Spectrum sharing for efficient reuse of licensed spectrum is an important concept for cognitive radio technologies.In a spectrum-sharing system(SSS),deploying the antennas in a distributed manner can offer a new spati...Spectrum sharing for efficient reuse of licensed spectrum is an important concept for cognitive radio technologies.In a spectrum-sharing system(SSS),deploying the antennas in a distributed manner can offer a new spatial dimension for the efficient reuse of licensed frequency bands.To improve the whole performance of multiple secondary users(SUs),this paper addresses the problem of coordinated multi-SU spectrum sharing in a distributed antenna-based SSS.By adopting the Hungarian method,the primal decomposition method and pricing policy,we propose a coordinated multi-user transmission scheme,so as to maximize the sum-rate of SUs.Simulation results show that the proposed method can significantly enhance the system performance,and the computational complexity is low.展开更多
This paper investigates the performance of an underlay cognitive relay system where secondary users(SUs) suffer from a primary outage probability constraint and spectrum-sharing interference imposed by a primary use...This paper investigates the performance of an underlay cognitive relay system where secondary users(SUs) suffer from a primary outage probability constraint and spectrum-sharing interference imposed by a primary user(PU). In particular, we consider a secondary multi-relay network operating in the selection decode-and-forward(SDF) mode and propose a best-relay selection criterion which takes into account the spectrum-sharing constraint and interference. Based on these assumptions, the closed-form expression of the outage probability of secondary transmissions is derived. We find that a floor of the outage probability occurs in high signal-to-noise ratio(SNR) regions due to the joint effect of the constraint and the interference from the PU. In addition, we propose a generalized definition of the diversity gain for such systems and show that a full diversity order is achieved. Simulation results verify our theoretical solutions.展开更多
基金supported in part by the National Science Foundation of China for Young Scholars under grant No.61201186The National Basic Research Program undergrant No.2012AA01A502+5 种基金National Natural Science Foundation of China under grant No.61201192National S&T Major Project under grant No.2014ZX03003003-002Tsinghua-HUAWEI Joint R&D on Soft Defined Protocol StackTsinghua-HUAWEI Joint Research on 5G Air Interface TechnicalTsinghua-Qualcom joint research programIndependent innovation on Future Virtualization Platform under grant No.015Z02-3
文摘Spectrum sharing for efficient reuse of licensed spectrum is an important concept for cognitive radio technologies.In a spectrum-sharing system(SSS),deploying the antennas in a distributed manner can offer a new spatial dimension for the efficient reuse of licensed frequency bands.To improve the whole performance of multiple secondary users(SUs),this paper addresses the problem of coordinated multi-SU spectrum sharing in a distributed antenna-based SSS.By adopting the Hungarian method,the primal decomposition method and pricing policy,we propose a coordinated multi-user transmission scheme,so as to maximize the sum-rate of SUs.Simulation results show that the proposed method can significantly enhance the system performance,and the computational complexity is low.
基金supported by the National Nature Science Foundation of China(51204145)the Science and Technology Research and Development Program of Qinhuangdao(201302A033)
文摘This paper investigates the performance of an underlay cognitive relay system where secondary users(SUs) suffer from a primary outage probability constraint and spectrum-sharing interference imposed by a primary user(PU). In particular, we consider a secondary multi-relay network operating in the selection decode-and-forward(SDF) mode and propose a best-relay selection criterion which takes into account the spectrum-sharing constraint and interference. Based on these assumptions, the closed-form expression of the outage probability of secondary transmissions is derived. We find that a floor of the outage probability occurs in high signal-to-noise ratio(SNR) regions due to the joint effect of the constraint and the interference from the PU. In addition, we propose a generalized definition of the diversity gain for such systems and show that a full diversity order is achieved. Simulation results verify our theoretical solutions.