Dynamic time warping (DTW) and dynamic spectral wafliing (DSW)techniques are introduced into learning vector quantization (LVQ) algorithm to con-struct a “dynamic” Bayes classifier for speech recognition. It can pre...Dynamic time warping (DTW) and dynamic spectral wafliing (DSW)techniques are introduced into learning vector quantization (LVQ) algorithm to con-struct a “dynamic” Bayes classifier for speech recognition. It can preduce highly dis-criminiative “dynamic” reference vectors to represent the temporal and spectral vari-abilities of speech. Recognition experiments on 19 Chinese consonants show that the“dynamic” classifier outperforms the original “static” classifier significantly.展开更多
利用语音命令对机器人的行动控制,有很大的实用价值。介绍了采用动态时间弯折(DTW,Dynamic Time Warping)算法进行模式匹配的特定人孤立词汉语识别系统。DTW算法简单有效,尤其适合孤立词语识别系统。用凌阳单片机SPCE061A搭建的机器人...利用语音命令对机器人的行动控制,有很大的实用价值。介绍了采用动态时间弯折(DTW,Dynamic Time Warping)算法进行模式匹配的特定人孤立词汉语识别系统。DTW算法简单有效,尤其适合孤立词语识别系统。用凌阳单片机SPCE061A搭建的机器人平台对系统进行测试,结果表明,系统识别效果良好,控制者通过语音可以实时控制机器人行动。展开更多
文摘Dynamic time warping (DTW) and dynamic spectral wafliing (DSW)techniques are introduced into learning vector quantization (LVQ) algorithm to con-struct a “dynamic” Bayes classifier for speech recognition. It can preduce highly dis-criminiative “dynamic” reference vectors to represent the temporal and spectral vari-abilities of speech. Recognition experiments on 19 Chinese consonants show that the“dynamic” classifier outperforms the original “static” classifier significantly.
文摘利用语音命令对机器人的行动控制,有很大的实用价值。介绍了采用动态时间弯折(DTW,Dynamic Time Warping)算法进行模式匹配的特定人孤立词汉语识别系统。DTW算法简单有效,尤其适合孤立词语识别系统。用凌阳单片机SPCE061A搭建的机器人平台对系统进行测试,结果表明,系统识别效果良好,控制者通过语音可以实时控制机器人行动。