This paper introduces how to use remote sensing images including Landsat (MSS and TM) and airborne radioactivity images to identify the type of rocks in the areas covered by vegetation. The relationship between light ...This paper introduces how to use remote sensing images including Landsat (MSS and TM) and airborne radioactivity images to identify the type of rocks in the areas covered by vegetation. The relationship between light spectrum (Landsat MSS and TM) and energy spectrum (U, Th and K) is discussed on the basis of correlation analysis, and it is proven that there are correlations between the Landsat MSS or TM data and the U, Th and K data. By using the fusion technique, new images were generated, which contain both the light spectrum and the energy spectrum information.展开更多
Functional brain networks (FBN) based on resting-state functional magnetic resonance imaging (rs-fMRI) have become an important tool for exploring underlying organization patterns in the brain, which can provide an ob...Functional brain networks (FBN) based on resting-state functional magnetic resonance imaging (rs-fMRI) have become an important tool for exploring underlying organization patterns in the brain, which can provide an objective basis for brain disorders such as autistic spectrum disorder (ASD). Due to its importance, researchers have proposed a number of FBN estimation methods. However, most existing methods only model a type of functional connection relationship between brain regions-of-interest (ROIs), such as partial correlation or full correlation, which is difficult to fully capture the subtle connections among ROIs since these connections are extremely complex. Motivated by the multi-view learning, in this study we propose a novel Consistent and Specific Multi-view FBNs Fusion (CSMF) approach. Concretely, we first construct multi-view FBNs (i.e., multiple types of FBNs modelling various relationships among ROIs), and then these FBNs are decomposed into a consistent representation matrix and their own specific matrices which capture their common and unique information, respectively. Lastly, to obtain a better brain representation, it is fusing the consistent and specific representation matrices in the latent representation spaces of FBNs, but not directly fusing the original FBNs. This potentially makes it more easily to find the comprehensively brain connections. The experimental results of ASD identification on the ABIDE datasets validate the effectiveness of our proposed method compared to several state-of-the-art methods. Our proposed CSMF method achieved 72.8% and 76.67% classification performance on the ABIDE dataset.展开更多
Spectrum sensing is one of the core technologies for cognitive radios (CR), where reliable detection of the signals of primary users (PUs) is precondition for implementing the CR systems. A cooperative spectrum se...Spectrum sensing is one of the core technologies for cognitive radios (CR), where reliable detection of the signals of primary users (PUs) is precondition for implementing the CR systems. A cooperative spectrum sensing scheme based on an adaptive decision fusion algorithm for spectrum sensing in CR is proposed in this paper. This scheme can estimate the PU prior probability and the miss detection and false alarm probabilities of various secondary users (SU), and make the local decision with the Chair-Varshney rule so that the decisions fusion can be done for the global decision. Simulation results show that the false alarm and miss detection probabilities resulted from the proposed algorithm are significantly lower than those of the single SU, and the performance of the scheme outperforms that of the cooperative detection by using the conventional decision fusion algorithms.展开更多
文摘This paper introduces how to use remote sensing images including Landsat (MSS and TM) and airborne radioactivity images to identify the type of rocks in the areas covered by vegetation. The relationship between light spectrum (Landsat MSS and TM) and energy spectrum (U, Th and K) is discussed on the basis of correlation analysis, and it is proven that there are correlations between the Landsat MSS or TM data and the U, Th and K data. By using the fusion technique, new images were generated, which contain both the light spectrum and the energy spectrum information.
文摘Functional brain networks (FBN) based on resting-state functional magnetic resonance imaging (rs-fMRI) have become an important tool for exploring underlying organization patterns in the brain, which can provide an objective basis for brain disorders such as autistic spectrum disorder (ASD). Due to its importance, researchers have proposed a number of FBN estimation methods. However, most existing methods only model a type of functional connection relationship between brain regions-of-interest (ROIs), such as partial correlation or full correlation, which is difficult to fully capture the subtle connections among ROIs since these connections are extremely complex. Motivated by the multi-view learning, in this study we propose a novel Consistent and Specific Multi-view FBNs Fusion (CSMF) approach. Concretely, we first construct multi-view FBNs (i.e., multiple types of FBNs modelling various relationships among ROIs), and then these FBNs are decomposed into a consistent representation matrix and their own specific matrices which capture their common and unique information, respectively. Lastly, to obtain a better brain representation, it is fusing the consistent and specific representation matrices in the latent representation spaces of FBNs, but not directly fusing the original FBNs. This potentially makes it more easily to find the comprehensively brain connections. The experimental results of ASD identification on the ABIDE datasets validate the effectiveness of our proposed method compared to several state-of-the-art methods. Our proposed CSMF method achieved 72.8% and 76.67% classification performance on the ABIDE dataset.
文摘Spectrum sensing is one of the core technologies for cognitive radios (CR), where reliable detection of the signals of primary users (PUs) is precondition for implementing the CR systems. A cooperative spectrum sensing scheme based on an adaptive decision fusion algorithm for spectrum sensing in CR is proposed in this paper. This scheme can estimate the PU prior probability and the miss detection and false alarm probabilities of various secondary users (SU), and make the local decision with the Chair-Varshney rule so that the decisions fusion can be done for the global decision. Simulation results show that the false alarm and miss detection probabilities resulted from the proposed algorithm are significantly lower than those of the single SU, and the performance of the scheme outperforms that of the cooperative detection by using the conventional decision fusion algorithms.