期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
BLADE SECTION DESIGN OF MARINE PROPELLERS WITH MAXIMUM CAVITATION INCEPTION SPEED 被引量:6
1
作者 ZENG Zhi-bo KUIPER Gert 《Journal of Hydrodynamics》 SCIE EI CSCD 2012年第1期65-75,共11页
Kuiper and Jessup(1993)developed a design method for propellers in a wake based on the Eppler foil design method.The optimized section is transformed into the three-dimensional propeller flow using the approach of t... Kuiper and Jessup(1993)developed a design method for propellers in a wake based on the Eppler foil design method.The optimized section is transformed into the three-dimensional propeller flow using the approach of the effective blade sections.Effective blade sections are two-dimensional sections in two-dimensional flow which have the same chordwise loading distribution as the three-dimensional blade sections of a propeller.However,the design procedure is laborious in two aspects:finding an optimum blade section using the Eppler program requires much skill of the designer,and transforming the two-dimensional blade section into a propeller blade section in three-dimensional flow is complex.In this work,these two problems were coped with.A blade section design procedure was presented using an optimization technique and an alternative procedure for the effective blade section is developed using a lifting surface design method.To validate the method a benchmark model of a naval ship was used.This benchmark model was extended by new appendices and a reference propeller,and designed using conventional design methods.This reference propeller was optimized using the new design procedure and model tests were carried out.Special attention was given to the data of the model and the reference propeller,to make the configuration suitable for the Reynolds-Averaged Navier-Stokes(RANS)calculations. 展开更多
关键词 blade section Eppler foil design method genetic algorithm cavitation inception high speed cavitation observation
原文传递
Backstepping Control of Speed Sensorless Permanent Magnet Synchronous Motor Based on Slide Model Observer 被引量:10
2
作者 Cai-Xue Chen Yun-Xiang Xie Yong-Hong Lan 《International Journal of Automation and computing》 EI CSCD 2015年第2期149-155,共7页
This paper presents a backstepping control method for speed sensorless permanent magnet synchronous motor based on slide model observer. First, a comprehensive dynamical model of the permanent magnet synchronous motor... This paper presents a backstepping control method for speed sensorless permanent magnet synchronous motor based on slide model observer. First, a comprehensive dynamical model of the permanent magnet synchronous motor(PMSM) in d-q frame and its space-state equation are established. The slide model control method is used to estimate the electromotive force of PMSM under static frame, while the position of rotor and its actual speed are estimated by using phase loop lock(PLL) method. Next,using Lyapunov stability theorem, the asymptotical stability condition of the slide model observer is presented. Furthermore, based on the backstepping control theory, the PMSM rotor speed and current tracking backstepping controllers are designed, because such controllers display excellent speed tracking and anti-disturbance performance. Finally, Matlab simulation results show that the slide model observer can not only estimate the rotor position and speed of the PMSM accurately, but also ensure the asymptotical stability of the system and effective adjustment of rotor speed and current. 展开更多
关键词 Permanent magnet synchronous motor(PMSM) slide model observer backstepping control speed sensorless alternating current(AC).
原文传递
An experimental investigation of transient cavitation control on a hydrofoil using hemispherical vortex generators 被引量:3
3
作者 Ebrahim Kadivar Takaho Ochiai +1 位作者 Yuka Iga Ould el Moctar 《Journal of Hydrodynamics》 SCIE EI CSCD 2021年第6期1139-1147,共9页
Unsteady cavitation causes noise,damage,and performance decline in the marine engineering and fluid machinery systems.Therefore,finding a method to control the cavitation and its destructive effects is important for t... Unsteady cavitation causes noise,damage,and performance decline in the marine engineering and fluid machinery systems.Therefore,finding a method to control the cavitation and its destructive effects is important for the industrial applications.In this work,we proposed a passive method to control the unsteady behavior of transient cavitation at the medium Reynolds number.For this aim,we performed an experimental study using a high-speed camera to analyze the effects of hemispherical vortex generators(VGs)on the cavitation dynamics around a hydrofoil surface.In addition,the pressure pulsations induced by the collapse of the cavity structures in the wake region of the hydrofoil were captured with a pressure transducer mounted on the wall downstream of the hydrofoil.The results showed that the instability behaviors of the cavity structures on the hydrofoil were mitigated using the proposed cavitation passive control method.In addition,the pressure pulsations in the wake region of the hydrofoil were reduced significantly.It can be concluded that the suppression of cavitation instabilities can improve the operating life and reliability of the marine and hydraulic systems. 展开更多
关键词 Hydrodynamic cavitation cavitation passive control hemispherical vortex generators pressure pulsations high speed observation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部