Using renewable energy to drive carbon dioxide reduction reaction(CO_(2)RR)electrochemically into chemicals with high energy density is an efficient way to achieve carbon neutrality,where the effective utilization of ...Using renewable energy to drive carbon dioxide reduction reaction(CO_(2)RR)electrochemically into chemicals with high energy density is an efficient way to achieve carbon neutrality,where the effective utilization of CO_(2) and the storage of renewable energy are realized.The reactivity and selectivity of CO_(2)RR depend on the structure and composition of the catalyst,applied potential,electrolyte,and pH of the solution.Besides,multiple electron and proton transfer steps are involved in CO_(2)RR,making the reaction pathways even more complicated.In pursuit of molecular-level insights into the CO_(2)RR processes,in situ vibrational methods including infrared,Raman and sum frequency generation spectroscopies have been deployed to monitor the dynamic evolution of catalyst structure,to identify reactive intermediates as well as to investigate the effect of local reaction environment on CO_(2)RR performance.This review summarizes key findings from recent electrochemical vibrational spectrosopic studies of CO_(2)RR in addressing the following issues:the CO_(2)RR mechanisms of different pathways,the role of surface-bound CO species,the compositional and structural effects of catalysts and electrolytes on CO_(2)RR activity and selectivity.Our perspectives on developing high sensitivity wide-frequency infrared spectroscopy,coupling different spectroelectrochemical methods and implementing operando vibrational spectroscopies to tackle the CO_(2)RR process in pilot reactors are offered at the end.展开更多
The effects of temperature,pH and long-term storage on the secondary structure and conformation changes of bovine haemoglobin(bHb) were studied using circular dichroism(CD) and ultraviolet-visible(UV-vis) spectr...The effects of temperature,pH and long-term storage on the secondary structure and conformation changes of bovine haemoglobin(bHb) were studied using circular dichroism(CD) and ultraviolet-visible(UV-vis) spectroscopies.Neural network software was used to deconvolute the CD data to obtain the fractional content of the five secondary structures.The storage stability of bHb solutions in pH 6,7 and8 buffers was significantly higher at 4 ℃ than at 23 ℃ for the first 3 days.A complete denaturation of bHb was observed after 40 days irrespective of storage temperature or pH.The bHb solutions were also exposed to heating and cooling cycles between 25 and 65 ℃ and structural changes were followed by UVvis and CD spectroscopies.These experiments demonstrated that α-helix content of bHb decreased steadily with the increasing temperature above 35 ℃ at all pH values.The loss in a-helicity and gain in random coil conformations was pH-dependent and the greatest under alkaline conditions.Furthermore,there was minimal recovery of the secondary structure content upon cooling to 25 ℃.The use of bHb as a model drug is very common and this study elucidates the significance of storage and processing conditions on its stability.展开更多
Electrocatalysis offers a promising approach towards chemical synthesis driven by renewable energy.Molecular level understanding of the electrochemical interface remains challenging due to its compositional and struct...Electrocatalysis offers a promising approach towards chemical synthesis driven by renewable energy.Molecular level understanding of the electrochemical interface remains challenging due to its compositional and structural complexity.In situ interfacial specific characterization techniques could help uncover structure-function relationships and reaction mechanism.To this end,electrochemical surface-enhanced Raman spectroscopy(SERS)and surface-enhanced infrared absorption spectroscopy(SEIRAS)thrive as powerful techniques to provide fingerprint information of interfacial species at reaction conditions.In this review,we first introduce the fundamentals of SERS and SEIRAS,followed by discussion regarding the technical challenges and potential solutions.Finally,we highlight future directions for further development of surface-enhanced spectroscopic techniques for electrocatalytic studies.展开更多
The orientation and structural characterization of the ultrathin film of azobenzene-containing amphiphilic compound, C_ 12AzoNaph(1,4)C_6N +Br -, were studied in the present study. The compound can form a stable m...The orientation and structural characterization of the ultrathin film of azobenzene-containing amphiphilic compound, C_ 12AzoNaph(1,4)C_6N +Br -, were studied in the present study. The compound can form a stable monolayer with sodium dextrin sulfate(SDS) by means of electrostatic interaction. Fourier-transform infrared(FT-IR) and near-infrared surface-enhanced Raman scattering(NIR-SERS) spectroscopies were used to study the orientation and characterize the structure of the Langmuir-Blodgett(LB) film and the dipping film. The FT-IR spectra indicate that the alkyl tail is nearly perpendicular to the substrate surface without any aggregation and adopts largely trans-zigzag conformation in the LB film. The NIR-SERS spectra demonstrate that the chromorphoric part in C_ 12AzoNaph(1,4)C_6N +Br is also nearly perpendicular to the surface of silver substrate both in the dipping film and the LB film. A new 'sandwiched system' model was designed to investigate the orientation and structural characterization of the chromophoric part in the multi-monolayer LB films on the non-SERS active substrate. The SERS mechanism of the 'sandwiched system' is discussed in the present paper.展开更多
Three novel branched polyamines N,N,N’,N’-tetrakis-[3((pyridine-2-methyl)-amine) propyl]-1,4- butanediamine (1), N,N,N’,N’-tetrakis-[N-((2-methylpyridine)ethyl)propanamide]ethylenediamine (2) and N,N,N’,N’-tetra...Three novel branched polyamines N,N,N’,N’-tetrakis-[3((pyridine-2-methyl)-amine) propyl]-1,4- butanediamine (1), N,N,N’,N’-tetrakis-[N-((2-methylpyridine)ethyl)propanamide]ethylenediamine (2) and N,N,N’,N’-tetrakis-[3((2-hidroxibenziliden)-amine)propyl]-1,4-butanediamine (3), were synthesized starting from 2-pyridinecarboxaldeyde with DAB-Am-4 for 1, PAMAM G0 for 2 and from salicylaldehyde with DAB-Am-4 for 3. The pathway reactions have been proposed by 1H-NMR, IR and Atomic Absorption Spectroscopy. The optimal reaction time was set by IR spectroscopy following aldehyde? peak modification. 1 and 2 were obtained as both hydrochlorides and as free amines and 3 only as free imine. These polyamines were characterized by UV-Vis, IR, 1H-NMR and 13C-NMR and Mass Spectrometry.展开更多
Anaerobic digestion of biomasses originates different products, the most abundant of which are methane and carbon dioxide. During this process, a 60-70% organic matter reduction occurs and the final product, the diges...Anaerobic digestion of biomasses originates different products, the most abundant of which are methane and carbon dioxide. During this process, a 60-70% organic matter reduction occurs and the final product, the digestate, is charac- terized by high biological stability and high contents of recalcitrant organic molecules and nutrients. In the present work digestates obtained by different mixture of biomasses in a full-scale co-digestion plant operating in Italy were characterized as whole samples without any pre-treatment or extraction by means of Fourier transform infrared spec- troscopy and fluorescence spectroscopy in the synchronous-scan mode and results were compared to those obtained on the single fresh substrates. Biomasses considered were: beef cattle slurry, maize or sorghum silage, agro-industrial residues, olive residues and olive mill wastewater. These substrates exhibited typical spectra related to their different chemical composition. Results obtained on digestates provided evidence of distinctive characteristic of the final product as a function of the different composition of the biomasses loaded into the digestion plant. We concluded that FTIR and fluorescence spectra of digestates produced in a real co-digestion plant “inherit” the main spectroscopic features of the organic wastes from which they are produced. Spectroscopic techniques used in this work succeeded in qualitatively characterizing and differentiating digestates obtained from biomasses of different chemical composition.展开更多
Photoinduced carrier dynamical processes dominate the optical excitation properties of photocatalysts and further determine the photocatalytic performance.In addition,as the electrons generally possess a faster transf...Photoinduced carrier dynamical processes dominate the optical excitation properties of photocatalysts and further determine the photocatalytic performance.In addition,as the electrons generally possess a faster transfer rate than holes,hole transfer and accumulation are critical,and they play the key efficiency-limiting step during the photocatalytic process.Therefore,a comprehensive understanding of the dynamics of photogenerated holes and their determining factors in the photocatalytic system is highly essential to rationalize the full catalytic mechanism and develop highly efficient photocatalysts,which have not yet been revealed.In this work,the photoinduced charge carrier dynamics in InP/ZnS quantum dots(QDs)capped with longchain L-typed ligands(oleylamine)and inorganic ligands(sulfide ion(S^(2-)))were explored.Time-resolved photoluminescence and femtosecond transient-absorption spectroscopy unambiguously confirmed the ultrafast hole transfer from the InP core to S^(2-)ligands.Moreover,by probing the bleach of vibrational stretching of the ligands with transient midinfrared absorption spectroscopy,the hole transfer time was determined to be 4.2 ps.The injected holes are long-lived at the S^(2-) ligands(>4.5 ns),and they can remove electrostatically attached surfactants to compensate for the spatial charge redistribution.Finally,compared with other inorganic ligands such as Cl^(-) and PO_(4)^(3-),S^(2-) balances the ionic radii and net charge to ensure the optimal condition for charge transfer.Such observation rationalizes the excellent photocatalytic H_(2) evolution(213.6μmol mg^(-1) within 10 h)in InP/ZnS QDs capped with S^(2-) compared with those capped with other ligands and elucidates the role of surface ligands in the photocatalytic activity of colloidal QDs.展开更多
A highly sensitive light-induced thermoelectric spectroscopy(LITES)sensor based on a multi-pass cell(MPC)with dense spot pattern and a novel quartz tuning fork(QTF)with low resonance frequency is reported in this manu...A highly sensitive light-induced thermoelectric spectroscopy(LITES)sensor based on a multi-pass cell(MPC)with dense spot pattern and a novel quartz tuning fork(QTF)with low resonance frequency is reported in this manuscript.An erbi-um-doped fiber amplifier(EDFA)was employed to amplify the output optical power so that the signal level was further enhanced.The optical path length(OPL)and the ratio of optical path length to volume(RLV)of the MPC is 37.7 m and 13.8 cm^(-2),respectively.A commercial QTF and a self-designed trapezoidal-tip QTF with low frequency of 9461.83 Hz were used as the detectors of the sensor,respectively.The target gas selected to test the performance of the system was acetylene(C2H2).When the optical power was constant at 1000 mW,the minimum detection limit(MDL)of the C2H2-LITES sensor can be achieved 48.3 ppb when using the commercial QTF and 24.6 ppb when using the trapezoid-al-tip QTF.An improvement of the detection performance by a factor of 1.96 was achieved after replacing the commer-cial QTF with the trapezoidal-tip QTF.展开更多
BACKGROUND Alzheimer’s disease(AD)is a serious disease causing human dementia and social problems.The quality of life and prognosis of AD patients have attracted much attention.The role of chronic immune inflammation...BACKGROUND Alzheimer’s disease(AD)is a serious disease causing human dementia and social problems.The quality of life and prognosis of AD patients have attracted much attention.The role of chronic immune inflammation in the pathogenesis of AD is becoming more and more important.AIM To study the relationship among cognitive dysfunction,abnormal cellular immune function,neuroimaging results and poor prognostic factors in patients.METHODS A retrospective analysis of 62 hospitalized patients clinical diagnosed with AD who were admitted to our hospital from November 2015 to November 2020.Collect cognitive dysfunction performance characteristics,laboratory test data and neuroimaging data from medical records within 24 h of admission,including Mini Mental State Examination Scale score,drawing clock test,blood T lymphocyte subsets,and neutrophils and lymphocyte ratio(NLR),disturbance of consciousness,extrapyramidal symptoms,electroencephalogram(EEG)and head nucleus magnetic spectroscopy(MRS)and other data.Multivariate logistic regression analysis was used to determine independent prog-nostic factors.the modified Rankin scale(mRS)was used to determine whether the prognosis was good.The correlation between drug treatment and prognostic mRS score was tested by the rank sum test.RESULTS Univariate analysis showed that abnormal cellular immune function,extrapyramidal symptoms,obvious disturbance of consciousness,abnormal EEG,increased NLR,abnormal MRS,and complicated pneumonia were related to the poor prognosis of AD patients.Multivariate logistic regression analysis showed that the decrease in the proportion of T lym-phocytes in the blood after abnormal cellular immune function(odd ratio:2.078,95%confidence interval:1.156-3.986,P<0.05)was an independent risk factor for predicting the poor prognosis of AD.The number of days of donepezil treatment to improve cognitive function was negatively correlated with mRS score(r=0.578,P<0.05).CONCLUSION The decrease in the proportion of T lymphocytes may have predictive value for the poor prognosis of AD.It is recommended that the proportion of T lymphocytes<55%is used as the cut-off threshold for predicting the poor prog-nosis of AD.The early and continuous drug treatment is associated with a good prognosis.展开更多
Background:Near-infrared spectroscopy(NIRS)technology has allowed for the measurement of cerebral and skeletal muscle oxygenation simultaneously during exercise.Since this technology has been growing and is now succes...Background:Near-infrared spectroscopy(NIRS)technology has allowed for the measurement of cerebral and skeletal muscle oxygenation simultaneously during exercise.Since this technology has been growing and is now successfully used in laboratory and sports settings,this systematic review aimed to synthesize the evidence and enhance an integrative understanding of bloodflow adjustments and oxygen(O_(2))changes(i.e.,the balance between O_(2) delivery and O_(2) consumption)within the cerebral and muscle systems during exercise.Methods:A systematic review was conducted using PubMed,Embase,Scopus,and Web of Science databases to search for relevant studies that simultaneously investigated cerebral and muscle hemodynamic changes using the near-infrared spectroscopy system during exercise.This review considered manuscripts written in English and available before February 9,2023.Each step of screening involved evaluation by 2 inde-pendent authors,with disagreements resolved by a third author.The Joanna Briggs Institute Critical Appraisal Checklist was used to assess the methodological quality of the studies.Results:Twenty studies were included,of which 80%had good methodological quality,and involved 290 young or middle-aged adults.Different types of exercises were used to assess cerebral and muscle hemodynamic changes,such as cycling(n=11),treadmill(n=1),knee extension(n=5),isometric contraction of biceps brachii(n=3),and duet swim routines(n=1).The cerebral hemodynamics anal-ysis was focused on the frontal cortex(n=20),while in the muscle,the analysis involved vastus lateralis(n=18),gastrocnemius(n=3),biceps brachii(n=5),deltoid(n=1),and intercostal muscle(n=1).Overall,muscle deoxygenation increases during exercise,reaching a plateau in voluntary exhaustion,while in the brain,oxyhemoglobin concentration increases with exercise intensity,reaching a plateau or declining at the exhaustion point.Conclusion:Muscle and cerebral oxygenation respond differently to exercise,with muscle increasing O_(2) utilization and cerebral tissue increasing O_(2) delivery during exercise.However,at the exhaustion point,both muscle and cerebral oxygenation become compromised.This is characterized by a reduction in bloodflow and a decrease in O_(2) extraction in the muscle,while in the brain,oxygenation reaches a plateau or decline,potentially resulting in motor failure during exercise.展开更多
Laser spectroscopic imaging techniques have received tremendous attention in the-eld of cancer diagnosis due to their high sensitivity,high temporal resolution,and short acquisition time.However,the limited tissue pen...Laser spectroscopic imaging techniques have received tremendous attention in the-eld of cancer diagnosis due to their high sensitivity,high temporal resolution,and short acquisition time.However,the limited tissue penetration of the laser is still a challenge for the in vivo diagnosis of deep-seated lesions.Nanomaterials have been universally integrated with spectroscopic imaging techniques for deeper cancer diagnosis in vivo.The components,morphology,and sizes of nanomaterials are delicately designed,which could realize cancer diagnosis in vivo or in situ.Considering the enhanced signal emitting from the nanomaterials,we emphasized their combination with spectroscopic imaging techniques for cancer diagnosis,like the surface-enhanced Raman scattering(SERS),photoacoustic,fluorescence,and laser-induced breakdown spectroscopy(LIBS).Applications ofthe above spectroscopic techniques offer new prospectsfor cancer diagnosis.展开更多
Herein,a novel interference-free surface-enhanced Raman spectroscopy(SERS)strategy based on magnetic nanoparticles(MNPs)and aptamer-driven assemblies was proposed for the ultrasensitive detection of histamine.A core-s...Herein,a novel interference-free surface-enhanced Raman spectroscopy(SERS)strategy based on magnetic nanoparticles(MNPs)and aptamer-driven assemblies was proposed for the ultrasensitive detection of histamine.A core-satellite SERS aptasensor was constructed by combining aptamer-decorated Fe_(3)O_(4)@Au MNPs(as the recognize probe for histamine)and complementary DNA-modified silver nanoparticles carrying 4-mercaptobenzonitrile(4-MBN)(Ag@4-MBN@Ag-c-DNA)as the SERS signal probe for the indirect detection of histamine.Under an applied magnetic field in the absence of histamine,the assembly gave an intense Raman signal at“Raman biological-silent”region due to 4-MBN.In the presence of histamine,the Ag@4-MBN@Ag-c-DNA SERS-tag was released from the Fe_(3)O_(4)@Au MNPs,thus decreasing the SERS signal.Under optimal conditions,an ultra-low limit of detection of 0.65×10^(-3)ng/mL and a linear range 10^(-2)-10^5 ng/mL on the SERS aptasensor were obtained.The histamine content in four food samples were analyzed using the SERS aptasensor,with the results consistent with those determined by high performance liquid chromatography.The present work highlights the merits of indirect strategies for the ultrasensitive and highly selective SERS detection of small biological molecules in complex matrices.展开更多
Joint time–frequency analysis is an emerging method for interpreting the underlying physics in fuel cells,batteries,and supercapacitors.To increase the reliability of time–frequency analysis,a theoretical correlatio...Joint time–frequency analysis is an emerging method for interpreting the underlying physics in fuel cells,batteries,and supercapacitors.To increase the reliability of time–frequency analysis,a theoretical correlation between frequency-domain stationary analysis and time-domain transient analysis is urgently required.The present work formularizes a thorough model reduction of fractional impedance spectra for electrochemical energy devices involving not only the model reduction from fractional-order models to integer-order models and from high-to low-order RC circuits but also insight into the evolution of the characteristic time constants during the whole reduction process.The following work has been carried out:(i)the model-reduction theory is addressed for typical Warburg elements and RC circuits based on the continued fraction expansion theory and the response error minimization technique,respectively;(ii)the order effect on the model reduction of typical Warburg elements is quantitatively evaluated by time–frequency analysis;(iii)the results of time–frequency analysis are confirmed to be useful to determine the reduction order in terms of the kinetic information needed to be captured;and(iv)the results of time–frequency analysis are validated for the model reduction of fractional impedance spectra for lithium-ion batteries,supercapacitors,and solid oxide fuel cells.In turn,the numerical validation has demonstrated the powerful function of the joint time–frequency analysis.The thorough model reduction of fractional impedance spectra addressed in the present work not only clarifies the relationship between time-domain transient analysis and frequency-domain stationary analysis but also enhances the reliability of the joint time–frequency analysis for electrochemical energy devices.展开更多
A rened analytical model of spatially resolved diffuse reectance with small source-detector separations(SDSs)for the in vivo skin studies is proposed.Compared to the conventional model developed by Farrell et al.,it a...A rened analytical model of spatially resolved diffuse reectance with small source-detector separations(SDSs)for the in vivo skin studies is proposed.Compared to the conventional model developed by Farrell et al.,it accounts for the limited acceptance angle of the detectorber.The rened model is validated in the wide range of optical parameters by Monte Carlo simulations of skin diffuse reectance at SDSs of units of mm.Cases of uniform dermis and two-layered epidermis-dermis structures are studied.Higher accuracy of the rened model compared to the conventional one is demonstrated in the separate,constraint-free reconstruction of absorption and reduced scattering spectra of uniform dermis from the Monte Carlo simulated data.In the case of epidermis-dermis geometry,the recovered values of reduced scattering in dermis are overestimated and the recovered values of absorption are underestimated for both analytical models.Presumably,in the presence of a thin mismatched topical layer,only the effective attenuation coe±cient of the bottom layer can be accurately recovered using a diffusion theorybased analytical model while separate reconstruction of absorption and reduced scattering fails due to the inapplicability of the method of images.These-ndings require implementation of more sophisticated models of light transfer in inhomogeneous media in the recovery algorithms.展开更多
Non-invasive cerebral neuromodulation technologies are essential for the reorganization of cerebral neural networks,which have been widely applied in the field of central neurological diseases,such as stroke,Parkinson...Non-invasive cerebral neuromodulation technologies are essential for the reorganization of cerebral neural networks,which have been widely applied in the field of central neurological diseases,such as stroke,Parkinson’s disease,and mental disorders.Although significant advances have been made in neuromodulation technologies,the identification of optimal neurostimulation paramete rs including the co rtical target,duration,and inhibition or excitation pattern is still limited due to the lack of guidance for neural circuits.Moreove r,the neural mechanism unde rlying neuromodulation for improved behavioral performance remains poorly understood.Recently,advancements in neuroimaging have provided insight into neuromodulation techniques.Functional near-infrared spectroscopy,as a novel non-invasive optical brain imaging method,can detect brain activity by measuring cerebral hemodynamics with the advantages of portability,high motion tole rance,and anti-electromagnetic interference.Coupling functional near-infra red spectroscopy with neuromodulation technologies offe rs an opportunity to monitor the cortical response,provide realtime feedbac k,and establish a closed-loop strategy integrating evaluation,feedbac k,and intervention for neurostimulation,which provides a theoretical basis for development of individualized precise neuro rehabilitation.We aimed to summarize the advantages of functional near-infra red spectroscopy and provide an ove rview of the current research on functional near-infrared spectroscopy in transcranial magnetic stimulation,transcranial electrical stimulation,neurofeedback,and braincomputer interfaces.Furthermore,the future perspectives and directions for the application of functional near-infrared spectroscopy in neuromodulation are summarized.In conclusion,functional near-infrared spectroscopy combined with neuromodulation may promote the optimization of central pellral reorganization to achieve better functional recovery form central nervous system diseases.展开更多
The electrocatalytic oxidation of biomass-derived furfural(FF)feedstocks into 2-furoic acid(FA)holds immense industrial potential in optics,cosmetics,polymers,and food.Herein,we fabricated Co O/Ni O/nickel foam(NF)and...The electrocatalytic oxidation of biomass-derived furfural(FF)feedstocks into 2-furoic acid(FA)holds immense industrial potential in optics,cosmetics,polymers,and food.Herein,we fabricated Co O/Ni O/nickel foam(NF)and Cu_(2)O/Ni O/NF electrodes via in situ pulsed laser irradiation in liquids(PLIL)for the bifunctional electrocatalysis of oxygen evolution reaction(OER)and furfural oxidation reaction(FOR),respectively.Simultaneous oxidation of NF surface to NiO and deposition of CoO and/or Cu_(2)O on NF during PLIL offer distinct advantages for enhancing both the OER and FOR.CoO/NiO/NF electrocatalyst provides a consistently low overpotential of~359 m V(OER)at 10 m A/cm^(2),achieving the maximum FA yield(~16.37 m M)with 61.5%selectivity,79.5%carbon balance,and a remarkable Faradaic efficiency of~90.1%during 2 h of FOR at 1.43 V(vs.reversible hydrogen electrode).Mechanistic pathway via in situ electrochemical-Raman spectroscopy on CoO/NiO/NF reveals the involvement of phase transition intermediates(NiOOH and CoOOH)as surface-active centers during electrochemical oxidation.The carbonyl carbon in FF is attacked by hydroxyl groups to form unstable hydrates that subsequently undergo further oxidation to yield FA products.This method holds promise for large-scale applications,enabling simultaneous production of renewable building materials and fuel.展开更多
Hydrogen production by water reduction reactions has received considerable attention because hydrogen is considered a clean-energy carrier,key for a sustainable energy future.Computational methods have been widely use...Hydrogen production by water reduction reactions has received considerable attention because hydrogen is considered a clean-energy carrier,key for a sustainable energy future.Computational methods have been widely used to study the reaction mechanism of the hydrogen evolution reaction(HER),but the calculation results need to be supported by experimental results and direct evidence to confirm the mechanistic insights.In this review,we discuss the fundamental principles of the in situ spectroscopic strategy and a theoretical model for a mechanistic understanding of the HER.In addition,we investigate recent studies by in situ Fourier transform infrared(FTIR),Raman spectroscopy,and X-ray absorption spectroscopy(XAS) and cover new findings that occur at the catalyst-electrolyte interface during HER.These spectroscopic strategies provide practical ways to elucidate catalyst phase,reaction intermediate,catalyst-electrolyte interface,intermediate binding energy,metal valency state,and coordination environment during HER.展开更多
The role of microstructural features on in-vitro degradation and surface film development of a thermomechanically processed Mg-4Zn-0.5Ca-0.8Mn alloy has been investigated employing electrochemical studies,scanning ele...The role of microstructural features on in-vitro degradation and surface film development of a thermomechanically processed Mg-4Zn-0.5Ca-0.8Mn alloy has been investigated employing electrochemical studies,scanning electron microscopy and X-ray photoelectron spectroscopy.The specimen forged at 523 K temperature developed a coarse unimodal microstructure consisting of basal oriented grains,whereas the specimens forged at 623 K and 723 K temperatures exhibited bimodal microstructures containing randomly oriented fine grains and basal oriented coarse grains.The bimodal microstructures exerted higher resistance to corrosion compared to the unimodal microstructure in presence of a protective surface film.The optimum size distribution of fine and coarse grains as well as the prevalence of basal oriented grains led to the lowest anodic current density in the specimen forged at 623 K.The morphology of Ca_(2)Mg_(6)Zn_(3)precipitates governed the cathodic kinetics by controlling the anode to cathode surface area ratio.Despite the specimen forged at 723 K comprised comparatively lower fraction of precipitates than at 623 K,the mesh-like precipitate morphology increased the effective cathodic surface area,leading to enhanced localised corrosion in the former specimen.Optimal microstructural features developed at 623 K forging temperature formed a well-protective surface film with lower Mg(OH)_(2)to MgO ratio,exhibiting distinctly high polarization resistance and superior cytocompatibility in terms of cell-proliferation and cell-differentiation.展开更多
Laser absorption spectroscopy has proven to be an effective approach for gas sensing, which plays an important rolein the fields of military, industry, medicine and basic research. This paper presents a multiplexed ga...Laser absorption spectroscopy has proven to be an effective approach for gas sensing, which plays an important rolein the fields of military, industry, medicine and basic research. This paper presents a multiplexed gas sensing system basedon optical frequency comb (OFC) calibrated frequency-modulated continuous-wave (FMCW) tuning nonlinearity. Thesystem can be used for multi-parameter synchronous measurement of gas absorption spectrum and multiplexed opticalpath. Multi-channel parallel detection is realized by combining wavelength division multiplexing (WDM) and frequencydivision multiplexing (FDM) techniques. By introducing nonlinear optical crystals, broadband spectrum detection is simultaneouslyachieved over a bandwidth of hundreds of nanometers. An OFC with ultra-high frequency stability is used asthe frequency calibration source, which guarantees the measurement accuracy. The test samples involve H13C14N, C_(2)H_(2)and Rb vapor cells of varying densities and 5 parallel measurement experiments are designed. The results show that themeasurement accuracies of spectral absorption line and the optical path are 150 MHz and 20 m, respectively. The schemeoffers the advantages of multiplexed, multi-parameter, wide spectrum and high resolution detection, which can realize theidentification of multi-gas components and the high-precision inversion of absorption lines under different environments.The proposed sensor demonstrates great potential in the field of high-resolution absorption spectrum measurement for gassensing applications.展开更多
Raman spectroscopy has found extensive use in monitoring and controlling cell culture processes.In this context,the prediction accuracy of Raman-based models is of paramount importance.However,models established with ...Raman spectroscopy has found extensive use in monitoring and controlling cell culture processes.In this context,the prediction accuracy of Raman-based models is of paramount importance.However,models established with data from manually fed-batch cultures often exhibit poor performance in Raman-controlled cultures.Thus,there is a need for effective methods to rectify these models.The objective of this paper is to investigate the efficacy of Kalman filter(KF)algorithm in correcting Raman-based models during cell culture.Initially,partial least squares(PLS)models for different components were constructed using data from manually fed-batch cultures,and the predictive performance of these models was compared.Subsequently,various correction methods including the PLS-KF-KF method proposed in this study were employed to refine the PLS models.Finally,a case study involving the auto-control of glucose concentration demonstrated the application of optimal model correction method.The results indicated that the original PLS models exhibited differential performance between manually fed-batch cultures and Raman-controlled cultures.For glucose,the root mean square error of prediction(RMSEP)of manually fed-batch culture and Raman-controlled culture was 0.23 and 0.40 g·L^(-1).With the implementation of model correction methods,there was a significant improvement in model performance within Raman-controlled cultures.The RMSEP for glucose from updating-PLS,KF-PLS,and PLS-KF-KF was 0.38,0.36 and 0.17 g·L^(-1),respectively.Notably,the proposed PLS-KF-KF model correction method was found to be more effective and stable,playing a vital role in the automated nutrient feeding of cell cultures.展开更多
文摘Using renewable energy to drive carbon dioxide reduction reaction(CO_(2)RR)electrochemically into chemicals with high energy density is an efficient way to achieve carbon neutrality,where the effective utilization of CO_(2) and the storage of renewable energy are realized.The reactivity and selectivity of CO_(2)RR depend on the structure and composition of the catalyst,applied potential,electrolyte,and pH of the solution.Besides,multiple electron and proton transfer steps are involved in CO_(2)RR,making the reaction pathways even more complicated.In pursuit of molecular-level insights into the CO_(2)RR processes,in situ vibrational methods including infrared,Raman and sum frequency generation spectroscopies have been deployed to monitor the dynamic evolution of catalyst structure,to identify reactive intermediates as well as to investigate the effect of local reaction environment on CO_(2)RR performance.This review summarizes key findings from recent electrochemical vibrational spectrosopic studies of CO_(2)RR in addressing the following issues:the CO_(2)RR mechanisms of different pathways,the role of surface-bound CO species,the compositional and structural effects of catalysts and electrolytes on CO_(2)RR activity and selectivity.Our perspectives on developing high sensitivity wide-frequency infrared spectroscopy,coupling different spectroelectrochemical methods and implementing operando vibrational spectroscopies to tackle the CO_(2)RR process in pilot reactors are offered at the end.
基金the University of Greenwich for financial support
文摘The effects of temperature,pH and long-term storage on the secondary structure and conformation changes of bovine haemoglobin(bHb) were studied using circular dichroism(CD) and ultraviolet-visible(UV-vis) spectroscopies.Neural network software was used to deconvolute the CD data to obtain the fractional content of the five secondary structures.The storage stability of bHb solutions in pH 6,7 and8 buffers was significantly higher at 4 ℃ than at 23 ℃ for the first 3 days.A complete denaturation of bHb was observed after 40 days irrespective of storage temperature or pH.The bHb solutions were also exposed to heating and cooling cycles between 25 and 65 ℃ and structural changes were followed by UVvis and CD spectroscopies.These experiments demonstrated that α-helix content of bHb decreased steadily with the increasing temperature above 35 ℃ at all pH values.The loss in a-helicity and gain in random coil conformations was pH-dependent and the greatest under alkaline conditions.Furthermore,there was minimal recovery of the secondary structure content upon cooling to 25 ℃.The use of bHb as a model drug is very common and this study elucidates the significance of storage and processing conditions on its stability.
文摘Electrocatalysis offers a promising approach towards chemical synthesis driven by renewable energy.Molecular level understanding of the electrochemical interface remains challenging due to its compositional and structural complexity.In situ interfacial specific characterization techniques could help uncover structure-function relationships and reaction mechanism.To this end,electrochemical surface-enhanced Raman spectroscopy(SERS)and surface-enhanced infrared absorption spectroscopy(SEIRAS)thrive as powerful techniques to provide fingerprint information of interfacial species at reaction conditions.In this review,we first introduce the fundamentals of SERS and SEIRAS,followed by discussion regarding the technical challenges and potential solutions.Finally,we highlight future directions for further development of surface-enhanced spectroscopic techniques for electrocatalytic studies.
基金Supported by the Major State Basic Research Development Program( G2 0 0 0 0 7810 2 ) and the National Natural ScienceFoundation of China( No.2 0 0 0 3 0 0 4)
文摘The orientation and structural characterization of the ultrathin film of azobenzene-containing amphiphilic compound, C_ 12AzoNaph(1,4)C_6N +Br -, were studied in the present study. The compound can form a stable monolayer with sodium dextrin sulfate(SDS) by means of electrostatic interaction. Fourier-transform infrared(FT-IR) and near-infrared surface-enhanced Raman scattering(NIR-SERS) spectroscopies were used to study the orientation and characterize the structure of the Langmuir-Blodgett(LB) film and the dipping film. The FT-IR spectra indicate that the alkyl tail is nearly perpendicular to the substrate surface without any aggregation and adopts largely trans-zigzag conformation in the LB film. The NIR-SERS spectra demonstrate that the chromorphoric part in C_ 12AzoNaph(1,4)C_6N +Br is also nearly perpendicular to the surface of silver substrate both in the dipping film and the LB film. A new 'sandwiched system' model was designed to investigate the orientation and structural characterization of the chromophoric part in the multi-monolayer LB films on the non-SERS active substrate. The SERS mechanism of the 'sandwiched system' is discussed in the present paper.
文摘Three novel branched polyamines N,N,N’,N’-tetrakis-[3((pyridine-2-methyl)-amine) propyl]-1,4- butanediamine (1), N,N,N’,N’-tetrakis-[N-((2-methylpyridine)ethyl)propanamide]ethylenediamine (2) and N,N,N’,N’-tetrakis-[3((2-hidroxibenziliden)-amine)propyl]-1,4-butanediamine (3), were synthesized starting from 2-pyridinecarboxaldeyde with DAB-Am-4 for 1, PAMAM G0 for 2 and from salicylaldehyde with DAB-Am-4 for 3. The pathway reactions have been proposed by 1H-NMR, IR and Atomic Absorption Spectroscopy. The optimal reaction time was set by IR spectroscopy following aldehyde? peak modification. 1 and 2 were obtained as both hydrochlorides and as free amines and 3 only as free imine. These polyamines were characterized by UV-Vis, IR, 1H-NMR and 13C-NMR and Mass Spectrometry.
文摘Anaerobic digestion of biomasses originates different products, the most abundant of which are methane and carbon dioxide. During this process, a 60-70% organic matter reduction occurs and the final product, the digestate, is charac- terized by high biological stability and high contents of recalcitrant organic molecules and nutrients. In the present work digestates obtained by different mixture of biomasses in a full-scale co-digestion plant operating in Italy were characterized as whole samples without any pre-treatment or extraction by means of Fourier transform infrared spec- troscopy and fluorescence spectroscopy in the synchronous-scan mode and results were compared to those obtained on the single fresh substrates. Biomasses considered were: beef cattle slurry, maize or sorghum silage, agro-industrial residues, olive residues and olive mill wastewater. These substrates exhibited typical spectra related to their different chemical composition. Results obtained on digestates provided evidence of distinctive characteristic of the final product as a function of the different composition of the biomasses loaded into the digestion plant. We concluded that FTIR and fluorescence spectra of digestates produced in a real co-digestion plant “inherit” the main spectroscopic features of the organic wastes from which they are produced. Spectroscopic techniques used in this work succeeded in qualitatively characterizing and differentiating digestates obtained from biomasses of different chemical composition.
基金supported by the National Natural Science Foundation of China(NSFC,22002123 and U1862111)Sichuan Science and Technology Program(2020YFH0118,2021JDGD0029 and 2021YFH0055)+6 种基金the Open Fund of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation(PLN201802)the Independent Research Fund Denmark-Nature Sciences(DFF-FNU,DFF-7014-00302)the Independent Research Fund Denmark-Sapere Aude starting grant(7026-00037A)the Research Fund for International Young Scientists from NSFC(21950410515)Swedish Research Council VR Starting Grant(2017-05337)the financial support from China Scholarship Council(201806320345,201908440313,201706170017,and 201806460021)Support from Swedish Energy Agency。
文摘Photoinduced carrier dynamical processes dominate the optical excitation properties of photocatalysts and further determine the photocatalytic performance.In addition,as the electrons generally possess a faster transfer rate than holes,hole transfer and accumulation are critical,and they play the key efficiency-limiting step during the photocatalytic process.Therefore,a comprehensive understanding of the dynamics of photogenerated holes and their determining factors in the photocatalytic system is highly essential to rationalize the full catalytic mechanism and develop highly efficient photocatalysts,which have not yet been revealed.In this work,the photoinduced charge carrier dynamics in InP/ZnS quantum dots(QDs)capped with longchain L-typed ligands(oleylamine)and inorganic ligands(sulfide ion(S^(2-)))were explored.Time-resolved photoluminescence and femtosecond transient-absorption spectroscopy unambiguously confirmed the ultrafast hole transfer from the InP core to S^(2-)ligands.Moreover,by probing the bleach of vibrational stretching of the ligands with transient midinfrared absorption spectroscopy,the hole transfer time was determined to be 4.2 ps.The injected holes are long-lived at the S^(2-) ligands(>4.5 ns),and they can remove electrostatically attached surfactants to compensate for the spatial charge redistribution.Finally,compared with other inorganic ligands such as Cl^(-) and PO_(4)^(3-),S^(2-) balances the ionic radii and net charge to ensure the optimal condition for charge transfer.Such observation rationalizes the excellent photocatalytic H_(2) evolution(213.6μmol mg^(-1) within 10 h)in InP/ZnS QDs capped with S^(2-) compared with those capped with other ligands and elucidates the role of surface ligands in the photocatalytic activity of colloidal QDs.
基金National Natural Science Foundation of China(Grant Nos.62335006,62022032,62275065,and 61875047)Key Laboratory of Opto-Electronic Information Acquisition and Manipulation(Anhui University),Ministry of Education(Grant No.OEIAM202202)Fundamental Research Funds for the Central Universities(Grant No.HIT.OCEF.2023011).
文摘A highly sensitive light-induced thermoelectric spectroscopy(LITES)sensor based on a multi-pass cell(MPC)with dense spot pattern and a novel quartz tuning fork(QTF)with low resonance frequency is reported in this manuscript.An erbi-um-doped fiber amplifier(EDFA)was employed to amplify the output optical power so that the signal level was further enhanced.The optical path length(OPL)and the ratio of optical path length to volume(RLV)of the MPC is 37.7 m and 13.8 cm^(-2),respectively.A commercial QTF and a self-designed trapezoidal-tip QTF with low frequency of 9461.83 Hz were used as the detectors of the sensor,respectively.The target gas selected to test the performance of the system was acetylene(C2H2).When the optical power was constant at 1000 mW,the minimum detection limit(MDL)of the C2H2-LITES sensor can be achieved 48.3 ppb when using the commercial QTF and 24.6 ppb when using the trapezoid-al-tip QTF.An improvement of the detection performance by a factor of 1.96 was achieved after replacing the commer-cial QTF with the trapezoidal-tip QTF.
基金Supported by the National Natural Science Foundation of China,No.3206080019 and No.32060182Science and Technology Support Plan of Guizhou Province in China,No.[2020]4Y129Qiannan Prefecture Science and Technology Plan Project,No.[2022]01.
文摘BACKGROUND Alzheimer’s disease(AD)is a serious disease causing human dementia and social problems.The quality of life and prognosis of AD patients have attracted much attention.The role of chronic immune inflammation in the pathogenesis of AD is becoming more and more important.AIM To study the relationship among cognitive dysfunction,abnormal cellular immune function,neuroimaging results and poor prognostic factors in patients.METHODS A retrospective analysis of 62 hospitalized patients clinical diagnosed with AD who were admitted to our hospital from November 2015 to November 2020.Collect cognitive dysfunction performance characteristics,laboratory test data and neuroimaging data from medical records within 24 h of admission,including Mini Mental State Examination Scale score,drawing clock test,blood T lymphocyte subsets,and neutrophils and lymphocyte ratio(NLR),disturbance of consciousness,extrapyramidal symptoms,electroencephalogram(EEG)and head nucleus magnetic spectroscopy(MRS)and other data.Multivariate logistic regression analysis was used to determine independent prog-nostic factors.the modified Rankin scale(mRS)was used to determine whether the prognosis was good.The correlation between drug treatment and prognostic mRS score was tested by the rank sum test.RESULTS Univariate analysis showed that abnormal cellular immune function,extrapyramidal symptoms,obvious disturbance of consciousness,abnormal EEG,increased NLR,abnormal MRS,and complicated pneumonia were related to the poor prognosis of AD patients.Multivariate logistic regression analysis showed that the decrease in the proportion of T lym-phocytes in the blood after abnormal cellular immune function(odd ratio:2.078,95%confidence interval:1.156-3.986,P<0.05)was an independent risk factor for predicting the poor prognosis of AD.The number of days of donepezil treatment to improve cognitive function was negatively correlated with mRS score(r=0.578,P<0.05).CONCLUSION The decrease in the proportion of T lymphocytes may have predictive value for the poor prognosis of AD.It is recommended that the proportion of T lymphocytes<55%is used as the cut-off threshold for predicting the poor prog-nosis of AD.The early and continuous drug treatment is associated with a good prognosis.
基金supported by the Sao Paulo Research Foundation(FAPESP)(Grant Numbers 20/11946-6,18/05821-6,17/10201-4,09/08535-5,19/20894-2,and 19/10666-2)the Brazilian National Council for Scientific and Technological Development(CNPq)(Grant Numbers 164937/2020-0,309832/2021-7,308117/2018-2,307718/2018-2,and 409521/2021-3)+1 种基金the Pro-Reitoria de Pesquisa(PROPe)of Sao Paulo State University(UNESP)the IDOR/Pioneer Science Initiative(www.pioneerscience.org).
文摘Background:Near-infrared spectroscopy(NIRS)technology has allowed for the measurement of cerebral and skeletal muscle oxygenation simultaneously during exercise.Since this technology has been growing and is now successfully used in laboratory and sports settings,this systematic review aimed to synthesize the evidence and enhance an integrative understanding of bloodflow adjustments and oxygen(O_(2))changes(i.e.,the balance between O_(2) delivery and O_(2) consumption)within the cerebral and muscle systems during exercise.Methods:A systematic review was conducted using PubMed,Embase,Scopus,and Web of Science databases to search for relevant studies that simultaneously investigated cerebral and muscle hemodynamic changes using the near-infrared spectroscopy system during exercise.This review considered manuscripts written in English and available before February 9,2023.Each step of screening involved evaluation by 2 inde-pendent authors,with disagreements resolved by a third author.The Joanna Briggs Institute Critical Appraisal Checklist was used to assess the methodological quality of the studies.Results:Twenty studies were included,of which 80%had good methodological quality,and involved 290 young or middle-aged adults.Different types of exercises were used to assess cerebral and muscle hemodynamic changes,such as cycling(n=11),treadmill(n=1),knee extension(n=5),isometric contraction of biceps brachii(n=3),and duet swim routines(n=1).The cerebral hemodynamics anal-ysis was focused on the frontal cortex(n=20),while in the muscle,the analysis involved vastus lateralis(n=18),gastrocnemius(n=3),biceps brachii(n=5),deltoid(n=1),and intercostal muscle(n=1).Overall,muscle deoxygenation increases during exercise,reaching a plateau in voluntary exhaustion,while in the brain,oxyhemoglobin concentration increases with exercise intensity,reaching a plateau or declining at the exhaustion point.Conclusion:Muscle and cerebral oxygenation respond differently to exercise,with muscle increasing O_(2) utilization and cerebral tissue increasing O_(2) delivery during exercise.However,at the exhaustion point,both muscle and cerebral oxygenation become compromised.This is characterized by a reduction in bloodflow and a decrease in O_(2) extraction in the muscle,while in the brain,oxygenation reaches a plateau or decline,potentially resulting in motor failure during exercise.
基金support from the Sichuan Science and Technology Program(2019ZDZX0036)the support from the Analytical&Testing Center of Sichuan University.
文摘Laser spectroscopic imaging techniques have received tremendous attention in the-eld of cancer diagnosis due to their high sensitivity,high temporal resolution,and short acquisition time.However,the limited tissue penetration of the laser is still a challenge for the in vivo diagnosis of deep-seated lesions.Nanomaterials have been universally integrated with spectroscopic imaging techniques for deeper cancer diagnosis in vivo.The components,morphology,and sizes of nanomaterials are delicately designed,which could realize cancer diagnosis in vivo or in situ.Considering the enhanced signal emitting from the nanomaterials,we emphasized their combination with spectroscopic imaging techniques for cancer diagnosis,like the surface-enhanced Raman scattering(SERS),photoacoustic,fluorescence,and laser-induced breakdown spectroscopy(LIBS).Applications ofthe above spectroscopic techniques offer new prospectsfor cancer diagnosis.
基金financially supported by the National Natural Science Foundation of China(31972149)funding support from the MacDiarmid Institute for Advanced Materials and Nanotechnologythe Dodd-Walls Centre for Photonic and Quantum Technologies。
文摘Herein,a novel interference-free surface-enhanced Raman spectroscopy(SERS)strategy based on magnetic nanoparticles(MNPs)and aptamer-driven assemblies was proposed for the ultrasensitive detection of histamine.A core-satellite SERS aptasensor was constructed by combining aptamer-decorated Fe_(3)O_(4)@Au MNPs(as the recognize probe for histamine)and complementary DNA-modified silver nanoparticles carrying 4-mercaptobenzonitrile(4-MBN)(Ag@4-MBN@Ag-c-DNA)as the SERS signal probe for the indirect detection of histamine.Under an applied magnetic field in the absence of histamine,the assembly gave an intense Raman signal at“Raman biological-silent”region due to 4-MBN.In the presence of histamine,the Ag@4-MBN@Ag-c-DNA SERS-tag was released from the Fe_(3)O_(4)@Au MNPs,thus decreasing the SERS signal.Under optimal conditions,an ultra-low limit of detection of 0.65×10^(-3)ng/mL and a linear range 10^(-2)-10^5 ng/mL on the SERS aptasensor were obtained.The histamine content in four food samples were analyzed using the SERS aptasensor,with the results consistent with those determined by high performance liquid chromatography.The present work highlights the merits of indirect strategies for the ultrasensitive and highly selective SERS detection of small biological molecules in complex matrices.
基金support from the National Science Foundation of China(22078190)the National Key R&D Plan of China(2020YFB1505802).
文摘Joint time–frequency analysis is an emerging method for interpreting the underlying physics in fuel cells,batteries,and supercapacitors.To increase the reliability of time–frequency analysis,a theoretical correlation between frequency-domain stationary analysis and time-domain transient analysis is urgently required.The present work formularizes a thorough model reduction of fractional impedance spectra for electrochemical energy devices involving not only the model reduction from fractional-order models to integer-order models and from high-to low-order RC circuits but also insight into the evolution of the characteristic time constants during the whole reduction process.The following work has been carried out:(i)the model-reduction theory is addressed for typical Warburg elements and RC circuits based on the continued fraction expansion theory and the response error minimization technique,respectively;(ii)the order effect on the model reduction of typical Warburg elements is quantitatively evaluated by time–frequency analysis;(iii)the results of time–frequency analysis are confirmed to be useful to determine the reduction order in terms of the kinetic information needed to be captured;and(iv)the results of time–frequency analysis are validated for the model reduction of fractional impedance spectra for lithium-ion batteries,supercapacitors,and solid oxide fuel cells.In turn,the numerical validation has demonstrated the powerful function of the joint time–frequency analysis.The thorough model reduction of fractional impedance spectra addressed in the present work not only clarifies the relationship between time-domain transient analysis and frequency-domain stationary analysis but also enhances the reliability of the joint time–frequency analysis for electrochemical energy devices.
基金supported by the Center of Excellence\Center of Photonics"funded by The Ministry of Science and Higher Education of the Russian Federation,Contract.№.075-15-2022-316.E.A.S.thanks Dr.Lev S.Dolin for fruitful discussions.
文摘A rened analytical model of spatially resolved diffuse reectance with small source-detector separations(SDSs)for the in vivo skin studies is proposed.Compared to the conventional model developed by Farrell et al.,it accounts for the limited acceptance angle of the detectorber.The rened model is validated in the wide range of optical parameters by Monte Carlo simulations of skin diffuse reectance at SDSs of units of mm.Cases of uniform dermis and two-layered epidermis-dermis structures are studied.Higher accuracy of the rened model compared to the conventional one is demonstrated in the separate,constraint-free reconstruction of absorption and reduced scattering spectra of uniform dermis from the Monte Carlo simulated data.In the case of epidermis-dermis geometry,the recovered values of reduced scattering in dermis are overestimated and the recovered values of absorption are underestimated for both analytical models.Presumably,in the presence of a thin mismatched topical layer,only the effective attenuation coe±cient of the bottom layer can be accurately recovered using a diffusion theorybased analytical model while separate reconstruction of absorption and reduced scattering fails due to the inapplicability of the method of images.These-ndings require implementation of more sophisticated models of light transfer in inhomogeneous media in the recovery algorithms.
文摘Non-invasive cerebral neuromodulation technologies are essential for the reorganization of cerebral neural networks,which have been widely applied in the field of central neurological diseases,such as stroke,Parkinson’s disease,and mental disorders.Although significant advances have been made in neuromodulation technologies,the identification of optimal neurostimulation paramete rs including the co rtical target,duration,and inhibition or excitation pattern is still limited due to the lack of guidance for neural circuits.Moreove r,the neural mechanism unde rlying neuromodulation for improved behavioral performance remains poorly understood.Recently,advancements in neuroimaging have provided insight into neuromodulation techniques.Functional near-infrared spectroscopy,as a novel non-invasive optical brain imaging method,can detect brain activity by measuring cerebral hemodynamics with the advantages of portability,high motion tole rance,and anti-electromagnetic interference.Coupling functional near-infra red spectroscopy with neuromodulation technologies offe rs an opportunity to monitor the cortical response,provide realtime feedbac k,and establish a closed-loop strategy integrating evaluation,feedbac k,and intervention for neurostimulation,which provides a theoretical basis for development of individualized precise neuro rehabilitation.We aimed to summarize the advantages of functional near-infra red spectroscopy and provide an ove rview of the current research on functional near-infrared spectroscopy in transcranial magnetic stimulation,transcranial electrical stimulation,neurofeedback,and braincomputer interfaces.Furthermore,the future perspectives and directions for the application of functional near-infrared spectroscopy in neuromodulation are summarized.In conclusion,functional near-infrared spectroscopy combined with neuromodulation may promote the optimization of central pellral reorganization to achieve better functional recovery form central nervous system diseases.
基金supported by the Korea Basic Science Institute(National research Facilities and Equipment Center)grant funded by the Ministry of Education(2019R1A6C1010042,2021R1A6C103A427)the financial support from the National Research Foundation of Korea(NRF)(2022R1A2C2010686,2022R1A4A3033528,2021R1I1A1A01060380,2021R1C1C2010726,2019H1D3A1A01071209)。
文摘The electrocatalytic oxidation of biomass-derived furfural(FF)feedstocks into 2-furoic acid(FA)holds immense industrial potential in optics,cosmetics,polymers,and food.Herein,we fabricated Co O/Ni O/nickel foam(NF)and Cu_(2)O/Ni O/NF electrodes via in situ pulsed laser irradiation in liquids(PLIL)for the bifunctional electrocatalysis of oxygen evolution reaction(OER)and furfural oxidation reaction(FOR),respectively.Simultaneous oxidation of NF surface to NiO and deposition of CoO and/or Cu_(2)O on NF during PLIL offer distinct advantages for enhancing both the OER and FOR.CoO/NiO/NF electrocatalyst provides a consistently low overpotential of~359 m V(OER)at 10 m A/cm^(2),achieving the maximum FA yield(~16.37 m M)with 61.5%selectivity,79.5%carbon balance,and a remarkable Faradaic efficiency of~90.1%during 2 h of FOR at 1.43 V(vs.reversible hydrogen electrode).Mechanistic pathway via in situ electrochemical-Raman spectroscopy on CoO/NiO/NF reveals the involvement of phase transition intermediates(NiOOH and CoOOH)as surface-active centers during electrochemical oxidation.The carbonyl carbon in FF is attacked by hydroxyl groups to form unstable hydrates that subsequently undergo further oxidation to yield FA products.This method holds promise for large-scale applications,enabling simultaneous production of renewable building materials and fuel.
基金the immense support provided by the National Research Foundation of Korea(NRF)Grant funded by the Korean Government(MSIT)(RS-2023–00210114)the National R&D Program through the National Research Foundation of Korea(NRF)funded by Ministry of Science and ICT(2021M3D1A2051636)。
文摘Hydrogen production by water reduction reactions has received considerable attention because hydrogen is considered a clean-energy carrier,key for a sustainable energy future.Computational methods have been widely used to study the reaction mechanism of the hydrogen evolution reaction(HER),but the calculation results need to be supported by experimental results and direct evidence to confirm the mechanistic insights.In this review,we discuss the fundamental principles of the in situ spectroscopic strategy and a theoretical model for a mechanistic understanding of the HER.In addition,we investigate recent studies by in situ Fourier transform infrared(FTIR),Raman spectroscopy,and X-ray absorption spectroscopy(XAS) and cover new findings that occur at the catalyst-electrolyte interface during HER.These spectroscopic strategies provide practical ways to elucidate catalyst phase,reaction intermediate,catalyst-electrolyte interface,intermediate binding energy,metal valency state,and coordination environment during HER.
文摘The role of microstructural features on in-vitro degradation and surface film development of a thermomechanically processed Mg-4Zn-0.5Ca-0.8Mn alloy has been investigated employing electrochemical studies,scanning electron microscopy and X-ray photoelectron spectroscopy.The specimen forged at 523 K temperature developed a coarse unimodal microstructure consisting of basal oriented grains,whereas the specimens forged at 623 K and 723 K temperatures exhibited bimodal microstructures containing randomly oriented fine grains and basal oriented coarse grains.The bimodal microstructures exerted higher resistance to corrosion compared to the unimodal microstructure in presence of a protective surface film.The optimum size distribution of fine and coarse grains as well as the prevalence of basal oriented grains led to the lowest anodic current density in the specimen forged at 623 K.The morphology of Ca_(2)Mg_(6)Zn_(3)precipitates governed the cathodic kinetics by controlling the anode to cathode surface area ratio.Despite the specimen forged at 723 K comprised comparatively lower fraction of precipitates than at 623 K,the mesh-like precipitate morphology increased the effective cathodic surface area,leading to enhanced localised corrosion in the former specimen.Optimal microstructural features developed at 623 K forging temperature formed a well-protective surface film with lower Mg(OH)_(2)to MgO ratio,exhibiting distinctly high polarization resistance and superior cytocompatibility in terms of cell-proliferation and cell-differentiation.
基金the National Natural Science Foun-dation of China(Grant No.52375546)the National Key Research and Development Program of China(Grant No.2022YFF0705701).
文摘Laser absorption spectroscopy has proven to be an effective approach for gas sensing, which plays an important rolein the fields of military, industry, medicine and basic research. This paper presents a multiplexed gas sensing system basedon optical frequency comb (OFC) calibrated frequency-modulated continuous-wave (FMCW) tuning nonlinearity. Thesystem can be used for multi-parameter synchronous measurement of gas absorption spectrum and multiplexed opticalpath. Multi-channel parallel detection is realized by combining wavelength division multiplexing (WDM) and frequencydivision multiplexing (FDM) techniques. By introducing nonlinear optical crystals, broadband spectrum detection is simultaneouslyachieved over a bandwidth of hundreds of nanometers. An OFC with ultra-high frequency stability is used asthe frequency calibration source, which guarantees the measurement accuracy. The test samples involve H13C14N, C_(2)H_(2)and Rb vapor cells of varying densities and 5 parallel measurement experiments are designed. The results show that themeasurement accuracies of spectral absorption line and the optical path are 150 MHz and 20 m, respectively. The schemeoffers the advantages of multiplexed, multi-parameter, wide spectrum and high resolution detection, which can realize theidentification of multi-gas components and the high-precision inversion of absorption lines under different environments.The proposed sensor demonstrates great potential in the field of high-resolution absorption spectrum measurement for gassensing applications.
基金supported by the Key Research and Development Program of Zhejiang Province,China(2023C03116).
文摘Raman spectroscopy has found extensive use in monitoring and controlling cell culture processes.In this context,the prediction accuracy of Raman-based models is of paramount importance.However,models established with data from manually fed-batch cultures often exhibit poor performance in Raman-controlled cultures.Thus,there is a need for effective methods to rectify these models.The objective of this paper is to investigate the efficacy of Kalman filter(KF)algorithm in correcting Raman-based models during cell culture.Initially,partial least squares(PLS)models for different components were constructed using data from manually fed-batch cultures,and the predictive performance of these models was compared.Subsequently,various correction methods including the PLS-KF-KF method proposed in this study were employed to refine the PLS models.Finally,a case study involving the auto-control of glucose concentration demonstrated the application of optimal model correction method.The results indicated that the original PLS models exhibited differential performance between manually fed-batch cultures and Raman-controlled cultures.For glucose,the root mean square error of prediction(RMSEP)of manually fed-batch culture and Raman-controlled culture was 0.23 and 0.40 g·L^(-1).With the implementation of model correction methods,there was a significant improvement in model performance within Raman-controlled cultures.The RMSEP for glucose from updating-PLS,KF-PLS,and PLS-KF-KF was 0.38,0.36 and 0.17 g·L^(-1),respectively.Notably,the proposed PLS-KF-KF model correction method was found to be more effective and stable,playing a vital role in the automated nutrient feeding of cell cultures.