期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Research on cubic polynomial acceleration and deceleration control model for high speed NC machining 被引量:10
1
作者 Hong-bin LENG Yi-jie WU Xiao-hong PAN 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2008年第3期358-365,共8页
To satisfy the need of high speed NC (numerical control) machining, an acceleration and deceleration (acc/dec) control model is proposed, and the speed curve is also constructed by the cubic polynomial. The proposed c... To satisfy the need of high speed NC (numerical control) machining, an acceleration and deceleration (acc/dec) control model is proposed, and the speed curve is also constructed by the cubic polynomial. The proposed control model provides continuity of acceleration, which avoids the intense vibration in high speed NC machining. Based on the discrete characteristic of the data sampling interpolation, the acc/dec control discrete mathematical model is also set up and the discrete expression of the theoretical deceleration length is obtained furthermore. Aiming at the question of hardly predetermining the deceleration point in acc/dec control before interpolation, the adaptive acc/dec control algorithm is deduced from the expressions of the theoretical deceleration length. The experimental result proves that the acc/dec control model has the characteristic of easy implementation, stable movement and low impact. The model has been applied in multi-axes high speed micro fabrication machining successfully. 展开更多
关键词 High speed NC machining Acceleration and deceleration (acc/dec) control model Cubic speed curve Discrete mathematical model Adaptive acceleration and deceleration control algorithm
下载PDF
Isothermal extrusion speed curve design for porthole die of hollow aluminium profile based on PID algorithm and finite element simulations 被引量:3
2
作者 Jie YI Zhi-wen LIU Wen-qi ZENG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第7期1939-1950,共12页
The isothermal extrusion process of hollow aluminium profile was investigated using incremental proportional-integral-derivative(PID)control algorithm and finite element simulations.The range of extrusion speed was de... The isothermal extrusion process of hollow aluminium profile was investigated using incremental proportional-integral-derivative(PID)control algorithm and finite element simulations.The range of extrusion speed was determined by considering the maximum extrusion load and production efficiency.By taking the optimal solution temperature of the secondary phase as the target temperature,the extrusion speed–stroke curve for realizing the isothermal extrusion of the aluminium profile was obtained.Results show that in the traditional constant extrusion speed process,the average temperature of the cross-section of the aluminium profile at the die exit rapidly increases and then slowly rises with the increase in ram displacement.As the extrusion speed increases,the temperature difference at the die exit of the profile along the extrusion direction increases.The exit temperature difference between the front and back ends of the extrudate along the extrusion direction obtained by adopting isothermal extrusion is about 6.9℃.Furthermore,the heat generated by plastic deformation and friction during extrusion is balanced with the heat transfer from the workpiece to the container,porthole die and external environment. 展开更多
关键词 isothermal control extrusion speed curve porthole die extrusion PID control heat balance
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部