As the most important technology of CR, the wireless spectrum resource management technology is the key to CR performance improvement. By introducing the concept of resource space to describe wireless spectrum resourc...As the most important technology of CR, the wireless spectrum resource management technology is the key to CR performance improvement. By introducing the concept of resource space to describe wireless spectrum resource management in the field of CR technology, a data system of wireless resource management is formed that covers wireless spectrum resource space, resource grid and available resource atlas. Besides, the corresponding lamination distributional management structure and the resource management database are constructed. The resources description system and the management structure will become the theoretical concept foundation and reference of the CR spectrum resources management technology.展开更多
Dynamic spectrum access technologies based on Cognitive Radio(CR) is under intensive research carried out by the wireless communication society and is expected to solve the problem of spectrum scarcity.However,most en...Dynamic spectrum access technologies based on Cognitive Radio(CR) is under intensive research carried out by the wireless communication society and is expected to solve the problem of spectrum scarcity.However,most enabling technologies related to dynamic spectrum access are con-sidered individually.In this paper,we consider these key technologies jointly and introduce a new implementation scheme for a Dynamic Spectrum Access Network Based on Cognitive Radio(DSAN-BCR).We start with a flexible hardware platform for DSAN-BCR,as well as a flexible protocol structure that dominates the operation of DSAN-BCR.We then focus on the state of the art of key technologies such as spectrum sensing,spectrum resources management,dynamic spectrum access,and routing that are below the network layer in DSAN-BCR,as well as the development of technologies related to higher layers.Last but not the least,we analyze the challenges confronted by these men-tioned technologies in DSAN-BCR,and give the perspectives on the future development of these technologies.The DSAN-BCR introduced is expected to provide a system level guidance to alleviate the problem of spectrum scarcity.展开更多
Spectrum sensing is a key technology for cognitive radios.We present spectrum sensing as a classification problem and propose a sensing method based on deep learning classification.We normalize the received signal pow...Spectrum sensing is a key technology for cognitive radios.We present spectrum sensing as a classification problem and propose a sensing method based on deep learning classification.We normalize the received signal power to overcome the effects of noise power uncertainty.We train the model with as many types of signals as possible as well as noise data to enable the trained network model to adapt to untrained new signals.We also use transfer learning strategies to improve the performance for real-world signals.Extensive experiments are conducted to evaluate the performance of this method.The simulation results show that the proposed method performs better than two traditional spectrum sensing methods,i.e.,maximum-minimum eigenvalue ratio-based method and frequency domain entropy-based method.In addition,the experimental results of the new untrained signal types show that our method can adapt to the detection of these new signals.Furthermore,the real-world signal detection experiment results show that the detection performance can be further improved by transfer learning.Finally,experiments under colored noise show that our proposed method has superior detection performance under colored noise,while the traditional methods have a significant performance degradation,which further validate the superiority of our method.展开更多
In order to reduce the disturbance on an authorizing user and lower the competition between cognitive users, assure the normal communication of a cognitive radio system, reliability theory is applied to describe if a ...In order to reduce the disturbance on an authorizing user and lower the competition between cognitive users, assure the normal communication of a cognitive radio system, reliability theory is applied to describe if a channel can be used by a cognitive user or not and the probability that the channel is continually used for a period. Three aspects including space, time domain and frequency domain are united for the research on the distribution of frequency spectrum. The simulation result shows that, in the space domain, time domain, frequency domain algorithm, the transmitted data volume and the total throughput of the system are superior to those in greedy algorithm and time domain—frequency domain algorithm, the novel algorithm is helpful to reduce the disturbance caused by a cognitive user to an authorizing user and lower the competition between cognitive users, this simulation result shows that the proposed algorithm is effective.展开更多
The spectrum sharing problem between primary and cognitive users is mainly investigated. Since the interference for primary users and the total power for cognitive users are constrained, based on the well-known water-...The spectrum sharing problem between primary and cognitive users is mainly investigated. Since the interference for primary users and the total power for cognitive users are constrained, based on the well-known water-filling theorem, a novel one-user water-filling algorithm is proposed, and then the corresponding simulation results are given to analyze the feasibility and validity. After that this algorithm is used to solve the communication utility optimization problem subject to the power constraints in cognitive radio network. First, through the gain to noise ratio for cognitive users, a subcarrier and power allocation algorithm based on the optimal frequency partition is proposed for two cognitive users. Then the spectrum sharing algorithm is extended to multiuser conditions such that the greedy and parallel algorithms are proposed for spectrum sharing. Theory and simulation analysis show that the subcarrier and power allocation algorithms can not only protect the primary users but also effectively solve the spectrum and power allocation problem for cognitive users.展开更多
In this paper, we consider a spectrum sharing scheme that is a joint optimization of relay selection and power allocation at the secondary transmitter, which aims to achieve the maximum possible throughput for the sec...In this paper, we consider a spectrum sharing scheme that is a joint optimization of relay selection and power allocation at the secondary transmitter, which aims to achieve the maximum possible throughput for the secondary user. This paper considers the scenario where the primary user is incapable of supporting its target signal-to-noise ratio (SNR). More especially, the secondary transmitter tries to assist the primary user with achieving its target SNR by cooperative amplify-and-forward (AF) relaying with two-phase. By exhaustive search for all candidate secondary transmitters, an optimal secondary transmitter can be selected, which not only can satisfy the primary user’s target SNR, but also maximize the secondary user’s throughput. The optimal secondary transmitter acts as a relay for the primary user by allocating a part of its power to amplify-and-forward the primary signal over the primary user’s licensed spectrum bands. At the same time, as a reward, the optimal secondary transmitter uses the remaining power to transmit its own signal over the remaining licensed spectrum bands. Thus, the secondary user obtains the spectrum access opportunities. Besides, there is no interference between the primary user and the secondary user. We study the joint optimization of relay selection and power allocation such that the secondary user’s throughput is maximized on the condition that it satisfies the primary user’s target SNR. From the simulation, it is shown that the joint optimization of relay selection and power allocation provides a significant throughput gain compared with random relay selection with optimal power allocation (OPA) and random relay selection with water-filling power allocation (WPA). Moreover, the simulation results also shown that our spectrum sharing scheme obtains the win-win solution for the primary system and the secondary system.展开更多
Radio Cognitive (RC) is the new concept introduced to improve spectrum utilization in wireless communication and present important research field to resolve the spectrum scarcity problem. The powerful ability of CR to...Radio Cognitive (RC) is the new concept introduced to improve spectrum utilization in wireless communication and present important research field to resolve the spectrum scarcity problem. The powerful ability of CR to change and adapt its transmit parameters according to environmental sensed parameters, makes CR as the leading technology to manage spectrum allocation and respond to QoS provisioning. In this paper, we assume that the radio environment has been sensed and that the SU specifies QoS requirements of the wireless application. We use genetic algorithm (GA) and propose crossover method called Combined Single-Heuristic Crossover. The weighted sum multi-objective approach is used to combine performance objectives functions discussed in this paper and BER approximate formula is considered.展开更多
By cognitive radio,the low Earth orbit(LEO) satellites may prefer to operate in the unlicensed spectrum which is open to all the users,and compete for the limited resources with terrestrial cognitive radio networks...By cognitive radio,the low Earth orbit(LEO) satellites may prefer to operate in the unlicensed spectrum which is open to all the users,and compete for the limited resources with terrestrial cognitive radio networks(CRNs).The competition can be regarded as a game and analyzed with game theory.This particular unlicensed spectrum sharing problem is modeled here,and the special properties of "spatially-distinguished-interference" and the short period of the interactions between satellites and terrestrial CRNs are explored.Then,the problem is formulated as a "partially-blind" finitely repeated prisoner's dilemma by game theory.Finally,we begin with two promising spectrum sharing schemes,which can be used to enforce the frequency reuse among the remotely located terrestrial CRN players as well as to overcome the observation noise.By analysis and comparison,it is proposed that the novel refreshing-contrite-tit-for-tat(R-CTFT) is the optimal spectrum sharing scheme.Simulation results verify that it can be used to utilize the spectrum most efficiently.展开更多
We investigate the bandwidth allocation and power control schemes in orthogonal frequency division multiplexing (OFDM) based multi-hop cognitive radio networks,and the color-sensitive graph coloring (CSGC) model is vi...We investigate the bandwidth allocation and power control schemes in orthogonal frequency division multiplexing (OFDM) based multi-hop cognitive radio networks,and the color-sensitive graph coloring (CSGC) model is viewed as an efficient solution to the spectrum assignment problem. We extend the model by taking into account the power control strategy to avoid interference among secondary users and adapt dynamic topology. We formulate the optimization problem encompassing the channel allocation,power control with the interference constrained below a tolerable limit. The optimization objective with two different optimization strategies focuses on the routes rather than the links as in traditional approaches. A heuristic solution to this nondeterministic polynomial (NP)-hard problem is presented,which performs iterative channel allocation according to the lowest transmission power that guarantees the link connection and makes channel reuse as much as possible,and then the transmission power of each link is maximized to improve the channel capacity by gradually adding power level from the lowest transmission power until all co-channel links cannot satisfy the interference constraints. Numerical results show that our proposed strategies outperform the existing spectrum assignment algorithms in the performance of both the total network bandwidth and minimum route bandwidth of all routes,meanwhile,saving the transmission power.展开更多
Nowadays both satellite and terrestrial networks are expanding rapidly to meet the ever-increasing demands for higher throughput,lower latency,and wider coverage.However,spectrum scarcity places obstacles in the susta...Nowadays both satellite and terrestrial networks are expanding rapidly to meet the ever-increasing demands for higher throughput,lower latency,and wider coverage.However,spectrum scarcity places obstacles in the sustainable development.To accommodate the expanding network within a limited spectrum,spectrum sharing is deemed as a promising candidate.Particularly,cognitive radio(CR)has been proposed in the literature to allow satellite and terrestrial networks to share their spectrum dynamically.However,the existing CR-based schemes are found to be impractical and inefficient because they neglect the difficulty in obtaining the accurate and timely environment perception in satellite communications and only focus on link-level coexistence with limited interoperability.In this paper,we propose an intelligent spectrum management framework based on software defined network(SDN)and artificial intelligence(AI).Specifically,SDN transforms the heterogenous satellite and terrestrial networks into an integrated satellite and terrestrial network(ISTN)with reconfigurability and interoperability.AI is further used to make predictive environment perception and to configure the network for optimal resource allocation.Briefly,the proposed framework provides a new paradigm to integrate and exploit the spectrum of satellite and terrestrial networks.展开更多
High frequency(HF) communication, commonly covering frequency range between 3 and 30 MHz, is an important wireless communication paradigm to offer over-thehorizon or even global communications with ranges up to thousa...High frequency(HF) communication, commonly covering frequency range between 3 and 30 MHz, is an important wireless communication paradigm to offer over-thehorizon or even global communications with ranges up to thousands of kilometers via skywave propagation with ionospheric refraction. It has widespread applications in fields such as emergency communications in disaster areas, remote communications with aircrafts or ships and non-light-of-the-sight military operations. This tutorial article overviews the history of HF communication, demystifies the recent advances, and provides a preview of the next few years, which the authors believe will see fruitful outputs towards wideband, intelligent and integrated HF communications. Specifically, we first present brief preliminaries on the unique features of HF communications to facilitate general readers in the communication community. Then, we provide a historical review to show the technical evolution on the three generations of HF communication systems. Further, we highlight the key challenges and research directions. We hope that this article will stimulate more interests in addressing the technical challenges on the research and development of future HF radio communication systems.展开更多
In this paper,we investigate a spectrumsensing system in the presence of a satellite,where the satellite works as a sensing node.Considering the conventional energy detection method is sensitive to the noise uncertain...In this paper,we investigate a spectrumsensing system in the presence of a satellite,where the satellite works as a sensing node.Considering the conventional energy detection method is sensitive to the noise uncertainty,thus,a temporal convolutional network(TCN)based spectrum-sensing method is designed to eliminate the effect of the noise uncertainty and improve the performance of spectrum sensing,relying on the offline training and the online detection stages.Specifically,in the offline training stage,spectrum data captured by the satellite is sent to the TCN deployed on the gateway for training purpose.Moreover,in the online detection stage,the well trained TCN is utilized to perform real-time spectrum sensing,which can upgrade spectrum-sensing performance by exploiting the temporal features.Additionally,simulation results demonstrate that the proposed method achieves a higher probability of detection than that of the conventional energy detection(ED),the convolutional neural network(CNN),and deep neural network(DNN).Furthermore,the proposed method outperforms the CNN and the DNN in terms of a lower computational complexity.展开更多
Similarly to other domains, maritime community requests for broadband services have been significantly increasing. Worldwide navigation footprint and the lack of practical alternatives to Satellite Communications (SAT...Similarly to other domains, maritime community requests for broadband services have been significantly increasing. Worldwide navigation footprint and the lack of practical alternatives to Satellite Communications (SATCOM) empower VHF band as the natural choice to support most of those demands. Nevertheless, the major challenge for an implementation of maritime broadband VHF services is unquestionably the spectrum availability and management. Eventually, the solution must include spectrum sharing, using a Cognitive Radio (CR) based approach, but unfortunately current regulatory framework and spectrum management regime are not appropriate for such concepts and emerging technologies. To overcome such constraints, it is necessary to address a whole field of regulatory and standardization issues in order to prepare an evolution towards a more flexible and dynamic approach to spectrum management and a transition that would ensure incumbents live operations and legacy systems. The required paradigm change encompasses a new policy definition, an enforcement mechanism implementation and a comprehensive transition plan. The presented analysis pretends to address the regulatory feasibility of a framework change, discusses its evolving process and points some challenges related with practical aspects associated to Quality of Service (QoS) enforcement metrics definition, centering the arguments in maritime VHF band.展开更多
A spectrum heterogeneity analysis in the cognitive radio network is conducted in this paper. Subsequently,a spectrum-heterogeneity-based hierarchical spectrum sharing(HSS) network for cognitive radio is proposed.The c...A spectrum heterogeneity analysis in the cognitive radio network is conducted in this paper. Subsequently,a spectrum-heterogeneity-based hierarchical spectrum sharing(HSS) network for cognitive radio is proposed.The corresponding method of classifying available spectrums and communication based on the proposed architecture is also presented. Based on the above network architecture,we propose a reference protocol architecture.Research on these protocol function blocks,such as spectrum sensing,spectrum manager,and so on,is conducted. Numerical results show that HSS can provide a considerable extension to available spectrums so that the spectral utility may be further improved.展开更多
基金supported by the National Basic Research Program of China ("973" Program) under Grant No. 2009CB320404.
文摘As the most important technology of CR, the wireless spectrum resource management technology is the key to CR performance improvement. By introducing the concept of resource space to describe wireless spectrum resource management in the field of CR technology, a data system of wireless resource management is formed that covers wireless spectrum resource space, resource grid and available resource atlas. Besides, the corresponding lamination distributional management structure and the resource management database are constructed. The resources description system and the management structure will become the theoretical concept foundation and reference of the CR spectrum resources management technology.
文摘Dynamic spectrum access technologies based on Cognitive Radio(CR) is under intensive research carried out by the wireless communication society and is expected to solve the problem of spectrum scarcity.However,most enabling technologies related to dynamic spectrum access are con-sidered individually.In this paper,we consider these key technologies jointly and introduce a new implementation scheme for a Dynamic Spectrum Access Network Based on Cognitive Radio(DSAN-BCR).We start with a flexible hardware platform for DSAN-BCR,as well as a flexible protocol structure that dominates the operation of DSAN-BCR.We then focus on the state of the art of key technologies such as spectrum sensing,spectrum resources management,dynamic spectrum access,and routing that are below the network layer in DSAN-BCR,as well as the development of technologies related to higher layers.Last but not the least,we analyze the challenges confronted by these men-tioned technologies in DSAN-BCR,and give the perspectives on the future development of these technologies.The DSAN-BCR introduced is expected to provide a system level guidance to alleviate the problem of spectrum scarcity.
基金supported in part by National Natural Science Foundation of China under Grant No. 61871398in part by China Postdoctoral Science Foundation under Grant No. 2018M631122
文摘Spectrum sensing is a key technology for cognitive radios.We present spectrum sensing as a classification problem and propose a sensing method based on deep learning classification.We normalize the received signal power to overcome the effects of noise power uncertainty.We train the model with as many types of signals as possible as well as noise data to enable the trained network model to adapt to untrained new signals.We also use transfer learning strategies to improve the performance for real-world signals.Extensive experiments are conducted to evaluate the performance of this method.The simulation results show that the proposed method performs better than two traditional spectrum sensing methods,i.e.,maximum-minimum eigenvalue ratio-based method and frequency domain entropy-based method.In addition,the experimental results of the new untrained signal types show that our method can adapt to the detection of these new signals.Furthermore,the real-world signal detection experiment results show that the detection performance can be further improved by transfer learning.Finally,experiments under colored noise show that our proposed method has superior detection performance under colored noise,while the traditional methods have a significant performance degradation,which further validate the superiority of our method.
基金supported by Natural Science Foundation of Heilongjiang Province of China(No.F2015017)
文摘In order to reduce the disturbance on an authorizing user and lower the competition between cognitive users, assure the normal communication of a cognitive radio system, reliability theory is applied to describe if a channel can be used by a cognitive user or not and the probability that the channel is continually used for a period. Three aspects including space, time domain and frequency domain are united for the research on the distribution of frequency spectrum. The simulation result shows that, in the space domain, time domain, frequency domain algorithm, the transmitted data volume and the total throughput of the system are superior to those in greedy algorithm and time domain—frequency domain algorithm, the novel algorithm is helpful to reduce the disturbance caused by a cognitive user to an authorizing user and lower the competition between cognitive users, this simulation result shows that the proposed algorithm is effective.
基金supported by the National Natural Science Foundation of China(61071104)the National High Technology Research and Development Program(2008AA12Z305)
文摘The spectrum sharing problem between primary and cognitive users is mainly investigated. Since the interference for primary users and the total power for cognitive users are constrained, based on the well-known water-filling theorem, a novel one-user water-filling algorithm is proposed, and then the corresponding simulation results are given to analyze the feasibility and validity. After that this algorithm is used to solve the communication utility optimization problem subject to the power constraints in cognitive radio network. First, through the gain to noise ratio for cognitive users, a subcarrier and power allocation algorithm based on the optimal frequency partition is proposed for two cognitive users. Then the spectrum sharing algorithm is extended to multiuser conditions such that the greedy and parallel algorithms are proposed for spectrum sharing. Theory and simulation analysis show that the subcarrier and power allocation algorithms can not only protect the primary users but also effectively solve the spectrum and power allocation problem for cognitive users.
文摘In this paper, we consider a spectrum sharing scheme that is a joint optimization of relay selection and power allocation at the secondary transmitter, which aims to achieve the maximum possible throughput for the secondary user. This paper considers the scenario where the primary user is incapable of supporting its target signal-to-noise ratio (SNR). More especially, the secondary transmitter tries to assist the primary user with achieving its target SNR by cooperative amplify-and-forward (AF) relaying with two-phase. By exhaustive search for all candidate secondary transmitters, an optimal secondary transmitter can be selected, which not only can satisfy the primary user’s target SNR, but also maximize the secondary user’s throughput. The optimal secondary transmitter acts as a relay for the primary user by allocating a part of its power to amplify-and-forward the primary signal over the primary user’s licensed spectrum bands. At the same time, as a reward, the optimal secondary transmitter uses the remaining power to transmit its own signal over the remaining licensed spectrum bands. Thus, the secondary user obtains the spectrum access opportunities. Besides, there is no interference between the primary user and the secondary user. We study the joint optimization of relay selection and power allocation such that the secondary user’s throughput is maximized on the condition that it satisfies the primary user’s target SNR. From the simulation, it is shown that the joint optimization of relay selection and power allocation provides a significant throughput gain compared with random relay selection with optimal power allocation (OPA) and random relay selection with water-filling power allocation (WPA). Moreover, the simulation results also shown that our spectrum sharing scheme obtains the win-win solution for the primary system and the secondary system.
文摘Radio Cognitive (RC) is the new concept introduced to improve spectrum utilization in wireless communication and present important research field to resolve the spectrum scarcity problem. The powerful ability of CR to change and adapt its transmit parameters according to environmental sensed parameters, makes CR as the leading technology to manage spectrum allocation and respond to QoS provisioning. In this paper, we assume that the radio environment has been sensed and that the SU specifies QoS requirements of the wireless application. We use genetic algorithm (GA) and propose crossover method called Combined Single-Heuristic Crossover. The weighted sum multi-objective approach is used to combine performance objectives functions discussed in this paper and BER approximate formula is considered.
文摘By cognitive radio,the low Earth orbit(LEO) satellites may prefer to operate in the unlicensed spectrum which is open to all the users,and compete for the limited resources with terrestrial cognitive radio networks(CRNs).The competition can be regarded as a game and analyzed with game theory.This particular unlicensed spectrum sharing problem is modeled here,and the special properties of "spatially-distinguished-interference" and the short period of the interactions between satellites and terrestrial CRNs are explored.Then,the problem is formulated as a "partially-blind" finitely repeated prisoner's dilemma by game theory.Finally,we begin with two promising spectrum sharing schemes,which can be used to enforce the frequency reuse among the remotely located terrestrial CRN players as well as to overcome the observation noise.By analysis and comparison,it is proposed that the novel refreshing-contrite-tit-for-tat(R-CTFT) is the optimal spectrum sharing scheme.Simulation results verify that it can be used to utilize the spectrum most efficiently.
基金Project supported by the National Natural Science Foundation of China (Nos. 60496315, 60702039, and 60802009)the National High-Tech Research and Development Program (863) of China (Nos. 2006AA0Z277 and 2008AA01Z211)+1 种基金the International Science and Technology Cooperation Programme of China (No. 2008DFA11630)the Natural Science Foundation of Hubei Province, China (No. 2008CDB325)
文摘We investigate the bandwidth allocation and power control schemes in orthogonal frequency division multiplexing (OFDM) based multi-hop cognitive radio networks,and the color-sensitive graph coloring (CSGC) model is viewed as an efficient solution to the spectrum assignment problem. We extend the model by taking into account the power control strategy to avoid interference among secondary users and adapt dynamic topology. We formulate the optimization problem encompassing the channel allocation,power control with the interference constrained below a tolerable limit. The optimization objective with two different optimization strategies focuses on the routes rather than the links as in traditional approaches. A heuristic solution to this nondeterministic polynomial (NP)-hard problem is presented,which performs iterative channel allocation according to the lowest transmission power that guarantees the link connection and makes channel reuse as much as possible,and then the transmission power of each link is maximized to improve the channel capacity by gradually adding power level from the lowest transmission power until all co-channel links cannot satisfy the interference constraints. Numerical results show that our proposed strategies outperform the existing spectrum assignment algorithms in the performance of both the total network bandwidth and minimum route bandwidth of all routes,meanwhile,saving the transmission power.
基金National Natural Science Foundation of China(61631005)National Natural Science Foundation of China(U1801261)+3 种基金National Natural Science Foundation of China(61571100)National Key R&D Program of China(2018YFB1801105)Central Universities(ZYGX2019Z022)Programme of Introducing Talents of Discipline to Universities(B20064)。
文摘Nowadays both satellite and terrestrial networks are expanding rapidly to meet the ever-increasing demands for higher throughput,lower latency,and wider coverage.However,spectrum scarcity places obstacles in the sustainable development.To accommodate the expanding network within a limited spectrum,spectrum sharing is deemed as a promising candidate.Particularly,cognitive radio(CR)has been proposed in the literature to allow satellite and terrestrial networks to share their spectrum dynamically.However,the existing CR-based schemes are found to be impractical and inefficient because they neglect the difficulty in obtaining the accurate and timely environment perception in satellite communications and only focus on link-level coexistence with limited interoperability.In this paper,we propose an intelligent spectrum management framework based on software defined network(SDN)and artificial intelligence(AI).Specifically,SDN transforms the heterogenous satellite and terrestrial networks into an integrated satellite and terrestrial network(ISTN)with reconfigurability and interoperability.AI is further used to make predictive environment perception and to configure the network for optimal resource allocation.Briefly,the proposed framework provides a new paradigm to integrate and exploit the spectrum of satellite and terrestrial networks.
基金supported by the National Natural Science Foundation of China (Grant No. 61501510)Natural Science Foundation for Distinguished Young Scholars of Jiangsu Province (Grant No. BK20160034)+1 种基金Natural Science Foundation of Jiangsu Province (Grant No. BK20150717)China Postdoctoral Science Funded Project (Grant No. 2018T110426)
文摘High frequency(HF) communication, commonly covering frequency range between 3 and 30 MHz, is an important wireless communication paradigm to offer over-thehorizon or even global communications with ranges up to thousands of kilometers via skywave propagation with ionospheric refraction. It has widespread applications in fields such as emergency communications in disaster areas, remote communications with aircrafts or ships and non-light-of-the-sight military operations. This tutorial article overviews the history of HF communication, demystifies the recent advances, and provides a preview of the next few years, which the authors believe will see fruitful outputs towards wideband, intelligent and integrated HF communications. Specifically, we first present brief preliminaries on the unique features of HF communications to facilitate general readers in the communication community. Then, we provide a historical review to show the technical evolution on the three generations of HF communication systems. Further, we highlight the key challenges and research directions. We hope that this article will stimulate more interests in addressing the technical challenges on the research and development of future HF radio communication systems.
基金the National Science Foundation of China (No.91738201, 61971440)the Jiangsu Province Basic Research Project (No.BK20192002)+1 种基金the China Postdoctoral Science Foundation (No.2018M632347)the Natural Science Research of Higher Education Institutions of Jiangsu Province (No.18KJB510030)。
文摘In this paper,we investigate a spectrumsensing system in the presence of a satellite,where the satellite works as a sensing node.Considering the conventional energy detection method is sensitive to the noise uncertainty,thus,a temporal convolutional network(TCN)based spectrum-sensing method is designed to eliminate the effect of the noise uncertainty and improve the performance of spectrum sensing,relying on the offline training and the online detection stages.Specifically,in the offline training stage,spectrum data captured by the satellite is sent to the TCN deployed on the gateway for training purpose.Moreover,in the online detection stage,the well trained TCN is utilized to perform real-time spectrum sensing,which can upgrade spectrum-sensing performance by exploiting the temporal features.Additionally,simulation results demonstrate that the proposed method achieves a higher probability of detection than that of the conventional energy detection(ED),the convolutional neural network(CNN),and deep neural network(DNN).Furthermore,the proposed method outperforms the CNN and the DNN in terms of a lower computational complexity.
文摘Similarly to other domains, maritime community requests for broadband services have been significantly increasing. Worldwide navigation footprint and the lack of practical alternatives to Satellite Communications (SATCOM) empower VHF band as the natural choice to support most of those demands. Nevertheless, the major challenge for an implementation of maritime broadband VHF services is unquestionably the spectrum availability and management. Eventually, the solution must include spectrum sharing, using a Cognitive Radio (CR) based approach, but unfortunately current regulatory framework and spectrum management regime are not appropriate for such concepts and emerging technologies. To overcome such constraints, it is necessary to address a whole field of regulatory and standardization issues in order to prepare an evolution towards a more flexible and dynamic approach to spectrum management and a transition that would ensure incumbents live operations and legacy systems. The required paradigm change encompasses a new policy definition, an enforcement mechanism implementation and a comprehensive transition plan. The presented analysis pretends to address the regulatory feasibility of a framework change, discusses its evolving process and points some challenges related with practical aspects associated to Quality of Service (QoS) enforcement metrics definition, centering the arguments in maritime VHF band.
文摘A spectrum heterogeneity analysis in the cognitive radio network is conducted in this paper. Subsequently,a spectrum-heterogeneity-based hierarchical spectrum sharing(HSS) network for cognitive radio is proposed.The corresponding method of classifying available spectrums and communication based on the proposed architecture is also presented. Based on the above network architecture,we propose a reference protocol architecture.Research on these protocol function blocks,such as spectrum sensing,spectrum manager,and so on,is conducted. Numerical results show that HSS can provide a considerable extension to available spectrums so that the spectral utility may be further improved.