The problem of speech enhancement using threshold de-noising in wavelet domain was considered.The appropriate decomposition level is another key factor pertinent to de-noising performance.This paper proposed a new wav...The problem of speech enhancement using threshold de-noising in wavelet domain was considered.The appropriate decomposition level is another key factor pertinent to de-noising performance.This paper proposed a new wavelet-based de-noising scheme that can improve the enhancement performance significantly in the presence of additive white Gaussian noise.The proposed algorithm can adaptively select the optimal decomposition level of wavelet transformation according to the characteristics of noisy speech.The experimental results demonstrate that this proposed algorithm outperforms the classical wavelet-based de-noising method and effectively improves the practicability of this kind of techniques.展开更多
A sinusoidal representation of speech and a cochlear model are used to extract speech parameters in this paper, and a speech analysis/synthesis system controlled by the auditory spectrum is developed with the model. T...A sinusoidal representation of speech and a cochlear model are used to extract speech parameters in this paper, and a speech analysis/synthesis system controlled by the auditory spectrum is developed with the model. The computer simulation shows that speech can be synthesized with only 12 parameters per frame on the average. The method has the advantages of few parameters, low complexity and high performance of speech representation. The synthetic speech has high intelligibility.展开更多
A performance evaluation of sound recognition techniques in recognizing some spoken Arabic words, namely digits from zero to nine, is proposed. One of the main characteristics of aU Arabic digits is polysyllabic words...A performance evaluation of sound recognition techniques in recognizing some spoken Arabic words, namely digits from zero to nine, is proposed. One of the main characteristics of aU Arabic digits is polysyllabic words except for zero. The performance analysis is based on different features of phonetic isolated Arabic digits. The main aim of this paper is to compare, analyze, and discuss the outcomes of spoken Arabic digits recognition systems based on three recognition features: the Yule-Walker spectrum features, the Walsh spectrum features, and the Mel frequency Cepstral coefficients (MFCC) features. The MFCC based recognition system achieves the best average correct recognition. On the other hand, the Yule-Walker based recognition system achieves the worst average correct recognition.展开更多
In issues like hearing impairment,speech therapy and hearing aids play a major role in reducing the impairment.Removal of noise signals from speech signals is a key task in hearing aids as well as in speech therapy.Du...In issues like hearing impairment,speech therapy and hearing aids play a major role in reducing the impairment.Removal of noise signals from speech signals is a key task in hearing aids as well as in speech therapy.During the transmission of speech signals,several noise components contaminate the actual speech components.This paper addresses a new adaptive speech enhancement(ASE)method based on a modified version of singular spectrum analysis(MSSA).The MSSA generates a reference signal for ASE and makes the ASE is free from feeding reference component.The MSSA adopts three key steps for generating the reference from the contaminated speech only.These are decomposition,grouping and reconstruction.The generated reference is taken as a reference for variable size adaptive learning algorithms.In this work two categories of adaptive learning algorithms are used.They are step variable adaptive learning(SVAL)algorithm and time variable step size adaptive learning(TVAL).Further,sign regressor function is applied to adaptive learning algorithms to reduce the computational complexity of the proposed adaptive learning algorithms.The performance measures of the proposed schemes are calculated in terms of signal to noise ratio improvement(SNRI),excess mean square error(EMSE)and misadjustment(MSD).For cockpit noise these measures are found to be 29.2850,-27.6060 and 0.0758 dB respectively during the experiments using SVAL algorithm.By considering the reduced number of multiplications the sign regressor version of SVAL based ASE method is found to better then the counter parts.展开更多
文摘The problem of speech enhancement using threshold de-noising in wavelet domain was considered.The appropriate decomposition level is another key factor pertinent to de-noising performance.This paper proposed a new wavelet-based de-noising scheme that can improve the enhancement performance significantly in the presence of additive white Gaussian noise.The proposed algorithm can adaptively select the optimal decomposition level of wavelet transformation according to the characteristics of noisy speech.The experimental results demonstrate that this proposed algorithm outperforms the classical wavelet-based de-noising method and effectively improves the practicability of this kind of techniques.
文摘A sinusoidal representation of speech and a cochlear model are used to extract speech parameters in this paper, and a speech analysis/synthesis system controlled by the auditory spectrum is developed with the model. The computer simulation shows that speech can be synthesized with only 12 parameters per frame on the average. The method has the advantages of few parameters, low complexity and high performance of speech representation. The synthetic speech has high intelligibility.
文摘A performance evaluation of sound recognition techniques in recognizing some spoken Arabic words, namely digits from zero to nine, is proposed. One of the main characteristics of aU Arabic digits is polysyllabic words except for zero. The performance analysis is based on different features of phonetic isolated Arabic digits. The main aim of this paper is to compare, analyze, and discuss the outcomes of spoken Arabic digits recognition systems based on three recognition features: the Yule-Walker spectrum features, the Walsh spectrum features, and the Mel frequency Cepstral coefficients (MFCC) features. The MFCC based recognition system achieves the best average correct recognition. On the other hand, the Yule-Walker based recognition system achieves the worst average correct recognition.
文摘In issues like hearing impairment,speech therapy and hearing aids play a major role in reducing the impairment.Removal of noise signals from speech signals is a key task in hearing aids as well as in speech therapy.During the transmission of speech signals,several noise components contaminate the actual speech components.This paper addresses a new adaptive speech enhancement(ASE)method based on a modified version of singular spectrum analysis(MSSA).The MSSA generates a reference signal for ASE and makes the ASE is free from feeding reference component.The MSSA adopts three key steps for generating the reference from the contaminated speech only.These are decomposition,grouping and reconstruction.The generated reference is taken as a reference for variable size adaptive learning algorithms.In this work two categories of adaptive learning algorithms are used.They are step variable adaptive learning(SVAL)algorithm and time variable step size adaptive learning(TVAL).Further,sign regressor function is applied to adaptive learning algorithms to reduce the computational complexity of the proposed adaptive learning algorithms.The performance measures of the proposed schemes are calculated in terms of signal to noise ratio improvement(SNRI),excess mean square error(EMSE)and misadjustment(MSD).For cockpit noise these measures are found to be 29.2850,-27.6060 and 0.0758 dB respectively during the experiments using SVAL algorithm.By considering the reduced number of multiplications the sign regressor version of SVAL based ASE method is found to better then the counter parts.