To satisfy the need of high speed NC (numerical control) machining, an acceleration and deceleration (acc/dec) control model is proposed, and the speed curve is also constructed by the cubic polynomial. The proposed c...To satisfy the need of high speed NC (numerical control) machining, an acceleration and deceleration (acc/dec) control model is proposed, and the speed curve is also constructed by the cubic polynomial. The proposed control model provides continuity of acceleration, which avoids the intense vibration in high speed NC machining. Based on the discrete characteristic of the data sampling interpolation, the acc/dec control discrete mathematical model is also set up and the discrete expression of the theoretical deceleration length is obtained furthermore. Aiming at the question of hardly predetermining the deceleration point in acc/dec control before interpolation, the adaptive acc/dec control algorithm is deduced from the expressions of the theoretical deceleration length. The experimental result proves that the acc/dec control model has the characteristic of easy implementation, stable movement and low impact. The model has been applied in multi-axes high speed micro fabrication machining successfully.展开更多
The feedrate profile of non-uniform rational B-spline (NURBS) interpolation due to the contour errors is analyzed. A NURBS curve interpolator with adaptive acceleration-deceleration control is presented. In interpo-...The feedrate profile of non-uniform rational B-spline (NURBS) interpolation due to the contour errors is analyzed. A NURBS curve interpolator with adaptive acceleration-deceleration control is presented. In interpo- lation preprocessing, the sensitive zones of feedrate variations are processed with acceleration-deceleration control. By using the proposed algorithm, the machining accuracy is guaranteed and the feedrate is adaptively adjusted to he smoothed. The mechanical shock imposed in the servo system is avoided by the first and the second time derivatives of feedrates. A simulation of NURBS interpolation is given to demonstrate the validity and the effectiveness of the algorithm. The proposed interpolator can also be applied to the trajectory planning of the other parametric curves.展开更多
The algorithms for feedrate profile generation,such as linear and S-curve profiles,have been widely used in machinery controllers,and these algorithms can greatly improve the smoothness of motion.However,most of the a...The algorithms for feedrate profile generation,such as linear and S-curve profiles,have been widely used in machinery controllers,and these algorithms can greatly improve the smoothness of motion.However,most of the algorithms lead to the discontinuous acceleration/deceleration and jerk,or high jerk levels,which is very harmful to machine tool or robot in most occasions. This paper presents a smooth S-curve feedrate profiling generation algorithm that produces continuous feedrate,acceleration,and jerk profiles.Smooth jerk is obtained by imposing limits on the first and second time derivatives of acceleration,resulting in trapezoidal jerk profiles along the tool path.The discretization of smooth S-curve feedrate is realized with a novel approach that improves the efficiency without calculating the deceleration point in each sampled time.To ensure that the interpolation time is a multiple of the value of sampled time,the feedrate,acceleration,jerk,and jerk derivative are recalculated.Meantime,to improve the efficiency,the interpolation steps of all regions are computed before interpolation.According to the distance of trajectory,the smooth S-curve acceleration and decelerations are divided into three blocks:normal block,short block type-Ⅰ,and short block type-Ⅱ.Finally feedrate discretization of short block type-Ⅰand type-Ⅱis obtained with considering the efficiency.The proposed generation algorithm is tested in machining a part on a five axis milling machine,which is controlled with the CNC system for newly developed high-speed machine tools.The test result shows that the smooth S-curve approach has the smoother feedrate,acceleration,deceleration,and jerk profiles than S-curve.The proposed algorithm ensures the automated machinery motion smoothness,and improves the quality and efficiency of the automated machinery motion planning.展开更多
This paper proposes the new speed control method of electric vehicles by generating the longitudinal speed pattern for improving the ride comfort against the longitudinal acceleration/deceleration. Since the longitudi...This paper proposes the new speed control method of electric vehicles by generating the longitudinal speed pattern for improving the ride comfort against the longitudinal acceleration/deceleration. Since the longitudinal acceleration/deceleration of EVs causes the discomfort of passengers, reducing such bad effect of acceleration/deceleration acting on passengers is very important for not only the ride comfort of passengers but also vehicle running safety. The proposed method is applying the general optimal control theory and it generates the speed pattern for improving the passenger ride quality based on evaluating the variations of acceleration and the jerk which is time derivative of the acceleration. The effectiveness of the present method is demonstrated through numerical experiments compared with some conventional methods.展开更多
The acceleration saltation of the traditional S-type acceleration model in the speed planning of the NURBS curve will result in the vibration and flexible impact of the machine tool.It will affect the surface quality ...The acceleration saltation of the traditional S-type acceleration model in the speed planning of the NURBS curve will result in the vibration and flexible impact of the machine tool.It will affect the surface quality of the components.The high speed smooth S-type acceleration and deceleration model deals with flexible impact,but the calculation is tedious.Aimed at the above problems,the traditional S-type acceleration and deceleration model is improved to make the jerk change linearly at a certain slope to reduce the flexible impact.Before the speed planning,it is needed to find the arc length and curvature of each point on the NURBS curve with a tiny step,and to determine the speed sensitivity point on the curve accordingly.According to the speed sensitive point,the NURBS curve is segmented.The attribute parameters of each section are determined by adaptive speed planning.Then,the speed planning can be performed on the NURBS curve according to the speed characteristics classification.The simulation results show that the algorithm can effectively reduce the flexible impact,improve the machining precision and efficiency,and simplify the classification of speed characteristics.展开更多
基金the Hi-Tech Research and Development Pro-gram (863) of China (No. 2006AA04Z233)the National NaturalScience Foundation of China (No. 50575205)the Natural ScienceFoundation of Zhejiang Province (Nos. Y104243 and Y105686),China
文摘To satisfy the need of high speed NC (numerical control) machining, an acceleration and deceleration (acc/dec) control model is proposed, and the speed curve is also constructed by the cubic polynomial. The proposed control model provides continuity of acceleration, which avoids the intense vibration in high speed NC machining. Based on the discrete characteristic of the data sampling interpolation, the acc/dec control discrete mathematical model is also set up and the discrete expression of the theoretical deceleration length is obtained furthermore. Aiming at the question of hardly predetermining the deceleration point in acc/dec control before interpolation, the adaptive acc/dec control algorithm is deduced from the expressions of the theoretical deceleration length. The experimental result proves that the acc/dec control model has the characteristic of easy implementation, stable movement and low impact. The model has been applied in multi-axes high speed micro fabrication machining successfully.
基金Supported by the Natural Science Foundation of Jiangsu Province(BK2003005)~~
文摘The feedrate profile of non-uniform rational B-spline (NURBS) interpolation due to the contour errors is analyzed. A NURBS curve interpolator with adaptive acceleration-deceleration control is presented. In interpo- lation preprocessing, the sensitive zones of feedrate variations are processed with acceleration-deceleration control. By using the proposed algorithm, the machining accuracy is guaranteed and the feedrate is adaptively adjusted to he smoothed. The mechanical shock imposed in the servo system is avoided by the first and the second time derivatives of feedrates. A simulation of NURBS interpolation is given to demonstrate the validity and the effectiveness of the algorithm. The proposed interpolator can also be applied to the trajectory planning of the other parametric curves.
基金supported by Major National S&T Program of China (Grant No.2009ZX04009-014-02)National Hi-tech Research and Development Program of China(863 Program,Grant No. 2009AA043901)
文摘The algorithms for feedrate profile generation,such as linear and S-curve profiles,have been widely used in machinery controllers,and these algorithms can greatly improve the smoothness of motion.However,most of the algorithms lead to the discontinuous acceleration/deceleration and jerk,or high jerk levels,which is very harmful to machine tool or robot in most occasions. This paper presents a smooth S-curve feedrate profiling generation algorithm that produces continuous feedrate,acceleration,and jerk profiles.Smooth jerk is obtained by imposing limits on the first and second time derivatives of acceleration,resulting in trapezoidal jerk profiles along the tool path.The discretization of smooth S-curve feedrate is realized with a novel approach that improves the efficiency without calculating the deceleration point in each sampled time.To ensure that the interpolation time is a multiple of the value of sampled time,the feedrate,acceleration,jerk,and jerk derivative are recalculated.Meantime,to improve the efficiency,the interpolation steps of all regions are computed before interpolation.According to the distance of trajectory,the smooth S-curve acceleration and decelerations are divided into three blocks:normal block,short block type-Ⅰ,and short block type-Ⅱ.Finally feedrate discretization of short block type-Ⅰand type-Ⅱis obtained with considering the efficiency.The proposed generation algorithm is tested in machining a part on a five axis milling machine,which is controlled with the CNC system for newly developed high-speed machine tools.The test result shows that the smooth S-curve approach has the smoother feedrate,acceleration,deceleration,and jerk profiles than S-curve.The proposed algorithm ensures the automated machinery motion smoothness,and improves the quality and efficiency of the automated machinery motion planning.
文摘This paper proposes the new speed control method of electric vehicles by generating the longitudinal speed pattern for improving the ride comfort against the longitudinal acceleration/deceleration. Since the longitudinal acceleration/deceleration of EVs causes the discomfort of passengers, reducing such bad effect of acceleration/deceleration acting on passengers is very important for not only the ride comfort of passengers but also vehicle running safety. The proposed method is applying the general optimal control theory and it generates the speed pattern for improving the passenger ride quality based on evaluating the variations of acceleration and the jerk which is time derivative of the acceleration. The effectiveness of the present method is demonstrated through numerical experiments compared with some conventional methods.
基金the National Key Basic Research Program of China(973 Program)(No.2014CB046501)。
文摘The acceleration saltation of the traditional S-type acceleration model in the speed planning of the NURBS curve will result in the vibration and flexible impact of the machine tool.It will affect the surface quality of the components.The high speed smooth S-type acceleration and deceleration model deals with flexible impact,but the calculation is tedious.Aimed at the above problems,the traditional S-type acceleration and deceleration model is improved to make the jerk change linearly at a certain slope to reduce the flexible impact.Before the speed planning,it is needed to find the arc length and curvature of each point on the NURBS curve with a tiny step,and to determine the speed sensitivity point on the curve accordingly.According to the speed sensitive point,the NURBS curve is segmented.The attribute parameters of each section are determined by adaptive speed planning.Then,the speed planning can be performed on the NURBS curve according to the speed characteristics classification.The simulation results show that the algorithm can effectively reduce the flexible impact,improve the machining precision and efficiency,and simplify the classification of speed characteristics.