A clear light-yellow silver sol which has the visible spectral absorption at 390 nm, when adsorbed phenylmercaptotetrazole(PMT) or mercaptobenzothiazole(MBT), has a new absorption at 510-550 nm. It was found that the ...A clear light-yellow silver sol which has the visible spectral absorption at 390 nm, when adsorbed phenylmercaptotetrazole(PMT) or mercaptobenzothiazole(MBT), has a new absorption at 510-550 nm. It was found that the adsorption of halide ions competes with PMT and MBT. However, halide ions have a completely different influence from PMT and MBT on the spectral absorption of the silver sol. The differences may result from the change of the properties of the surface of the silver subcolloidal particles and from the bond forms combining adsorbates with the substrates.展开更多
A highly transparent Eu3+-doped CaGdA104 (CGA) single crystal is grown by the floating zone method. The segregation coefficient, x ray diffraction, and x ray rocking curve are detected, and the results reveal that ...A highly transparent Eu3+-doped CaGdA104 (CGA) single crystal is grown by the floating zone method. The segregation coefficient, x ray diffraction, and x ray rocking curve are detected, and the results reveal that the single crystal is of high quality. The f-f transitions of Eu3+ in the host lattice are discussed. The 5D0-7F2 emis- sion transition at 621 nm (red light) is dominant over the 5D0-7F1 emission transitions at 591 and 599 nm (orange light), agreeing well with the random crystal environment of Eu3+ ions in a CGA crystal. The decay time of Eu:5D0 is measured to be 1.02 ms. All the results show that the Eu:CGA crystal has good optical char- acterization and promises to be an excellent red- fluorescence material.展开更多
The biochemical composition of atherosclerotic plaques is closely related to plaque stability and, therefore, to the associated risk of plaque evolution and rupture. Combinations of current imaging modalities, such as...The biochemical composition of atherosclerotic plaques is closely related to plaque stability and, therefore, to the associated risk of plaque evolution and rupture. Combinations of current imaging modalities, such as optical coherence tomography(OCT) with spectroscopic methods, therefore offer the possibility of concurrently obtaining morphological as well as chemical information. Raman spectroscopy is one of the most promising techniques that can be combined with intravascular imaging modalities. A microscopy setup merging both techniques has been applied to characterize plaque depositions of a human aorta affected by the disease. Calcified depositions were clearly identified and subsequently confirmed by histopathology.展开更多
Greener synthesis of nanoparticle is a revolutionizing area in research field.Biological method of reduction of metal ions is often preferred because they are clean,safe,biocompatible,and environmentally acceptable th...Greener synthesis of nanoparticle is a revolutionizing area in research field.Biological method of reduction of metal ions is often preferred because they are clean,safe,biocompatible,and environmentally acceptable than physical,chemical,and mechanical methods.The wet biomass of Aspergillus terreus(A.terreus) was utilized for the intracellular synthesis of gold nanoparticles.Gold nanoparticles were produced when an aqueous solution of chloroauric acid was reduced by A.terreus biomass as the reducing agent.Production of gold nanoparticles was confirmed by the color change of biomass from yellow to pinkish violet.The produced nanoparticles were then characterized by FT-IR,SEM,EDS,and XRD.The SEM images revealed that the nanoparticles were spherical,irregularly shaped with no definite morphology.Average size of the biosynthesized gold nanoparticles was 186 nm.The presence of the gold nanoparticle was confirmed by EDS analysis.Crystalline nature of synthesized gold nanoparticle was confirmed by XRD pattern.展开更多
文摘A clear light-yellow silver sol which has the visible spectral absorption at 390 nm, when adsorbed phenylmercaptotetrazole(PMT) or mercaptobenzothiazole(MBT), has a new absorption at 510-550 nm. It was found that the adsorption of halide ions competes with PMT and MBT. However, halide ions have a completely different influence from PMT and MBT on the spectral absorption of the silver sol. The differences may result from the change of the properties of the surface of the silver subcolloidal particles and from the bond forms combining adsorbates with the substrates.
基金supported by the Natural Science Foundation of Shanghai under Grant No.15ZR1444700
文摘A highly transparent Eu3+-doped CaGdA104 (CGA) single crystal is grown by the floating zone method. The segregation coefficient, x ray diffraction, and x ray rocking curve are detected, and the results reveal that the single crystal is of high quality. The f-f transitions of Eu3+ in the host lattice are discussed. The 5D0-7F2 emis- sion transition at 621 nm (red light) is dominant over the 5D0-7F1 emission transitions at 591 and 599 nm (orange light), agreeing well with the random crystal environment of Eu3+ ions in a CGA crystal. The decay time of Eu:5D0 is measured to be 1.02 ms. All the results show that the Eu:CGA crystal has good optical char- acterization and promises to be an excellent red- fluorescence material.
文摘The biochemical composition of atherosclerotic plaques is closely related to plaque stability and, therefore, to the associated risk of plaque evolution and rupture. Combinations of current imaging modalities, such as optical coherence tomography(OCT) with spectroscopic methods, therefore offer the possibility of concurrently obtaining morphological as well as chemical information. Raman spectroscopy is one of the most promising techniques that can be combined with intravascular imaging modalities. A microscopy setup merging both techniques has been applied to characterize plaque depositions of a human aorta affected by the disease. Calcified depositions were clearly identified and subsequently confirmed by histopathology.
文摘Greener synthesis of nanoparticle is a revolutionizing area in research field.Biological method of reduction of metal ions is often preferred because they are clean,safe,biocompatible,and environmentally acceptable than physical,chemical,and mechanical methods.The wet biomass of Aspergillus terreus(A.terreus) was utilized for the intracellular synthesis of gold nanoparticles.Gold nanoparticles were produced when an aqueous solution of chloroauric acid was reduced by A.terreus biomass as the reducing agent.Production of gold nanoparticles was confirmed by the color change of biomass from yellow to pinkish violet.The produced nanoparticles were then characterized by FT-IR,SEM,EDS,and XRD.The SEM images revealed that the nanoparticles were spherical,irregularly shaped with no definite morphology.Average size of the biosynthesized gold nanoparticles was 186 nm.The presence of the gold nanoparticle was confirmed by EDS analysis.Crystalline nature of synthesized gold nanoparticle was confirmed by XRD pattern.