To utilize the supra-segmental nature of Mandarin tones, this article proposes a feature extraction method for hidden markov model (HMM) based tone modeling. The method uses linear transforms to project Fo(fundamen...To utilize the supra-segmental nature of Mandarin tones, this article proposes a feature extraction method for hidden markov model (HMM) based tone modeling. The method uses linear transforms to project Fo(fundamental frequency) features of neighboring syllables as compensations, and adds them to the original Fo features of the current syUable. The transforms are discriminatively trained by using an objective function termed as "minimum tone error", which is a smooth approximation of tone recognition accuracy. Experiments show that the new tonal features achieve 3.82% tone recognition rate improvement, compared with the baseline, using maximum likelihood trained HMM on the normal F0 features. Further experiments show that discriminative HMM training on the new features is 8.78% better than the baseline.展开更多
文摘To utilize the supra-segmental nature of Mandarin tones, this article proposes a feature extraction method for hidden markov model (HMM) based tone modeling. The method uses linear transforms to project Fo(fundamental frequency) features of neighboring syllables as compensations, and adds them to the original Fo features of the current syUable. The transforms are discriminatively trained by using an objective function termed as "minimum tone error", which is a smooth approximation of tone recognition accuracy. Experiments show that the new tonal features achieve 3.82% tone recognition rate improvement, compared with the baseline, using maximum likelihood trained HMM on the normal F0 features. Further experiments show that discriminative HMM training on the new features is 8.78% better than the baseline.