substitution employed in the synthesis of zero-dimensional,one-dimensional and two-dimensional TMC materials.The effects of substituting elements,substitution ratios,and substitution positions on the structures and morphologies of resulting material are discussed.The enhanced electrocatalytic performance and photovoltaic properties of the obtained materials are also provided,emphasizing the role of atomic substitution in achieving these advancements.Finally,challenges and future prospects in the field of atomic substitution for fabricating low-dimensional TMC materials are summarized. 展开更多
关键词 Transition metal chalcogenides atomic substitution Ion exchange Low-dimensional materials Controllable synthesis
下载PDF
A frequency servo SoC with output power stabilization loop technology for miniaturized atomic clocks 被引量:1
10
作者 Hongyang Zhang Xinlin Geng +3 位作者 Zonglin Ye Kailei Wang Qian Xie Zheng Wang 《Journal of Semiconductors》 EI CAS CSCD 2024年第6期13-22,共10页
A frequency servo system-on-chip(FS-SoC)featuring output power stabilization technology is introduced in this study for high-precision and miniaturized cesium(Cs)atomic clocks.The proposed power stabilization loop(PSL... A frequency servo system-on-chip(FS-SoC)featuring output power stabilization technology is introduced in this study for high-precision and miniaturized cesium(Cs)atomic clocks.The proposed power stabilization loop(PSL)technique,incorporating an off-chip power detector(PD),ensures that the output power of the FS-SoC remains stable,mitigating the impact of power fluctuations on the atomic clock's stability.Additionally,a one-pulse-per-second(1PPS)is employed to syn-chronize the clock with GPS.Fabricated using 65 nm CMOS technology,the measured phase noise of the FS-SoC stands at-69.5 dBc/Hz@100 Hz offset and-83.9 dBc/Hz@1 kHz offset,accompanied by a power dissipation of 19.7 mW.The Cs atomic clock employing the proposed FS-SoC and PSL obtains an Allan deviation of 1.7×10^(-11) with 1-s averaging time. 展开更多
关键词 CMOS technology atomic clock phase-locked loop output power stabilization 1PPS
下载PDF
Building Feedback-Regulation System Through Atomic Design for Highly Active SO_(2)Sensing 被引量:1
11
作者 Xin Jia Panzhe Qiao +8 位作者 Xiaowu Wang Muyu Yan Yang Chen Bao-Li An Pengfei Hu Bo Lu Jing Xu Zhenggang Xue Jiaqiang Xu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第7期343-357,共15页
Reasonably constructing an atomic interface is pronouncedly essential for surface-related gas-sensing reaction.Herein,we present an ingen-ious feedback-regulation system by changing the interactional mode between sing... Reasonably constructing an atomic interface is pronouncedly essential for surface-related gas-sensing reaction.Herein,we present an ingen-ious feedback-regulation system by changing the interactional mode between single Pt atoms and adjacent S species for high-efficiency SO_(2)sensing.We found that the single Pt sites on the MoS_(2)surface can induce easier volatiliza-tion of adjacent S species to activate the whole inert S plane.Reversely,the activated S species can provide a feedback role in tailoring the antibonding-orbital electronic occupancy state of Pt atoms,thus creating a combined system involving S vacancy-assisted single Pt sites(Pt-Vs)to synergistically improve the adsorption ability of SO_(2)gas molecules.Further-more,in situ Raman,ex situ X-ray photoelectron spectroscopy testing and density functional theory analysis demonstrate the intact feedback-regulation system can expand the electron transfer path from single Pt sites to whole Pt-MoS_(2)supports in SO_(2)gas atmosphere.Equipped with wireless-sensing modules,the final Pt1-MoS_(2)-def sensors array can further realize real-time monitoring of SO_(2)levels and cloud-data storage for plant growth.Such a fundamental understanding of the intrinsic link between atomic interface and sensing mechanism is thus expected to broaden the rational design of highly effective gas sensors. 展开更多
关键词 Feedback-regulation system atomic interface SO_(2)sensor Single-atom sensing mechanism Intelligent-sensing array
下载PDF
Atomic layer deposition in advanced display technologies:from photoluminescence to encapsulation
12
作者 Rong Chen Kun Cao +4 位作者 Yanwei Wen Fan Yang Jian Wang Xiao Liu Bin Shan 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第2期65-82,共18页
Driven by the growing demand for next-generation displays,the development of advanced luminescent materials with exceptional photoelectric properties is rapidly accelerating,with such materials including quantum dots ... Driven by the growing demand for next-generation displays,the development of advanced luminescent materials with exceptional photoelectric properties is rapidly accelerating,with such materials including quantum dots and phosphors,etc.Nevertheless,the primary challenge preventing the practical application of these luminescent materials lies in meeting the required durability standards.Atomic layer deposition(ALD)has,therefore,been employed to stabilize luminescent materials,and as a result,flexible display devices have been fabricated through material modification,surface and interface engineering,encapsulation,cross-scale manufacturing,and simulations.In addition,the appropriate equipment has been developed for both spatial ALD and fluidized ALD to satisfy the low-cost,high-efficiency,and high-reliability manufacturing requirements.This strategic approach establishes the groundwork for the development of ultra-stable luminescent materials,highly efficient light-emitting diodes(LEDs),and thin-film packaging.Ultimately,this significantly enhances their potential applicability in LED illumination and backlighted displays,marking a notable advancement in the display industry. 展开更多
关键词 atomic layer deposition DISPLAY LUMINESCENT ENCAPSULATION
下载PDF
Tailoring local structures of atomically dispersed copper sites for highly selective CO_(2) electroreduction
13
作者 Kyung‐Jong Noh Byoung Joon Park +5 位作者 Ying Wang Yejung Choi Sang‐Hoon You Yong‐Tae Kim Kug‐Seung Lee Jeong Woo Han 《Carbon Energy》 SCIE EI CAS CSCD 2024年第4期79-90,共12页
Atomically‐dispersed copper sites coordinated with nitrogen‐doped carbon(Cu–N–C)can provide novel possibilities to enable highly selective and active electrochemical CO_(2) reduction reactions.However,the construc... Atomically‐dispersed copper sites coordinated with nitrogen‐doped carbon(Cu–N–C)can provide novel possibilities to enable highly selective and active electrochemical CO_(2) reduction reactions.However,the construction of optimal local electronic structures for nitrogen‐coordinated Cu sites(Cu–N_(4))on carbon remains challenging.Here,we synthesized the Cu–N–C catalysts with atomically‐dispersed edge‐hosted Cu–N_(4) sites(Cu–N_(4)C_(8))located in a micropore between two graphitic sheets via a facile method to control the concentration of metal precursor.Edge‐hosted Cu–N_(4)C_(8) catalysts outperformed the previously reported M–N–C catalysts for CO_(2)‐to‐CO conversion,achieving a maximum CO Faradaic efficiency(FECO)of 96%,a CO current density of–8.97 mA cm^(–2) at–0.8 V versus reversible hydrogen electrode(RHE),and over FECO of 90%from–0.6 to–1.0 V versus RHE.Computational studies revealed that the micropore of the graphitic layer in edge‐hosted Cu–N_(4)C_(8) sites causes the d‐orbital energy level of the Cu atom to shift upward,which in return decreases the occupancy of antibonding states in the*COOH binding.This research suggests new insights into tailoring the locally coordinated structure of the electrocatalyst at the atomic scale to achieve highly selective electrocatalytic reactions. 展开更多
关键词 atomic local structure density functional theory electrochemical CO_(2)reduction metal nitrogen‐doped carbon single‐atom catalyst
下载PDF
Methanol steam reforming for hydrogen production driven by an atomically precise Cu catalyst
14
作者 Weigang Hu Haoqi Liu +7 位作者 Yuankun Zhang Jiawei Ji Guangjun Li Xiao Cai Xu Liu Wen Wu Xu Weiping Ding Yan Zhu 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第7期1079-1084,共6页
Plasmon-induced hot-electron transfer from metal nanostructures is being intensely pursed in current photocatalytic research,however it remains elusive whether molecular-like metal clusters with excitonic behavior can... Plasmon-induced hot-electron transfer from metal nanostructures is being intensely pursed in current photocatalytic research,however it remains elusive whether molecular-like metal clusters with excitonic behavior can be used as light-harvesting materials in solar energy utilization such as photocatalytic methanol steam reforming.In this work,we report an atomically precise Cu_(13)cluster protected by dual ligands of thiolate and phosphine that can be viewed as the assembly of one top Cu atom and three Cu_(4)tetrahedra.The Cu_(13)H_(10)(SR)_(3)(PR’_(3))_(7)(SR=2,4-dichlorobenzenethiol,PR’_(3)=P(4-FC_(6)H_(4))_(3))cluster can give rise to highly efficient light-driven activity for methanol steam reforming toward H_(2)production. 展开更多
关键词 NANOCLUSTER PHOTOCATALYSIS Methanol steam reforming atomically precise Copper catalyst
下载PDF
Unveiling the early stage evolution of local atomic structures in the crystallization process of a metallic glass
15
作者 马琳 杨晓东 +2 位作者 杨锋 周鑫嘉 武振伟 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第3期58-64,共7页
The early stage evolution of local atomic structures in a multicomponent metallic glass during its crystallization process has been investigated via molecular dynamics simulation.It is found that the initial thermal s... The early stage evolution of local atomic structures in a multicomponent metallic glass during its crystallization process has been investigated via molecular dynamics simulation.It is found that the initial thermal stability and earliest stage evolution of the local atomic clusters show no strong correlation with their initial short-range orders,and this leads to an observation of a novel symmetry convergence phenomenon,which can be understood as an atomic structure manifestation of the ergodicity.Furthermore,in our system we have quantitatively proved that the crucial factor for the thermal stability against crystallization exhibited by the metallic glass is not the total amount of icosahedral clusters,but the degree of global connectivity among them. 展开更多
关键词 metallic glass CRYSTALLIZATION molecular dynamics simulation local atomic clusters
下载PDF
Dependence of Rydberg-atom-based sensor performance on different Rydberg atom populations in one atomic-vapor cell
16
作者 武博 姚佳伟 +2 位作者 吴逢川 安强 付云起 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第2期365-370,共6页
The atomic-vapor cell is a vital component for Rydberg atomic microwave sensors,and impacts on overall capability of Rydberg sensors.However,the conventional analysis approach on effect of vapor-cell length contains t... The atomic-vapor cell is a vital component for Rydberg atomic microwave sensors,and impacts on overall capability of Rydberg sensors.However,the conventional analysis approach on effect of vapor-cell length contains two implicit assumptions,that is,the same atomic population density and buffer gas pressure,which make it unable to accurately capture actual response about effect of Rydberg-atom-based sensor performance on different Rydberg atom populations.Here,utilizing a stepped cesium atomic-vapor cell with five different dimensions at the same atomic population density and buffer gas pressure,the height and full width at half maximum of electromagnetically induced transparency(EIT)signal,and the sensitivity of the atomic superheterodyne sensor are comprehensively investigated under conditions of the same Rabi frequencies(saturated laser power).It is identified that EIT signal height is proportional to the cell length,full width at half maximum and sensitivity grow with the increment of cell length to a certain extent.Employing the coherent integration signal theory and atomic linear expansion coefficient method,theoretical analysis of the EIT height and sensitivity are further investigated.The results could shed new light on understanding and design of ultrahigh-sensitivity Rydberg atomic microwave sensors and find promising applications in quantum measurement,communication,and imaging. 展开更多
关键词 Rydberg atom population Rydberg-atom-based receiver stepped atomic-vapor cell
下载PDF
Atomically Dispersed Ruthenium Catalysts with Open Hollow Structure for Lithium-Oxygen Batteries
17
作者 Xin Chen Yu Zhang +5 位作者 Chang Chen Huinan Li Yuran Lin Ke Yu Caiyun Nan Chen Chen 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第2期154-164,共11页
Lithium–oxygen battery with ultrahigh theoretical energy density is considered a highly competitive next-generation energy storage device,but its practical application is severely hindered by issues such as difficult... Lithium–oxygen battery with ultrahigh theoretical energy density is considered a highly competitive next-generation energy storage device,but its practical application is severely hindered by issues such as difficult decomposition of discharge products at present.Here,we have developed N-doped carbon anchored atomically dispersed Ru sites cathode catalyst with open hollow structure(h-RuNC)for Lithium–oxygen battery.On one hand,the abundance of atomically dispersed Ru sites can effectively catalyze the formation and decomposition of discharge products,thereby greatly enhancing the redox kinetics.On the other hand,the open hollow structure not only enhances the mass activity of atomically dispersed Ru sites but also improves the diffusion efficiency of catalytic molecules.Therefore,the excellent activity from atomically dispersed Ru sites and the enhanced diffusion from open hollow structure respectively improve the redox kinetics and cycling stability,ultimately achieving a high-performance lithium–oxygen battery. 展开更多
关键词 atomically dispersed Open hollow structure Discharge product LITHIUM Oxygen battery
下载PDF
Atomically Substitutional Engineering of Transition Metal Dichalcogenide Layers for Enhancing Tailored Properties and Superior Applications
18
作者 Zhaosu Liu Si Yin Tee +1 位作者 Guijian Guan Ming‑Yong Han 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第5期248-284,共37页
Transition metal dichalcogenides(TMDs)are a promising class of layered materials in the post-graphene era,with extensive research attention due to their diverse alternative elements and fascinating semiconductor behav... Transition metal dichalcogenides(TMDs)are a promising class of layered materials in the post-graphene era,with extensive research attention due to their diverse alternative elements and fascinating semiconductor behavior.Binary MX2 layers with different metal and/or chalcogen elements have similar structural parameters but varied optoelectronic properties,providing opportunities for atomically substitutional engineering via partial alteration of metal or/and chalcogenide atoms to produce ternary or quaternary TMDs.The resulting multinary TMD layers still maintain structural integrity and homogeneity while achieving tunable(opto)electronic properties across a full range of composition with arbitrary ratios of introduced metal or chalcogen to original counterparts(0–100%).Atomic substitution in TMD layers offers new adjustable degrees of freedom for tailoring crystal phase,band alignment/structure,carrier density,and surface reactive activity,enabling novel and promising applications.This review comprehensively elaborates on atomically substitutional engineering in TMD layers,including theoretical foundations,synthetic strategies,tailored properties,and superior applications.The emerging type of ternary TMDs,Janus TMDs,is presented specifically to highlight their typical compounds,fabrication methods,and potential applications.Finally,opportunities and challenges for further development of multinary TMDs are envisioned to expedite the evolution of this pivotal field. 展开更多
关键词 Transition metal dichalcogenides atomic substitution Tailored structure Tunable bandgap Enhanced applications
下载PDF
Improved Efficiency and Stability of Organic Solar Cells by Interface Modification Using Atomic Layer Deposition of Ultrathin Aluminum Oxide
19
作者 Ai Lan Yiqun Li +8 位作者 Huiwen Zhu Jintao Zhu Hong Lu Hainam Do Yifan Lv Yonghua Chen Zhikuan Chen Fei Chen Wei Huang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第3期282-290,共9页
The interfacial contacts between the electron transporting layers(ETLs)and the photoactive layers are crucial to device performance and stability for OSCs with inverted architecture.Herein,atomic layer deposition(ALD)... The interfacial contacts between the electron transporting layers(ETLs)and the photoactive layers are crucial to device performance and stability for OSCs with inverted architecture.Herein,atomic layer deposition(ALD)fabricated ultrathin Al_(2)O_(3)layers are applied to modify the ETLs/active blends(PM6:BTP-BO-4F)interfaces of OSCs,thus improving device performance.The ALD-Al_(2)O_(3)thin layers on ZnO significantly improved its surface morphology,which led to the decreased work function of ZnO and reduced recombination losses in devices.The simultaneous increase in open-circuit voltage(V_(OC)),short-circuit current density(J_(SC))and fill factor(FF)were achieved for the OSCs incorporated with ALD-Al_(2)O_(3)interlayers of a certain thickness,which produced a maximum PCE of 16.61%.Moreover,the ALD-Al_(2)O_(3)interlayers had significantly enhanced device stability by suppressing degradation of the photoactive layers induced by the photocatalytic activity of ZnO and passivating surface defects of ZnO that may play the role of active sites for the adsorption of oxygen and moisture. 展开更多
关键词 atomic layer deposition interface modification organic solar cells STABILITY
下载PDF
Implementation of sub-100 nm vertical channel-all-around(CAA) thin-film transistor using thermal atomic layer deposited IGZO channel
20
作者 Yuting Chen Xinlv Duan +9 位作者 Xueli Ma Peng Yuan Zhengying Jiao Yongqing Shen Liguo Chai Qingjie Luan Jinjuan Xiang Di Geng Guilei Wang Chao Zhao 《Journal of Semiconductors》 EI CAS CSCD 2024年第7期40-44,共5页
In-Ga-Zn-O(IGZO) channel based thin-film transistors(TFT), which exhibit high on-off current ratio and relatively high mobility, has been widely researched due to its back end of line(BEOL)-compatible potential for th... In-Ga-Zn-O(IGZO) channel based thin-film transistors(TFT), which exhibit high on-off current ratio and relatively high mobility, has been widely researched due to its back end of line(BEOL)-compatible potential for the next generation dynamic random access memory(DRAM) application. In this work, thermal atomic layer deposition(TALD) indium gallium zinc oxide(IGZO) technology was explored. It was found that the atomic composition and the physical properties of the IGZO films can be modulated by changing the sub-cycles number during atomic layer deposition(ALD) process. In addition, thin-film transistors(TFTs) with vertical channel-all-around(CAA) structure were realized to explore the influence of different IGZO films as channel layers on the performance of transistors. Our research demonstrates that TALD is crucial for high density integration technology, and the proposed vertical IGZO CAA-TFT provides a feasible path to break through the technical problems for the continuous scale of electronic equipment. 展开更多
关键词 In-Ga-Zn-O(IGZO) thermal atomic layer deposition vertical channel thin-film transistor
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部