The influences of the dissimilarity in the roll speeds on the microstructure, texture and mechanical properties of 7075 aluminum plates produced via combined continuous casting and rolling(CCCR) process were investiga...The influences of the dissimilarity in the roll speeds on the microstructure, texture and mechanical properties of 7075 aluminum plates produced via combined continuous casting and rolling(CCCR) process were investigated. Several experiments were conducted with three different upper/lower roll rotational speed ratios(ω/ω0, ω is the upper roll rotational speed and ω0 is the lower roll rotational speed), namely 1:1, 1:1.2 and 1:1.4. It was found that the greatest dissimilarity in the roll speed(ω/ω0=1:1.4) improved the yield strength and ultimate tensile strength of 7075 Al plate in the rolling direction by 41.5% and 21.9%, respectively. Moreover, at a roll speed ratio of ω/ω0=1:1.4, the average grain size was decreased by 36% whereas the mean hardness of the transverse cross-section of the finally rolled plate was increased by about 9.2%. Texture studies also revealed that the more the difference in the roll speeds was, the greater the isotropy and the hardness of the final product were. Nevertheless, conducting CCCR operation with different roll speeds resulted in about 6% reduction in the elongation of the deformed plate.展开更多
This paper presents a current investigation into crash experience along a 15.7-mile rural corridor in southwest Montana with the aim of better understanding crash causal factors along the corridor. The study utilized ...This paper presents a current investigation into crash experience along a 15.7-mile rural corridor in southwest Montana with the aim of better understanding crash causal factors along the corridor. The study utilized ten years of crash data, geometric data, and observed freeflow speed data along the corridor. A systematic approach was used where every tenth of a mile was described in term of the crash experience, speed, alignment, and roadside features. Using bivariate and multivariate statistical anal-yses, the study investigated the crash experience along the corridor as well as some of the underlying relationships which could explain some of the crash causal factors. Results show a strong association between crash rates and horizontal curvatures even for flat curves that can be negotiated at speeds above the posted speed limit, per the highway design equations. Higher crash rates were also found to be associated with the difference between the observed free-flow speeds and the speed dictated by the curve radius or sight distance as per the design equations. Further, results strongly support the safety benefits of guardrails as evidenced by the lower crash rates and severities. The presence of fixed objects and the steepness of side slopes were also found to have an effect on crash rates and severities.展开更多
Gait speed is a valid measure of both physical function and vestibular health.Vestibular rehabilitation is useful to improve gait speed for patients with vestibular hypofunction,yet there is little data to indicate ho...Gait speed is a valid measure of both physical function and vestibular health.Vestibular rehabilitation is useful to improve gait speed for patients with vestibular hypofunction,yet there is little data to indicate how changes in gait speed reflect changes in patient-reported health outcomes.We determined the minimal clinically important difference in the gait speed of patients with unilateral vestibular hypofunction,mostly due to deafferentation surgery,as anchored to the Dizziness Handicap Index and the Activities Balance Confidence scale,validated using regression analysis,change difference,receiveroperator characteristic curve,and average change methods.After six weeks of vestibular rehabilitation,a change in gait speed from 0.20 to 0.34 m/s with 95%confidence was required for the patients to perceive a significant reduction in perception of dizziness and improved balance confidence.展开更多
Long-term variations in a sea surface wind speed (WS) and a significant wave height (SWH) are associated with the global climate change, the prevention and mitigation of natural disasters, and an ocean resource ex...Long-term variations in a sea surface wind speed (WS) and a significant wave height (SWH) are associated with the global climate change, the prevention and mitigation of natural disasters, and an ocean resource exploitation, and other activities. The seasonal characteristics of the long-term trends in China's seas WS and SWH are determined based on 24 a (1988-2011) cross-calibrated, multi-platform (CCMP) wind data and 24 a hindcast wave data obtained with the WAVEWATCH-III (WW3) wave model forced by CCMP wind data. The results show the following. (1) For the past 24 a, the China's WS and SWH exhibit a significant increasing trend as a whole, of 3.38 cm/(s.a) in the WS, 1.3 cm/a in the SWH. (2) As a whole, the increasing trend of the China's seas WS and SWH is strongest in March-April-May (MAM) and December-January-February (DJF), followed by June-July-August (JJA), and smallest in September-October-November (SON). (3) The areal extent of significant increases in the WS was largest in MAM, while the area decreased in JJA and DJF; the smallest area was apparent in SON. In contrast to the WS, almost all of China's seas exhibited a significant increase in SWH in MAM and DJF; the range was slightly smaller in JJA and SON. The WS and SWH in the Bohai Sea, the Yellow Sea, East China Sea, the Tsushima Strait, the Taiwan Strait, the northern South China Sea, the Beibu Gull and the Gulf of Thailand exhibited a significant increase in all seasons. (4) The variations in China's seas SWH and WS depended on the season. The areas with a strong increase usually appeared in DJF.展开更多
The surface wind speed(SWS)is affected by both large-scale circulation and land use and cover change(LUCC).In China,most studies have considered the effect of large-scale circulation rather than LUCC on SWS.In this st...The surface wind speed(SWS)is affected by both large-scale circulation and land use and cover change(LUCC).In China,most studies have considered the effect of large-scale circulation rather than LUCC on SWS.In this study,we evaluated the effects of LUCC on the SWS decrease during 1979-2015 over China using the observation minus reanalysis(OMR)method.There were two key findings:(1)Observed wind speed declined significantly at a rate of 0.0112 m/(s·a),whereas ERA-Interim,which can only capture the inter-annual variation of observed data,indicated a gentle downward trend.The effects of LUCC on SWS were distinct and caused a decrease of 0.0124 m/(s·a)in SWS;(2)Due to variations in the characteristics of land use types across different regions,the influence of LUCC on SWS also varied.The observed wind speed showed a rapid decline over cultivated land in Northwest China,as well as a decrease in China’s northeastern and eastern plain regions due to the urbanization.However,in the Tibetan Plateau,the impact of LUCC on wind speed was only slight and can thus be ignored.展开更多
The present study investigates the difference in interdecadal variability of the spring and summer sensible heat fluxes over Northwest China by using station observations from 1960 to 2000. It was found that the sprin...The present study investigates the difference in interdecadal variability of the spring and summer sensible heat fluxes over Northwest China by using station observations from 1960 to 2000. It was found that the spring sensible heat flux over Northwest China was greater during the period from the late 1970s to the 1990s than during the period from the 1960s to the mid-1970s. The summer sensible heat flux was smaller in the late 1980s through the 1990s than it was in the 1970s through the early 1980s. Both the spring and summer land-air temperature differences over Northwest China displayed an obvious interdecadal increase in the late 1970s. Both the spring and summer surface wind speeds experienced an obvious interdecadal weakening in the late 1970s. The change in the surface wind speed played a more important role in the interdecadal variations in sensible heat flux during the summer, whereas the change in the land-air temperature difference was more important for the interdecadal variations in sensible heat flux in the spring. This difference was related to seasonal changes in the mean land-air temperature difference and the surface wind speed. Further analysis indicated that the increase in the spring land surface temperature in Northwest China was related to an increase in surface net radiation.展开更多
Improvement of transportation infrastructure quality will lead to more sufficient market competition and promote the flow of resources with greater efficiency. This paper considers China's railway speed-up in 2007...Improvement of transportation infrastructure quality will lead to more sufficient market competition and promote the flow of resources with greater efficiency. This paper considers China's railway speed-up in 2007 as a quasi-natural experiment on China's transportation infrastructure quality improvement. With the initial operation of electric multiple units(EMUs) as the basis of grouping, this research examines the effect of railway speed-up on corporate total factor productivity(TFP) growth by the differencein-differences(DID) method. Overally, the results reveal positive effects both on firms' technological change and efficiency improvement, which lead to the increase of TFP. Based on subsamples divided by different regions and types of enterprises, further analysis indicates that the productivity of exporter, non-state and coastal firms has been mostly affected by the railway speed-up. These conclusions are verified by a placebo test. Besides, firms within "one-hour economic circle" have been shown more sensitive to the effect of railway speed increase.展开更多
Finite difference method (FDM) was applied to simulate thermal stress recently, which normally needs a long computational time and big computer storage. This study presents two techniques for improving computational s...Finite difference method (FDM) was applied to simulate thermal stress recently, which normally needs a long computational time and big computer storage. This study presents two techniques for improving computational speed in numerical simulation of casting thermal stress based on FDM, one for handling of nonconstant material properties and the other for dealing with the various coefficients in discretization equations. The use of the two techniques has been discussed and an application in wave-guide casting is given. The results show that the computational speed is almost tripled and the computer storage needed is reduced nearly half compared with those of the original method without the new technologies. The stress results for the casting domain obtained by both methods that set the temperature steps to 0.1 ℃ and 10 ℃, respectively are nearly the same and in good agreement with actual casting situation. It can be concluded that both handling the material properties as an assumption of stepwise profile and eliminating the repeated calculation are reliable and effective to improve computational speed, and applicable in heat transfer and fluid flow simulation.展开更多
Effect of flat heel-toe difference (HTD) of a card on some parameters of yarn quality was studied by testing the yarn which was produced under different HTDs, doffer speed, and cylinder speed with yarn evenness tester...Effect of flat heel-toe difference (HTD) of a card on some parameters of yarn quality was studied by testing the yarn which was produced under different HTDs, doffer speed, and cylinder speed with yarn evenness tester of PT7000. The effect of HTD on yarn parameters was analyzed by using SPSS. The results show that HTD has significant influence on parameters of thickness fault and nep. As a whole, the HTDs of 0.42 and 0.56 mm are beneficial to improving yarn quality in comparison with the other HTDs.展开更多
Studies conducted on crashes at rural intersections of state highways and local roads/streets with two-way stop control have proved that the problem was likely poor judgment by the stopped driver on the minor approach...Studies conducted on crashes at rural intersections of state highways and local roads/streets with two-way stop control have proved that the problem was likely poor judgment by the stopped driver on the minor approach of the speed of an oncoming vehicle and/or safe gap in traffic on the major highway. Several mitigating strategies have been suggested and studied in various studies to improve safety at the two-way stop control rural intersections and at other rural highway segments. There are also several low-cost techniques used, mostly in foreign countries, to slow drivers on major highways as they enter small towns and villages, e.g., narrowing pavement lines, establishing visual gateways, etc. Lowered speeds would decrease crash severity. In this study, four strategies including solar speed display units, mobile speed trailers, optical speed bars, and colored pavement were tested and assessed in some locations in Kansas. The results of this research indicate that both solar speed display units and mobile speed trailers are effective in speed reduction at the desired points, but optical speed bars and colored pavements do not yield reliable results. Additional studies and longer term studies, should be conducted.展开更多
Unbalanced vibration in dual-rotor rotating machinery was studied with numerical simulations and experiments. A new method is proposed to separate vibration signals of inner and outer rotors for a system with very lit...Unbalanced vibration in dual-rotor rotating machinery was studied with numerical simulations and experiments. A new method is proposed to separate vibration signals of inner and outer rotors for a system with very little difference in rotating speeds. Magnitudes and phase values of unbalance defects can be obtained directly by sampling the vibration signal synchronized with reference signal. The balancing process is completed by the reciprocity influence coefficients of inner and outer rotors method. Results showed the advantage of such method for a dual-rotor system as compared with conventional balancing.展开更多
This study investigates relationships between congestion and travel time performance metrics and crashes on road segments. The study focuses on work zone routes in Iowa, utilizing 2021 commercially-available probe veh...This study investigates relationships between congestion and travel time performance metrics and crashes on road segments. The study focuses on work zone routes in Iowa, utilizing 2021 commercially-available probe vehicle data and crash data. Travel time performance metrics were derived from the probe vehicle data, and crash counts were obtained from the crash data. Additional variables included road characteristics (traffic volume, road type, segment length) and a categorical variable for the presence of a work zone. A mixed effect linear regression model was employed to identify relationships between road segment crash counts and the selected performance metrics. This was accomplished for two sets of models that include congestion performance measures at different defining threshold values, along with travel time performance measures. The study results indicate that the congestion indicators, certain travel time performance measures, and traffic counts were statistically significant and positively correlated with crash counts. Indicator variables for rural interstate locations and non-active work zones have a stronger influence on crash count than those for municipal interstate locations and active work zones. These findings can inform decision-makers on work zone safety strategies and crash mitigation planning, especially in high traffic volume areas prone to congestion and queues.展开更多
This study examines the impact of variations in side-blowing airflow velocity on plasma generation,combustion wave propagation mechanisms,and surface damage in fused silica induced by a combined millisecond-nanosecond...This study examines the impact of variations in side-blowing airflow velocity on plasma generation,combustion wave propagation mechanisms,and surface damage in fused silica induced by a combined millisecond-nanosecond pulsed laser.The airflow rate and pulse delay are the main experimental variables.The evolution of plasma motion was recorded using ultrafast time-resolved optical shadowing.The experimental results demonstrate that the expansion velocities of the plasma and combustion wave are influenced differently by the sideblowing airflow at different airflow rates(0.2 Ma,0.4 Ma,and 0.6 Ma).As the flow rate of the sideblow air stream increases,the initial expansion velocities of the plasma and combustion wave gradually decrease,and the side-blow air stream increasingly suppresses the plasma.It is important to note that the target vapor is always formed and ionized into plasma during the combined pulse laser action.Therefore,the side-blown airflow alone cannot completely clear the plasma.Depending on the delay conditions,the pressure of the side-blowing airflow,the influence of inverse Bremsstrahlung radiation absorption and target surface absorption mechanisms can lead to a phenomenon known as the double combustion waves when using a nanosecond pulse laser.Both simulation and experimental results are consistent,indicating the potential for further exploration of fused silica targets in the laser field.展开更多
The existing research results show that a fixed single station must conduct three consecutive frequency shift measurements and obtain the target’s moving speed by constructing two frequency difference equations. This...The existing research results show that a fixed single station must conduct three consecutive frequency shift measurements and obtain the target’s moving speed by constructing two frequency difference equations. This article proposes a new method that requires only two consecutive measurements. While using the azimuth measurement to obtain the angular difference between two radial distances, it also conducts two consecutive Doppler frequency shift measurements at the same target azimuth. On the basis of this measurement, a frequency difference equation is first constructed and solved jointly with the Doppler frequency shift equation. By eliminating the velocity variable and using the measured angular difference to obtain the target’s lead angle, the target’s velocity can be solved by using the Doppler frequency shift equation again. The new method avoids the condition that the target must move equidistantly, which not only provides an achievable method for engineering applications but also lays a good foundation for further exploring the use of steady-state signals to achieve passive positioning.展开更多
It is important to study the subgrade characteristics of high-speed railways in consideration of the water–soil coupling dynamic problem,especially when high-speed trains operate in rainy regions.This study develops ...It is important to study the subgrade characteristics of high-speed railways in consideration of the water–soil coupling dynamic problem,especially when high-speed trains operate in rainy regions.This study develops a nonlinear water–soil interaction dynamic model of slab track coupling with subgrade under high-speed train loading based on vehicle–track coupling dynamics.By using this model,the basic dynamic characteristics,including water–soil interaction and without water induced by the high-speed train loading,are studied.The main factors-the permeability coefficien and the porosity-influencin the subgrade deformation are investigated.The developed model can characterize the soil dynamic behaviour more realistically,especially when considering the influenc of water-rich soil.展开更多
Traffic intersections are incredibly dangerous for drivers and pedestrians. Statistics from both Canada and the U.S. show a high number of fatalities and serious injuries related to crashes at intersections. In Canada...Traffic intersections are incredibly dangerous for drivers and pedestrians. Statistics from both Canada and the U.S. show a high number of fatalities and serious injuries related to crashes at intersections. In Canada, during 2019, the National Collision Database shows that 28% of traffic fatalities and 42% of serious injuries occurred at intersections. Likewise, the U.S. National Highway Traffic Administration (NHTSA) found that about 40% of the estimated 5,811,000 accidents in the U.S. during the year studied were intersection-related crashes. In fact, a major survey by the car insurance industry found that nearly 85% of drivers could not identify the correct action to take when approaching a yellow traffic light at an intersection. One major reason for these accidents is the “yellow light dilemma,” the ambiguous situation where a driver should stop or proceed forward when unexpectedly faced with a yellow light. This situation is even further exacerbated by the tendency of aggressive drivers to inappropriately speed up on the yellow just to get through the traffic light. A survey of Canadian drivers conducted by the Traffic Injury Research Foundation found that 9% of drivers admitted to speeding up to get through a traffic light. Another reason for these accidents is the increased danger of making a left-hand turn on yellow. According to the National Highway Traffic Safety Association (NHTSA), left turns occur in approximately 22.2% of collisions—as opposed to just 1.2% for right turns. Moreover, a study by CNN found left turns are three times as likely to kill pedestrians than right turns. The reason left turns are so much more likely to cause an accident is because they take a driver against traffic and in the path of oncoming cars. Additionally, most of these left turns occur at the driver’s discretion—as opposed to the distressingly brief left-hand arrow at busy intersections. Drive Safe Now proposes a workable solution for reducing the number of accidents occurring during a yellow light at intersections. We believe this fairly simple solution will save lives, prevent injuries, reduce damage to public and private property, and decrease insurance costs.展开更多
Identifying bottlenecks and analyzing their characteristics are important tasks to city traffic management authorities.Although the speed difference was proposed for the bottleneck identification in the existing resea...Identifying bottlenecks and analyzing their characteristics are important tasks to city traffic management authorities.Although the speed difference was proposed for the bottleneck identification in the existing research,the use of a secondary indicator has not been fully discussed.This paper strived to develop a method to identify the bottleneck on expressways by using the massive floating car data(FCD)in Beijing.First,the speed characteristics of bottlenecks on expressway were analyzed based on the speed contour map.The results indicated that there was a significant difference between speeds on the bottleneck and downstream links when a bottleneck was observed.The speed difference could indeed be used as the primary indicator to identify the bottleneck.However,it was also shown that a sufficiently large speed difference does not necessitate an activation of a bottleneck.The speed-at-capacity was then used as the secondary indicator to distinguish the real bottleneck from the non-bottleneck speed difference.Second,a practical method for identifying the bottleneck on expressways was developed based on the speed difference and the speed-at-capacity.Finally,the method was applied to identifying the bottlenecks of the 3rd Outer Ring Expressway in Beijing.The duration,affected distance,delay and cause were used to evaluate and analyze the bottlenecks.展开更多
文摘The influences of the dissimilarity in the roll speeds on the microstructure, texture and mechanical properties of 7075 aluminum plates produced via combined continuous casting and rolling(CCCR) process were investigated. Several experiments were conducted with three different upper/lower roll rotational speed ratios(ω/ω0, ω is the upper roll rotational speed and ω0 is the lower roll rotational speed), namely 1:1, 1:1.2 and 1:1.4. It was found that the greatest dissimilarity in the roll speed(ω/ω0=1:1.4) improved the yield strength and ultimate tensile strength of 7075 Al plate in the rolling direction by 41.5% and 21.9%, respectively. Moreover, at a roll speed ratio of ω/ω0=1:1.4, the average grain size was decreased by 36% whereas the mean hardness of the transverse cross-section of the finally rolled plate was increased by about 9.2%. Texture studies also revealed that the more the difference in the roll speeds was, the greater the isotropy and the hardness of the final product were. Nevertheless, conducting CCCR operation with different roll speeds resulted in about 6% reduction in the elongation of the deformed plate.
基金the financial support to this research by the National Science Foundation (NSF) through the Western Transportation Institute (WTI) of Montana State University
文摘This paper presents a current investigation into crash experience along a 15.7-mile rural corridor in southwest Montana with the aim of better understanding crash causal factors along the corridor. The study utilized ten years of crash data, geometric data, and observed freeflow speed data along the corridor. A systematic approach was used where every tenth of a mile was described in term of the crash experience, speed, alignment, and roadside features. Using bivariate and multivariate statistical anal-yses, the study investigated the crash experience along the corridor as well as some of the underlying relationships which could explain some of the crash causal factors. Results show a strong association between crash rates and horizontal curvatures even for flat curves that can be negotiated at speeds above the posted speed limit, per the highway design equations. Higher crash rates were also found to be associated with the difference between the observed free-flow speeds and the speed dictated by the curve radius or sight distance as per the design equations. Further, results strongly support the safety benefits of guardrails as evidenced by the lower crash rates and severities. The presence of fixed objects and the steepness of side slopes were also found to have an effect on crash rates and severities.
基金Michael C Schubert was funded by the Department of Defense under the Neurosensory and Rehabilitation Research Award Program (Grant award#W81XWH-15-1-0442)Lee Dibble was funded by the Telemedicine and Advanced Technology Research Center(TATRC) through the Army Medical Department Advanced Medical Technology Initiative (AAMTI)Brian J.Loyd was supported in part by the Foundation for Physical Therapy Research New Investigator Fellowship Training Initiative (NIFTI).
文摘Gait speed is a valid measure of both physical function and vestibular health.Vestibular rehabilitation is useful to improve gait speed for patients with vestibular hypofunction,yet there is little data to indicate how changes in gait speed reflect changes in patient-reported health outcomes.We determined the minimal clinically important difference in the gait speed of patients with unilateral vestibular hypofunction,mostly due to deafferentation surgery,as anchored to the Dizziness Handicap Index and the Activities Balance Confidence scale,validated using regression analysis,change difference,receiveroperator characteristic curve,and average change methods.After six weeks of vestibular rehabilitation,a change in gait speed from 0.20 to 0.34 m/s with 95%confidence was required for the patients to perceive a significant reduction in perception of dizziness and improved balance confidence.
基金The National Basic Research Program of China under contract Nos 2015CB453200,2013CB956200,2012CB957803 and2010CB950400the National Natural Science Foundation of China under contract Nos 41275086 and 41475070
文摘Long-term variations in a sea surface wind speed (WS) and a significant wave height (SWH) are associated with the global climate change, the prevention and mitigation of natural disasters, and an ocean resource exploitation, and other activities. The seasonal characteristics of the long-term trends in China's seas WS and SWH are determined based on 24 a (1988-2011) cross-calibrated, multi-platform (CCMP) wind data and 24 a hindcast wave data obtained with the WAVEWATCH-III (WW3) wave model forced by CCMP wind data. The results show the following. (1) For the past 24 a, the China's WS and SWH exhibit a significant increasing trend as a whole, of 3.38 cm/(s.a) in the WS, 1.3 cm/a in the SWH. (2) As a whole, the increasing trend of the China's seas WS and SWH is strongest in March-April-May (MAM) and December-January-February (DJF), followed by June-July-August (JJA), and smallest in September-October-November (SON). (3) The areal extent of significant increases in the WS was largest in MAM, while the area decreased in JJA and DJF; the smallest area was apparent in SON. In contrast to the WS, almost all of China's seas exhibited a significant increase in SWH in MAM and DJF; the range was slightly smaller in JJA and SON. The WS and SWH in the Bohai Sea, the Yellow Sea, East China Sea, the Tsushima Strait, the Taiwan Strait, the northern South China Sea, the Beibu Gull and the Gulf of Thailand exhibited a significant increase in all seasons. (4) The variations in China's seas SWH and WS depended on the season. The areas with a strong increase usually appeared in DJF.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA19030204)the CAS"Light of West China"Program(2015-XBQNB-17)
文摘The surface wind speed(SWS)is affected by both large-scale circulation and land use and cover change(LUCC).In China,most studies have considered the effect of large-scale circulation rather than LUCC on SWS.In this study,we evaluated the effects of LUCC on the SWS decrease during 1979-2015 over China using the observation minus reanalysis(OMR)method.There were two key findings:(1)Observed wind speed declined significantly at a rate of 0.0112 m/(s·a),whereas ERA-Interim,which can only capture the inter-annual variation of observed data,indicated a gentle downward trend.The effects of LUCC on SWS were distinct and caused a decrease of 0.0124 m/(s·a)in SWS;(2)Due to variations in the characteristics of land use types across different regions,the influence of LUCC on SWS also varied.The observed wind speed showed a rapid decline over cultivated land in Northwest China,as well as a decrease in China’s northeastern and eastern plain regions due to the urbanization.However,in the Tibetan Plateau,the impact of LUCC on wind speed was only slight and can thus be ignored.
基金supported by the National Natural Science Foundation of China (Grant No. 40730952)the National Basic Research Program of China (Grant No. 2009CB421405)the Program of Knowledge Innovation for the third period, the Chinese Academy of Sciences (Grant No. KZCX2-YW-220), and IAP07414
文摘The present study investigates the difference in interdecadal variability of the spring and summer sensible heat fluxes over Northwest China by using station observations from 1960 to 2000. It was found that the spring sensible heat flux over Northwest China was greater during the period from the late 1970s to the 1990s than during the period from the 1960s to the mid-1970s. The summer sensible heat flux was smaller in the late 1980s through the 1990s than it was in the 1970s through the early 1980s. Both the spring and summer land-air temperature differences over Northwest China displayed an obvious interdecadal increase in the late 1970s. Both the spring and summer surface wind speeds experienced an obvious interdecadal weakening in the late 1970s. The change in the surface wind speed played a more important role in the interdecadal variations in sensible heat flux during the summer, whereas the change in the land-air temperature difference was more important for the interdecadal variations in sensible heat flux in the spring. This difference was related to seasonal changes in the mean land-air temperature difference and the surface wind speed. Further analysis indicated that the increase in the spring land surface temperature in Northwest China was related to an increase in surface net radiation.
基金supported by the National Social Science Foundation of China (NSFC) programs (14CJL020, 15CJL048)the Humanity and Social Science Youth Foundation Program of Ministry of Education of China (15YJC790006)
文摘Improvement of transportation infrastructure quality will lead to more sufficient market competition and promote the flow of resources with greater efficiency. This paper considers China's railway speed-up in 2007 as a quasi-natural experiment on China's transportation infrastructure quality improvement. With the initial operation of electric multiple units(EMUs) as the basis of grouping, this research examines the effect of railway speed-up on corporate total factor productivity(TFP) growth by the differencein-differences(DID) method. Overally, the results reveal positive effects both on firms' technological change and efficiency improvement, which lead to the increase of TFP. Based on subsamples divided by different regions and types of enterprises, further analysis indicates that the productivity of exporter, non-state and coastal firms has been mostly affected by the railway speed-up. These conclusions are verified by a placebo test. Besides, firms within "one-hour economic circle" have been shown more sensitive to the effect of railway speed increase.
基金supported by National Natural Science Foundation of China (Grant Nos. 50827102 and 50931004)National Basic Research Program of China (Grant No. 2010CB631202 and No. 2006CB605202)High Technology Research and Development Program of China (Grant No. 2007AA03Z552)
文摘Finite difference method (FDM) was applied to simulate thermal stress recently, which normally needs a long computational time and big computer storage. This study presents two techniques for improving computational speed in numerical simulation of casting thermal stress based on FDM, one for handling of nonconstant material properties and the other for dealing with the various coefficients in discretization equations. The use of the two techniques has been discussed and an application in wave-guide casting is given. The results show that the computational speed is almost tripled and the computer storage needed is reduced nearly half compared with those of the original method without the new technologies. The stress results for the casting domain obtained by both methods that set the temperature steps to 0.1 ℃ and 10 ℃, respectively are nearly the same and in good agreement with actual casting situation. It can be concluded that both handling the material properties as an assumption of stepwise profile and eliminating the repeated calculation are reliable and effective to improve computational speed, and applicable in heat transfer and fluid flow simulation.
基金Education Department of Liaoning Province,China ( No. 2009A262) Liaoning BaiQianWan Talents Program,ChinaKey Subject Project of Liaoning Education Department,China ( No. 2011103)
文摘Effect of flat heel-toe difference (HTD) of a card on some parameters of yarn quality was studied by testing the yarn which was produced under different HTDs, doffer speed, and cylinder speed with yarn evenness tester of PT7000. The effect of HTD on yarn parameters was analyzed by using SPSS. The results show that HTD has significant influence on parameters of thickness fault and nep. As a whole, the HTDs of 0.42 and 0.56 mm are beneficial to improving yarn quality in comparison with the other HTDs.
文摘Studies conducted on crashes at rural intersections of state highways and local roads/streets with two-way stop control have proved that the problem was likely poor judgment by the stopped driver on the minor approach of the speed of an oncoming vehicle and/or safe gap in traffic on the major highway. Several mitigating strategies have been suggested and studied in various studies to improve safety at the two-way stop control rural intersections and at other rural highway segments. There are also several low-cost techniques used, mostly in foreign countries, to slow drivers on major highways as they enter small towns and villages, e.g., narrowing pavement lines, establishing visual gateways, etc. Lowered speeds would decrease crash severity. In this study, four strategies including solar speed display units, mobile speed trailers, optical speed bars, and colored pavement were tested and assessed in some locations in Kansas. The results of this research indicate that both solar speed display units and mobile speed trailers are effective in speed reduction at the desired points, but optical speed bars and colored pavements do not yield reliable results. Additional studies and longer term studies, should be conducted.
文摘Unbalanced vibration in dual-rotor rotating machinery was studied with numerical simulations and experiments. A new method is proposed to separate vibration signals of inner and outer rotors for a system with very little difference in rotating speeds. Magnitudes and phase values of unbalance defects can be obtained directly by sampling the vibration signal synchronized with reference signal. The balancing process is completed by the reciprocity influence coefficients of inner and outer rotors method. Results showed the advantage of such method for a dual-rotor system as compared with conventional balancing.
文摘This study investigates relationships between congestion and travel time performance metrics and crashes on road segments. The study focuses on work zone routes in Iowa, utilizing 2021 commercially-available probe vehicle data and crash data. Travel time performance metrics were derived from the probe vehicle data, and crash counts were obtained from the crash data. Additional variables included road characteristics (traffic volume, road type, segment length) and a categorical variable for the presence of a work zone. A mixed effect linear regression model was employed to identify relationships between road segment crash counts and the selected performance metrics. This was accomplished for two sets of models that include congestion performance measures at different defining threshold values, along with travel time performance measures. The study results indicate that the congestion indicators, certain travel time performance measures, and traffic counts were statistically significant and positively correlated with crash counts. Indicator variables for rural interstate locations and non-active work zones have a stronger influence on crash count than those for municipal interstate locations and active work zones. These findings can inform decision-makers on work zone safety strategies and crash mitigation planning, especially in high traffic volume areas prone to congestion and queues.
基金funded by the International Science and Technology Cooperation Project of Jilin Provincial Department of Science and Technology(No.20230402078GH)。
文摘This study examines the impact of variations in side-blowing airflow velocity on plasma generation,combustion wave propagation mechanisms,and surface damage in fused silica induced by a combined millisecond-nanosecond pulsed laser.The airflow rate and pulse delay are the main experimental variables.The evolution of plasma motion was recorded using ultrafast time-resolved optical shadowing.The experimental results demonstrate that the expansion velocities of the plasma and combustion wave are influenced differently by the sideblowing airflow at different airflow rates(0.2 Ma,0.4 Ma,and 0.6 Ma).As the flow rate of the sideblow air stream increases,the initial expansion velocities of the plasma and combustion wave gradually decrease,and the side-blow air stream increasingly suppresses the plasma.It is important to note that the target vapor is always formed and ionized into plasma during the combined pulse laser action.Therefore,the side-blown airflow alone cannot completely clear the plasma.Depending on the delay conditions,the pressure of the side-blowing airflow,the influence of inverse Bremsstrahlung radiation absorption and target surface absorption mechanisms can lead to a phenomenon known as the double combustion waves when using a nanosecond pulse laser.Both simulation and experimental results are consistent,indicating the potential for further exploration of fused silica targets in the laser field.
文摘The existing research results show that a fixed single station must conduct three consecutive frequency shift measurements and obtain the target’s moving speed by constructing two frequency difference equations. This article proposes a new method that requires only two consecutive measurements. While using the azimuth measurement to obtain the angular difference between two radial distances, it also conducts two consecutive Doppler frequency shift measurements at the same target azimuth. On the basis of this measurement, a frequency difference equation is first constructed and solved jointly with the Doppler frequency shift equation. By eliminating the velocity variable and using the measured angular difference to obtain the target’s lead angle, the target’s velocity can be solved by using the Doppler frequency shift equation again. The new method avoids the condition that the target must move equidistantly, which not only provides an achievable method for engineering applications but also lays a good foundation for further exploring the use of steady-state signals to achieve passive positioning.
基金supported by the National Natural Science Foundation of China (Grants U1134202,51305360)the National Basic Research Programof China(Grant2011CB711103)the 2015 Doctoral Innovation Funds of Southwest Jiaotong University
文摘It is important to study the subgrade characteristics of high-speed railways in consideration of the water–soil coupling dynamic problem,especially when high-speed trains operate in rainy regions.This study develops a nonlinear water–soil interaction dynamic model of slab track coupling with subgrade under high-speed train loading based on vehicle–track coupling dynamics.By using this model,the basic dynamic characteristics,including water–soil interaction and without water induced by the high-speed train loading,are studied.The main factors-the permeability coefficien and the porosity-influencin the subgrade deformation are investigated.The developed model can characterize the soil dynamic behaviour more realistically,especially when considering the influenc of water-rich soil.
文摘Traffic intersections are incredibly dangerous for drivers and pedestrians. Statistics from both Canada and the U.S. show a high number of fatalities and serious injuries related to crashes at intersections. In Canada, during 2019, the National Collision Database shows that 28% of traffic fatalities and 42% of serious injuries occurred at intersections. Likewise, the U.S. National Highway Traffic Administration (NHTSA) found that about 40% of the estimated 5,811,000 accidents in the U.S. during the year studied were intersection-related crashes. In fact, a major survey by the car insurance industry found that nearly 85% of drivers could not identify the correct action to take when approaching a yellow traffic light at an intersection. One major reason for these accidents is the “yellow light dilemma,” the ambiguous situation where a driver should stop or proceed forward when unexpectedly faced with a yellow light. This situation is even further exacerbated by the tendency of aggressive drivers to inappropriately speed up on the yellow just to get through the traffic light. A survey of Canadian drivers conducted by the Traffic Injury Research Foundation found that 9% of drivers admitted to speeding up to get through a traffic light. Another reason for these accidents is the increased danger of making a left-hand turn on yellow. According to the National Highway Traffic Safety Association (NHTSA), left turns occur in approximately 22.2% of collisions—as opposed to just 1.2% for right turns. Moreover, a study by CNN found left turns are three times as likely to kill pedestrians than right turns. The reason left turns are so much more likely to cause an accident is because they take a driver against traffic and in the path of oncoming cars. Additionally, most of these left turns occur at the driver’s discretion—as opposed to the distressingly brief left-hand arrow at busy intersections. Drive Safe Now proposes a workable solution for reducing the number of accidents occurring during a yellow light at intersections. We believe this fairly simple solution will save lives, prevent injuries, reduce damage to public and private property, and decrease insurance costs.
基金Project(2018YJS081)supported by the Fundamental Research Funds for the Central Universities,ChinaProjects(71273024,51578052)supported by the National Natural Science Foundation of China(NSFC)
文摘Identifying bottlenecks and analyzing their characteristics are important tasks to city traffic management authorities.Although the speed difference was proposed for the bottleneck identification in the existing research,the use of a secondary indicator has not been fully discussed.This paper strived to develop a method to identify the bottleneck on expressways by using the massive floating car data(FCD)in Beijing.First,the speed characteristics of bottlenecks on expressway were analyzed based on the speed contour map.The results indicated that there was a significant difference between speeds on the bottleneck and downstream links when a bottleneck was observed.The speed difference could indeed be used as the primary indicator to identify the bottleneck.However,it was also shown that a sufficiently large speed difference does not necessitate an activation of a bottleneck.The speed-at-capacity was then used as the secondary indicator to distinguish the real bottleneck from the non-bottleneck speed difference.Second,a practical method for identifying the bottleneck on expressways was developed based on the speed difference and the speed-at-capacity.Finally,the method was applied to identifying the bottlenecks of the 3rd Outer Ring Expressway in Beijing.The duration,affected distance,delay and cause were used to evaluate and analyze the bottlenecks.