Ultra-high speed machining technology enables high efficiency, high precision and high integrity of machined surface. Previous researches of hybrid bearing rarely consider influences of solid particles in lubricant an...Ultra-high speed machining technology enables high efficiency, high precision and high integrity of machined surface. Previous researches of hybrid bearing rarely consider influences of solid particles in lubricant and ultra-high speed of hybrid bearing, which cannot be ignored under the high speed and micro-space conditions of ultra-high speed water-lubricated hybrid bearing. Considering the impact of solid particles in lubricant, turbulence and temperature viscosity effects of lubricant, the influences of particles on pressure distribution, loading capacity and the temperature rise of the lubricant film with four-step-cavity ultra-high speed water-lubricated hybrid bearing are presented in the paper. The results show that loading capacity of the hybrid bearing can be affected by changing the viscosity of the lubricant, and large particles can improve the bearing loading capacity higher. The impact of water film temperature rise produced by solid particles in lubricant is related with particle diameter and minimum film thickness. Compared with the soft particles, hard particles cause the more increasing of water film temperature rise and loading capacity. When the speed of hybrid bearing increases, the impact of solid particles on hybrid bearing becomes increasingly apparent, especially for ultra-high speed water-lubricated hybrid bearing. This research presents influences of solid particles on the loading capacity and the temperature rise of water film in ultra-high speed hybrid bearings, the research conclusions provide a new method to evaluate the influence of solid particles in lubricant of ultra-high speed water-lubricated hybrid bearing, which is important to performance calculation of ultra-high speed hybrid bearings, design of filtration system, and safe operation of ultra-high speed hybrid bearings.展开更多
AIM: To examine the effects of treatment with risedronate for 1 year on speed of sound(SOS) of the calcaneus and bone turnover markers in postmenopausal women with osteoporosis. METHODS: Thirty-eight postmenopausal wo...AIM: To examine the effects of treatment with risedronate for 1 year on speed of sound(SOS) of the calcaneus and bone turnover markers in postmenopausal women with osteoporosis. METHODS: Thirty-eight postmenopausal women with osteoporosis who had been treated with risedronate for > 1 year were enrolled in the study. The SOS and bone turnover markers were monitored during treatment with risedronate for 1 year. RESULTS: The urinary levels of cross-linked N-terminal telopeptides of type Ⅰ collagen and serum levels of alkaline phosphatase were significantly decreased at 3 mo(-34.7%) and 12 mo(-21.2%), respectively, compared with the baseline values. The SOS increased modestly, but significantly by 0.65% at 12 mo compared with the baseline value. Treatment with risedronate elicited an increase in the SOS of the calcaneus exceeding the coefficient of variation in vivo(0.27%). CONCLUSION: The present study confirmed that risedronate suppressed bone turnover and elicited a clinically significant increase in the SOS of the calcaneus in postmenopausal women with osteoporosis.展开更多
To solve the problem of temperature rise caused by the high power density of high-speed permanent magnet synchronous traction motors,the temperature rise of various components in the motor is analyzed by coupling the ...To solve the problem of temperature rise caused by the high power density of high-speed permanent magnet synchronous traction motors,the temperature rise of various components in the motor is analyzed by coupling the equivalent thermal circuit method and computational fluid dynamics.Also,a cooling strategy is proposed to solve the problem of temperature rise,which is expected to prolong the service life of these devices.First,the theoretical bases of the approaches used to study heat transfer and fluid mechanics are discussed,then the fluid flow for the considered motor is analyzed,and the equivalent thermal circuit method is introduced for the calculation of the temperature rise.Finally,the stator,rotor loss,motor temperature rise,and the proposed cooling method are also explored through experiments.According to the results,the stator temperature at 50,000 r/min and 60,000 r/min at no-load operation is 68℃ and 76℃,respectively.By monitoring the temperature of the air outlets inside and outside the motor at different speeds,it is also found that the motor reaches a stable temperature rise after 65 min of operation.Coupling of the thermal circuit method and computational fluid dynamics is a strategy that can provide the average temperature rise of each component and can also comprehensively calculate the temperature of each local point.We conclude that a hybrid cooling strategy based on axial air cooling of the inner air duct of the motor and water cooling of the stator can meet the design requirements for the ventilation and cooling of this type of motors.展开更多
Additive friction stir deposition(AFSD)is a novel structural repair and manufacturing technology has become a research hotspot at home and abroad in the past five years.In this work,the microstructural evolution and m...Additive friction stir deposition(AFSD)is a novel structural repair and manufacturing technology has become a research hotspot at home and abroad in the past five years.In this work,the microstructural evolution and mechanical performance of the Al-Mg-Si alloy plate repaired by the preheating-assisted AFSD process were investigated.To evaluate the tool rotation speed and substrate preheating for repair quality,the AFSD technique was used to additively repair 5 mm depth blind holes on 6061 aluminum alloy substrates.The results showed that preheat-assisted AFSD repair significantly improved joint bonding and joint strength compared to the control non-preheat substrate condition.Moreover,increasing rotation speed was also beneficial to improve the metallurgical bonding of the interface and avoid volume defects.Under preheating conditions,the UTS and elongation were positively correlated with rotation speed.Under the process parameters of preheated substrate and tool rotation speed of 1000 r/min,defect-free specimens could be obtained accompanied by tensile fracture occurring in the substrate rather than the repaired zone.The UTS and elongation reached the maximum values of 164.2MPa and 13.4%,which are equivalent to 99.4%and 140%of the heated substrate,respectively.展开更多
For permanent magnet linear synchronous motor(PMLSM) working at trapezoidal speed for long time, high thrust brings high temperature rise, while low thrust limits dynamic performance. Thus, it is crucial to find a bal...For permanent magnet linear synchronous motor(PMLSM) working at trapezoidal speed for long time, high thrust brings high temperature rise, while low thrust limits dynamic performance. Thus, it is crucial to find a balance between temperature rise and dynamic performance. In this paper, a velocity planning model of the PMLSM at trapezoidal speed based on electromagnetic-fluid-thermal(EFT) field is proposed to obtain the optimal dynamic performance under temperature limitation. In this model, the winding loss is calculated considering the acceleration and deceleration time. The loss model is indirectly verified by the temperature rise experiment of an annular winding sample. The actual working conditions of the PMLSM are simulated by dynamic grid technology to research the influence of acceleration and deceleration on fluid flow in the air gap, and the variation rule of the thermal boundary condition is analyzed. Combined with the above conditions, the temperature rise of a coreless PMLSM(CPMLSM) under the rated working condition is calculated and analyzed in detail. Through this method and several iterations, the optimal dynamic performance under the temperature limitation is achieved. The result is verified by a comparison between simulation and prototype tests, which can help improve the dynamic performance.展开更多
Dear Editor,This letter addresses the resilient distributed cooperative control problem of a virtually coupled train convoy under stochastic disturbances and cyber attacks.The main purpose is to achieve distributed co...Dear Editor,This letter addresses the resilient distributed cooperative control problem of a virtually coupled train convoy under stochastic disturbances and cyber attacks.The main purpose is to achieve distributed coordination of virtually coupled high-speed trains with the prescribed inter-train distance and same cruise velocity.展开更多
Speed limit measures are ubiquitous due to the complexity of the road environment,which can be supplied with the help of vehicle to everything(V2X)communication technology.Therefore,the influence of speed limit on tra...Speed limit measures are ubiquitous due to the complexity of the road environment,which can be supplied with the help of vehicle to everything(V2X)communication technology.Therefore,the influence of speed limit on traffic system will be investigated to construct a two-lane lattice model accounting for the speed limit effect during the lane change process under V2X environment.Accordingly,the stability condition and the mKdV equation are closely associated with the speed limit effect through theory analysis.Moreover,the evolution of density and hysteresis loop is simulated to demonstrate the positive role of the speed limit effect on traffic stability in the cases of strong reaction intensity and high limited speed.展开更多
As a common transportation facility, speed humps can control the speed of vehicles on special road sections to reduce traffic risks. At the same time, they also cause instantaneous traffic emissions. Based on the clas...As a common transportation facility, speed humps can control the speed of vehicles on special road sections to reduce traffic risks. At the same time, they also cause instantaneous traffic emissions. Based on the classic instantaneous traffic emission model and the limited deceleration capacity microscopic traffic flow model with slow-to-start rules, this paper has investigated the impact of speed humps on traffic flow and the instantaneous emissions of vehicle pollutants in a single lane situation. The numerical simulation results have shown that speed humps have significant effects on traffic flow and traffic emissions. In a free-flow region, the increase of speed humps leads to the continuous rise of CO_(2), NO_(X) and PM emissions. Within some density ranges, one finds that these pollutant emissions can evolve into some higher values under some random seeds. Under other random seeds, they can evolve into some lower values. In a wide moving jam region, the emission values of these pollutants sometimes appear as continuous or intermittent phenomenon. Compared to the refined Na Sch model, the present model has lower instantaneous emissions such as CO_(2), NO_(X) and PM and higher volatile organic components(VOC) emissions. Compared to the limited deceleration capacity model without slow-to-start rules, the present model also has lower instantaneous emissions such as CO_(2), NO_(X) and PM and higher VOC emissions in a wide moving jam region. These results can also be confirmed or explained by the statistical values of vehicle velocity and acceleration.展开更多
As the global temperature continues to increase, the sea level continues to rise at a rapid rate that has never been seen before. This becomes an issue for many facets of life but one of the most impacted is the trans...As the global temperature continues to increase, the sea level continues to rise at a rapid rate that has never been seen before. This becomes an issue for many facets of life but one of the most impacted is the transportation infrastructure. Many people living in low elevation coastal areas can become trapped by flooding with no way in or out. With Delaware being a coastal state, this would affect a large portion of the population and will have detrimental effects over time if nothing is done to combat sea level rise. The issue with sea level rise in transportation is that once the roads become flooded, they become virtually unusable and detour routes would be needed. If all the roads in a coastal area were to be affected by sea level rise, the options for detours would become limited. This article looks at direct solutions to combat sea level rise and indirect solutions that would specifically help transportation infrastructure and evacuation routes in Delaware. There is not one solution that can fix every problem, so many solutions are laid out to see what is applicable to each affected area. Some solutions include defense structures that would be put close to the coast, raising the elevation of vulnerable roads throughout the state and including pumping stations to drain the water on the surface of the road. With an understanding of all these solutions around the world, the ultimate conclusion came in the form of a six-step plan that Delaware should take in order to best design against sea level rise in these coastal areas.展开更多
Recent research in cross-domain intelligence fault diagnosis of machinery still has some problems,such as relatively ideal speed conditions and sample conditions.In engineering practice,the rotational speed of the mac...Recent research in cross-domain intelligence fault diagnosis of machinery still has some problems,such as relatively ideal speed conditions and sample conditions.In engineering practice,the rotational speed of the machine is often transient and time-varying,which makes the sample annotation increasingly expensive.Meanwhile,the number of samples collected from different health states is often unbalanced.To deal with the above challenges,a complementary-label(CL)adversarial domain adaptation fault diagnosis network(CLADAN)is proposed under time-varying rotational speed and weakly-supervised conditions.In the weakly supervised learning condition,machine prior information is used for sample annotation via cost-friendly complementary label learning.A diagnosticmodel learning strategywith discretized category probabilities is designed to avoidmulti-peak distribution of prediction results.In adversarial training process,we developed virtual adversarial regularization(VAR)strategy,which further enhances the robustness of the model by adding adversarial perturbations in the target domain.Comparative experiments on two case studies validated the superior performance of the proposed method.展开更多
Numerical weather prediction(NWP)models have always presented large forecasting errors of surface wind speeds over regions with complex terrain.In this study,surface wind forecasts from an operational NWP model,the SM...Numerical weather prediction(NWP)models have always presented large forecasting errors of surface wind speeds over regions with complex terrain.In this study,surface wind forecasts from an operational NWP model,the SMS-WARR(Shanghai Meteorological Service-WRF ADAS Rapid Refresh System),are analyzed to quantitatively reveal the relationships between the forecasted surface wind speed errors and terrain features,with the intent of providing clues to better apply the NWP model to complex terrain regions.The terrain features are described by three parameters:the standard deviation of the model grid-scale orography,terrain height error of the model,and slope angle.The results show that the forecast bias has a unimodal distribution with a change in the standard deviation of orography.The minimum ME(the mean value of bias)is 1.2 m s^(-1) when the standard deviation is between 60 and 70 m.A positive correlation exists between bias and terrain height error,with the ME increasing by 10%−30%for every 200 m increase in terrain height error.The ME decreases by 65.6%when slope angle increases from(0.5°−1.5°)to larger than 3.5°for uphill winds but increases by 35.4%when the absolute value of slope angle increases from(0.5°−1.5°)to(2.5°−3.5°)for downhill winds.Several sensitivity experiments are carried out with a model output statistical(MOS)calibration model for surface wind speeds and ME(RMSE)has been reduced by 90%(30%)by introducing terrain parameters,demonstrating the value of this study.展开更多
High speed photography technique is potentially the most effective way to measure the motion parameter of warhead fragment benefiting from its advantages of high accuracy,high resolution and high efficiency.However,it...High speed photography technique is potentially the most effective way to measure the motion parameter of warhead fragment benefiting from its advantages of high accuracy,high resolution and high efficiency.However,it faces challenge in dense objects tracking and 3D trajectories reconstruction due to the characteristics of small size and dense distribution of fragment swarm.To address these challenges,this work presents a warhead fragments motion trajectories tracking and spatio-temporal distribution reconstruction method based on high-speed stereo photography.Firstly,background difference algorithm is utilized to extract the center and area of each fragment in the image sequence.Subsequently,a multi-object tracking(MOT)algorithm using Kalman filtering and Hungarian optimal assignment is developed to realize real-time and robust trajectories tracking of fragment swarm.To reconstruct 3D motion trajectories,a global stereo trajectories matching strategy is presented,which takes advantages of epipolar constraint and continuity constraint to correctly retrieve stereo correspondence followed by 3D trajectories refinement using polynomial fitting.Finally,the simulation and experimental results demonstrate that the proposed method can accurately track the motion trajectories and reconstruct the spatio-temporal distribution of 1.0×10^(3)fragments in a field of view(FOV)of 3.2 m×2.5 m,and the accuracy of the velocity estimation can achieve 98.6%.展开更多
Inconel 718(IN718)alloy is widely applied to fabricate high temperature resistant or corrosion resistant parts due to its excellent mechanical performance.However,the machining of IN718 alloy is difficult as it may ca...Inconel 718(IN718)alloy is widely applied to fabricate high temperature resistant or corrosion resistant parts due to its excellent mechanical performance.However,the machining of IN718 alloy is difficult as it may cause serious tool wear and poor surface quality(SQ)of the workpiece.In this work,grinding experiments on IN718 alloy at different speeds were conducted by using a CBN grinding wheel.The relationship between grinding speed,SQ and subsurface damage(SSD)was well studied.With increasing grinding speed,surface roughness decreased,and SQ was greatly improved.Meanwhile,the microhardness of the grinding surface declined as the grinding speed increased.The SSD depth was almost unchanged when the grinding speed was lower than 15 m/s,then it decreased with higher grinding speeds.It was attributed to the mechanical-thermal synergistic effect in the grinding process.The results indicated that increasing grinding speed can effectively improve the SQ and reduce the SSD of IN718 alloy.The conclusion in the work may also provide insight into processing other hard-to-machining materials.展开更多
The maintenance of sand-fixing vegetation is important for the stability of artificial sand-fixing systems in which seed dispersal plays a key role.Based on field wind tunnel experiments using 11 common plant species ...The maintenance of sand-fixing vegetation is important for the stability of artificial sand-fixing systems in which seed dispersal plays a key role.Based on field wind tunnel experiments using 11 common plant species on the southeastern edge of the Tengger Desert,China,we studied the secondary seed dispersal in the fixed and semi-fixed sand dunes as well as in the mobile dunes in order to understand the limitations of vegetation regeneration and the maintenance of its stability.Our results indicated that there were significant variations among the selected 11 plant species in the threshold of wind speed(TWS).The TWS of Caragana korshinskii was the highest among the 11 plant species,whereas that of Echinops gmelinii was the lowest.Seed morphological traits and underlying surface could generally explain the TWS.During the secondary seed dispersal processes,the proportions of seeds that did not disperse(no dispersal)and only dispersed over short distance(short-distance dispersal within the wind tunnel test section)were significantly higher than those of seeds that were buried(including lost seeds)and dispersed over long distance(long-distance dispersal beyond the wind tunnel test section).Compared with other habitats,the mobile dunes were the most difficult places for secondary seed dispersal.Buried seeds were the easiest to be found in the semi-fixed sand dunes,whereas fixed sand dunes were the best sites for seeds that dispersed over long distance.The results of linear mixed models showed that after controlling the dispersal distance,smaller and rounder seeds dispersed farther.Shape index and wind speed were the two significant influencing factors on the burial of seeds.The explanatory power of wind speed,underlying surface,and seed morphological traits on the seeds that did not disperse and dispersed over short distance was far greater than that on the seeds that were buried and dispersed over long distance,implying that the processes and mechanisms of burial and long-distance dispersal are more complex.In summary,most seeds in the study area either did not move,were buried,or dispersed over short distance,promoting local vegetation regeneration.展开更多
The development of vehicle integrated photovoltaics-powered electric vehicles (VIPV-EV) significantly reduces CO<sub>2</sub> emissions from the transport sector to realize a decarbonized society. Although ...The development of vehicle integrated photovoltaics-powered electric vehicles (VIPV-EV) significantly reduces CO<sub>2</sub> emissions from the transport sector to realize a decarbonized society. Although long-distance driving of VIPV-EV without electricity charging is expected in sunny regions, driving distance of VIPV-EV is affected by climate conditions such as solar irradiation and temperature rise of PV modules. In this paper, detailed analytical results for effects of climate conditions such as solar irradiation and temperature rise of PV modules upon driving distance of the VIPV-EV were presented by using test data for Toyota Prius and Nissan Van demonstration cars installed with high-efficiency InGaP/GaAs/InGaAs 3-junction solar cell modules with a module efficiency of more than 30%. The temperature rise of some PV modules studied in this study was shown to be expressed by some coefficients related to solar irradiation, wind speed and radiative cooling. The potential of VIPV-EV to be deployed in 10 major cities was also analyzed. Although sunshine cities such as Phoenix show the high reduction ratio of driving range with 17% due to temperature rise of VIPV modules, populous cities such as Tokyo show low reduction ratio of 9%. It was also shown in this paper that the difference between the driving distance of VIPV-EV driving in the morning and the afternoon is due to PV modules’ radiative cooling. In addition, the importance of heat dissipation of PV modules and the development of high-efficiency PV modules with better temperature coefficients was suggested in order to expand driving range of VIPV-EV. The effects of air-conditioner usage and partial shading in addition to the effects of temperature rise of VIPV modules were suggested as the other power losses of VIPV-EV.展开更多
Mangroves play a pivotal role in tropical and subtropical coastal ecosystem,yet they are highly vulnerable to the effects of climate change,particularly the accelerated global sea level rise(SLR)and stronger tropical ...Mangroves play a pivotal role in tropical and subtropical coastal ecosystem,yet they are highly vulnerable to the effects of climate change,particularly the accelerated global sea level rise(SLR)and stronger tropical cyclones(TCs).However,there is a lack of research addressing future simultaneous combined impacts of the slow-onset of SLR and rapid-onset of TCs on China's mangroves.In order to develop a comprehensive risk assessment method considering the superimposed effects of these two factors and analyze risk for mangroves in Dongzhaigang,Hainan Island,China,we used observational and climate model data to assess the risks to mangroves under low,intermediate,and very high greenhouse gas(GHG)emission scenarios(such as SSP1-2.6,SSP2-4.5,and SSP5-8.5)in 2030,2050,and 2100,and compiled a risk assessment scheme for mangroves in Dongzhaigang,China.The results showed that the combined risks from SLR and TCs will continue to rise;however,SLRs will increase in intensity,and TCs will decrease.The comprehensive risk of the Dongzhaigang mangroves posed by climate change will remain low under SSP1-2.6 and SSP2-4.5 scenarios by 2030,but it will increase substantially by 2100.While under SSP5-8.5 scenario,the risks to mangroves in Dongzhaigang are projected to increase considerably by 2050,and approximately 68.8%of mangroves will be at very high risk by 2100.The risk to the Dongzhaigang mangroves is not only influenced by the hazards but also closely linked to their exposure and vulnerability.We therefore propose climate resilience developmental responses for mangroves to address the effects of climate change.This study for the combined impact of TCs and SLR on mangroves in Dongzhaigang,China can enrich the method system of mangrove risk assessment and provide references for scientific management.展开更多
基金Supported by National Natural Science Foundation of China(Grant No.51275395)Major National Basic Research Program of China(973 Program,Grant Nos.2009CB724304-2,2009CB724404)
文摘Ultra-high speed machining technology enables high efficiency, high precision and high integrity of machined surface. Previous researches of hybrid bearing rarely consider influences of solid particles in lubricant and ultra-high speed of hybrid bearing, which cannot be ignored under the high speed and micro-space conditions of ultra-high speed water-lubricated hybrid bearing. Considering the impact of solid particles in lubricant, turbulence and temperature viscosity effects of lubricant, the influences of particles on pressure distribution, loading capacity and the temperature rise of the lubricant film with four-step-cavity ultra-high speed water-lubricated hybrid bearing are presented in the paper. The results show that loading capacity of the hybrid bearing can be affected by changing the viscosity of the lubricant, and large particles can improve the bearing loading capacity higher. The impact of water film temperature rise produced by solid particles in lubricant is related with particle diameter and minimum film thickness. Compared with the soft particles, hard particles cause the more increasing of water film temperature rise and loading capacity. When the speed of hybrid bearing increases, the impact of solid particles on hybrid bearing becomes increasingly apparent, especially for ultra-high speed water-lubricated hybrid bearing. This research presents influences of solid particles on the loading capacity and the temperature rise of water film in ultra-high speed hybrid bearings, the research conclusions provide a new method to evaluate the influence of solid particles in lubricant of ultra-high speed water-lubricated hybrid bearing, which is important to performance calculation of ultra-high speed hybrid bearings, design of filtration system, and safe operation of ultra-high speed hybrid bearings.
文摘AIM: To examine the effects of treatment with risedronate for 1 year on speed of sound(SOS) of the calcaneus and bone turnover markers in postmenopausal women with osteoporosis. METHODS: Thirty-eight postmenopausal women with osteoporosis who had been treated with risedronate for > 1 year were enrolled in the study. The SOS and bone turnover markers were monitored during treatment with risedronate for 1 year. RESULTS: The urinary levels of cross-linked N-terminal telopeptides of type Ⅰ collagen and serum levels of alkaline phosphatase were significantly decreased at 3 mo(-34.7%) and 12 mo(-21.2%), respectively, compared with the baseline values. The SOS increased modestly, but significantly by 0.65% at 12 mo compared with the baseline value. Treatment with risedronate elicited an increase in the SOS of the calcaneus exceeding the coefficient of variation in vivo(0.27%). CONCLUSION: The present study confirmed that risedronate suppressed bone turnover and elicited a clinically significant increase in the SOS of the calcaneus in postmenopausal women with osteoporosis.
文摘To solve the problem of temperature rise caused by the high power density of high-speed permanent magnet synchronous traction motors,the temperature rise of various components in the motor is analyzed by coupling the equivalent thermal circuit method and computational fluid dynamics.Also,a cooling strategy is proposed to solve the problem of temperature rise,which is expected to prolong the service life of these devices.First,the theoretical bases of the approaches used to study heat transfer and fluid mechanics are discussed,then the fluid flow for the considered motor is analyzed,and the equivalent thermal circuit method is introduced for the calculation of the temperature rise.Finally,the stator,rotor loss,motor temperature rise,and the proposed cooling method are also explored through experiments.According to the results,the stator temperature at 50,000 r/min and 60,000 r/min at no-load operation is 68℃ and 76℃,respectively.By monitoring the temperature of the air outlets inside and outside the motor at different speeds,it is also found that the motor reaches a stable temperature rise after 65 min of operation.Coupling of the thermal circuit method and computational fluid dynamics is a strategy that can provide the average temperature rise of each component and can also comprehensively calculate the temperature of each local point.We conclude that a hybrid cooling strategy based on axial air cooling of the inner air duct of the motor and water cooling of the stator can meet the design requirements for the ventilation and cooling of this type of motors.
基金financially supported by Science and Technology Major Project of Changsha,China(No.kh2401034)the Fundamental Research Funds for the Central Universities of Central South University(No.CX20230182)the National Key Research and Development Project of China(No.2019YFA0709002)。
文摘Additive friction stir deposition(AFSD)is a novel structural repair and manufacturing technology has become a research hotspot at home and abroad in the past five years.In this work,the microstructural evolution and mechanical performance of the Al-Mg-Si alloy plate repaired by the preheating-assisted AFSD process were investigated.To evaluate the tool rotation speed and substrate preheating for repair quality,the AFSD technique was used to additively repair 5 mm depth blind holes on 6061 aluminum alloy substrates.The results showed that preheat-assisted AFSD repair significantly improved joint bonding and joint strength compared to the control non-preheat substrate condition.Moreover,increasing rotation speed was also beneficial to improve the metallurgical bonding of the interface and avoid volume defects.Under preheating conditions,the UTS and elongation were positively correlated with rotation speed.Under the process parameters of preheated substrate and tool rotation speed of 1000 r/min,defect-free specimens could be obtained accompanied by tensile fracture occurring in the substrate rather than the repaired zone.The UTS and elongation reached the maximum values of 164.2MPa and 13.4%,which are equivalent to 99.4%and 140%of the heated substrate,respectively.
基金supported in part by the National Natural Science Foundation of China under Grant 52022040in part by the Postgraduate Research&Practice Innovation Program of NUAA。
文摘For permanent magnet linear synchronous motor(PMLSM) working at trapezoidal speed for long time, high thrust brings high temperature rise, while low thrust limits dynamic performance. Thus, it is crucial to find a balance between temperature rise and dynamic performance. In this paper, a velocity planning model of the PMLSM at trapezoidal speed based on electromagnetic-fluid-thermal(EFT) field is proposed to obtain the optimal dynamic performance under temperature limitation. In this model, the winding loss is calculated considering the acceleration and deceleration time. The loss model is indirectly verified by the temperature rise experiment of an annular winding sample. The actual working conditions of the PMLSM are simulated by dynamic grid technology to research the influence of acceleration and deceleration on fluid flow in the air gap, and the variation rule of the thermal boundary condition is analyzed. Combined with the above conditions, the temperature rise of a coreless PMLSM(CPMLSM) under the rated working condition is calculated and analyzed in detail. Through this method and several iterations, the optimal dynamic performance under the temperature limitation is achieved. The result is verified by a comparison between simulation and prototype tests, which can help improve the dynamic performance.
基金the National Natural Science Foundation of China(62303240)the Natural Science Foundation of Jiangsu Province of China(BK20230356)+1 种基金the Natural Science Research Start-Up Foundation of Recruiting Talents of Nanjing University of Posts and Telecommunications(NY222033)the Natural Science Foundation for Colleges and Universities in Jiangsu Province(22KJB120001)。
文摘Dear Editor,This letter addresses the resilient distributed cooperative control problem of a virtually coupled train convoy under stochastic disturbances and cyber attacks.The main purpose is to achieve distributed coordination of virtually coupled high-speed trains with the prescribed inter-train distance and same cruise velocity.
基金Project supported by the Guangxi Natural Science Foundation,China(Grant No.2022GXNSFDA035080)the Central Government Guidance Funds for Local Scientific and Technological Development,China(Grant No.Guike ZY22096024)the National Natural Science Foundation,China(Grant No.61963008).
文摘Speed limit measures are ubiquitous due to the complexity of the road environment,which can be supplied with the help of vehicle to everything(V2X)communication technology.Therefore,the influence of speed limit on traffic system will be investigated to construct a two-lane lattice model accounting for the speed limit effect during the lane change process under V2X environment.Accordingly,the stability condition and the mKdV equation are closely associated with the speed limit effect through theory analysis.Moreover,the evolution of density and hysteresis loop is simulated to demonstrate the positive role of the speed limit effect on traffic stability in the cases of strong reaction intensity and high limited speed.
基金funded by the National Natural Science Foundation of China (Grant No. 11875031)the key research projects of Natural Science of Anhui Provincial Colleges and Universities (Grant No. 2022AH050252)。
文摘As a common transportation facility, speed humps can control the speed of vehicles on special road sections to reduce traffic risks. At the same time, they also cause instantaneous traffic emissions. Based on the classic instantaneous traffic emission model and the limited deceleration capacity microscopic traffic flow model with slow-to-start rules, this paper has investigated the impact of speed humps on traffic flow and the instantaneous emissions of vehicle pollutants in a single lane situation. The numerical simulation results have shown that speed humps have significant effects on traffic flow and traffic emissions. In a free-flow region, the increase of speed humps leads to the continuous rise of CO_(2), NO_(X) and PM emissions. Within some density ranges, one finds that these pollutant emissions can evolve into some higher values under some random seeds. Under other random seeds, they can evolve into some lower values. In a wide moving jam region, the emission values of these pollutants sometimes appear as continuous or intermittent phenomenon. Compared to the refined Na Sch model, the present model has lower instantaneous emissions such as CO_(2), NO_(X) and PM and higher volatile organic components(VOC) emissions. Compared to the limited deceleration capacity model without slow-to-start rules, the present model also has lower instantaneous emissions such as CO_(2), NO_(X) and PM and higher VOC emissions in a wide moving jam region. These results can also be confirmed or explained by the statistical values of vehicle velocity and acceleration.
文摘As the global temperature continues to increase, the sea level continues to rise at a rapid rate that has never been seen before. This becomes an issue for many facets of life but one of the most impacted is the transportation infrastructure. Many people living in low elevation coastal areas can become trapped by flooding with no way in or out. With Delaware being a coastal state, this would affect a large portion of the population and will have detrimental effects over time if nothing is done to combat sea level rise. The issue with sea level rise in transportation is that once the roads become flooded, they become virtually unusable and detour routes would be needed. If all the roads in a coastal area were to be affected by sea level rise, the options for detours would become limited. This article looks at direct solutions to combat sea level rise and indirect solutions that would specifically help transportation infrastructure and evacuation routes in Delaware. There is not one solution that can fix every problem, so many solutions are laid out to see what is applicable to each affected area. Some solutions include defense structures that would be put close to the coast, raising the elevation of vulnerable roads throughout the state and including pumping stations to drain the water on the surface of the road. With an understanding of all these solutions around the world, the ultimate conclusion came in the form of a six-step plan that Delaware should take in order to best design against sea level rise in these coastal areas.
基金Shanxi Scholarship Council of China(2022-141)Fundamental Research Program of Shanxi Province(202203021211096).
文摘Recent research in cross-domain intelligence fault diagnosis of machinery still has some problems,such as relatively ideal speed conditions and sample conditions.In engineering practice,the rotational speed of the machine is often transient and time-varying,which makes the sample annotation increasingly expensive.Meanwhile,the number of samples collected from different health states is often unbalanced.To deal with the above challenges,a complementary-label(CL)adversarial domain adaptation fault diagnosis network(CLADAN)is proposed under time-varying rotational speed and weakly-supervised conditions.In the weakly supervised learning condition,machine prior information is used for sample annotation via cost-friendly complementary label learning.A diagnosticmodel learning strategywith discretized category probabilities is designed to avoidmulti-peak distribution of prediction results.In adversarial training process,we developed virtual adversarial regularization(VAR)strategy,which further enhances the robustness of the model by adding adversarial perturbations in the target domain.Comparative experiments on two case studies validated the superior performance of the proposed method.
基金supported by the National Natural Science Foundation of China(No.U2142206).
文摘Numerical weather prediction(NWP)models have always presented large forecasting errors of surface wind speeds over regions with complex terrain.In this study,surface wind forecasts from an operational NWP model,the SMS-WARR(Shanghai Meteorological Service-WRF ADAS Rapid Refresh System),are analyzed to quantitatively reveal the relationships between the forecasted surface wind speed errors and terrain features,with the intent of providing clues to better apply the NWP model to complex terrain regions.The terrain features are described by three parameters:the standard deviation of the model grid-scale orography,terrain height error of the model,and slope angle.The results show that the forecast bias has a unimodal distribution with a change in the standard deviation of orography.The minimum ME(the mean value of bias)is 1.2 m s^(-1) when the standard deviation is between 60 and 70 m.A positive correlation exists between bias and terrain height error,with the ME increasing by 10%−30%for every 200 m increase in terrain height error.The ME decreases by 65.6%when slope angle increases from(0.5°−1.5°)to larger than 3.5°for uphill winds but increases by 35.4%when the absolute value of slope angle increases from(0.5°−1.5°)to(2.5°−3.5°)for downhill winds.Several sensitivity experiments are carried out with a model output statistical(MOS)calibration model for surface wind speeds and ME(RMSE)has been reduced by 90%(30%)by introducing terrain parameters,demonstrating the value of this study.
基金Key Basic Research Project of Strengthening the Foundations Plan of China (Grant No.2019-JCJQ-ZD-360-12)National Defense Basic Scientific Research Program of China (Grant No.JCKY2021208B011)to provide fund for conducting experiments。
文摘High speed photography technique is potentially the most effective way to measure the motion parameter of warhead fragment benefiting from its advantages of high accuracy,high resolution and high efficiency.However,it faces challenge in dense objects tracking and 3D trajectories reconstruction due to the characteristics of small size and dense distribution of fragment swarm.To address these challenges,this work presents a warhead fragments motion trajectories tracking and spatio-temporal distribution reconstruction method based on high-speed stereo photography.Firstly,background difference algorithm is utilized to extract the center and area of each fragment in the image sequence.Subsequently,a multi-object tracking(MOT)algorithm using Kalman filtering and Hungarian optimal assignment is developed to realize real-time and robust trajectories tracking of fragment swarm.To reconstruct 3D motion trajectories,a global stereo trajectories matching strategy is presented,which takes advantages of epipolar constraint and continuity constraint to correctly retrieve stereo correspondence followed by 3D trajectories refinement using polynomial fitting.Finally,the simulation and experimental results demonstrate that the proposed method can accurately track the motion trajectories and reconstruct the spatio-temporal distribution of 1.0×10^(3)fragments in a field of view(FOV)of 3.2 m×2.5 m,and the accuracy of the velocity estimation can achieve 98.6%.
基金Supported by Shenzhen Municipal Science and Technology Innovation Commission of China(Grant Nos.KQTD20190929172505711,JSGG20210420091802007,GJHZ20210705141807023).
文摘Inconel 718(IN718)alloy is widely applied to fabricate high temperature resistant or corrosion resistant parts due to its excellent mechanical performance.However,the machining of IN718 alloy is difficult as it may cause serious tool wear and poor surface quality(SQ)of the workpiece.In this work,grinding experiments on IN718 alloy at different speeds were conducted by using a CBN grinding wheel.The relationship between grinding speed,SQ and subsurface damage(SSD)was well studied.With increasing grinding speed,surface roughness decreased,and SQ was greatly improved.Meanwhile,the microhardness of the grinding surface declined as the grinding speed increased.The SSD depth was almost unchanged when the grinding speed was lower than 15 m/s,then it decreased with higher grinding speeds.It was attributed to the mechanical-thermal synergistic effect in the grinding process.The results indicated that increasing grinding speed can effectively improve the SQ and reduce the SSD of IN718 alloy.The conclusion in the work may also provide insight into processing other hard-to-machining materials.
基金supported by the Key R&D Program of Ningxia Hui Autonomous Region,China(2021BEG03008)the Natural Science Foundation of Ningxia Hui Autonomous Region,China(2021AAC03083).
文摘The maintenance of sand-fixing vegetation is important for the stability of artificial sand-fixing systems in which seed dispersal plays a key role.Based on field wind tunnel experiments using 11 common plant species on the southeastern edge of the Tengger Desert,China,we studied the secondary seed dispersal in the fixed and semi-fixed sand dunes as well as in the mobile dunes in order to understand the limitations of vegetation regeneration and the maintenance of its stability.Our results indicated that there were significant variations among the selected 11 plant species in the threshold of wind speed(TWS).The TWS of Caragana korshinskii was the highest among the 11 plant species,whereas that of Echinops gmelinii was the lowest.Seed morphological traits and underlying surface could generally explain the TWS.During the secondary seed dispersal processes,the proportions of seeds that did not disperse(no dispersal)and only dispersed over short distance(short-distance dispersal within the wind tunnel test section)were significantly higher than those of seeds that were buried(including lost seeds)and dispersed over long distance(long-distance dispersal beyond the wind tunnel test section).Compared with other habitats,the mobile dunes were the most difficult places for secondary seed dispersal.Buried seeds were the easiest to be found in the semi-fixed sand dunes,whereas fixed sand dunes were the best sites for seeds that dispersed over long distance.The results of linear mixed models showed that after controlling the dispersal distance,smaller and rounder seeds dispersed farther.Shape index and wind speed were the two significant influencing factors on the burial of seeds.The explanatory power of wind speed,underlying surface,and seed morphological traits on the seeds that did not disperse and dispersed over short distance was far greater than that on the seeds that were buried and dispersed over long distance,implying that the processes and mechanisms of burial and long-distance dispersal are more complex.In summary,most seeds in the study area either did not move,were buried,or dispersed over short distance,promoting local vegetation regeneration.
文摘The development of vehicle integrated photovoltaics-powered electric vehicles (VIPV-EV) significantly reduces CO<sub>2</sub> emissions from the transport sector to realize a decarbonized society. Although long-distance driving of VIPV-EV without electricity charging is expected in sunny regions, driving distance of VIPV-EV is affected by climate conditions such as solar irradiation and temperature rise of PV modules. In this paper, detailed analytical results for effects of climate conditions such as solar irradiation and temperature rise of PV modules upon driving distance of the VIPV-EV were presented by using test data for Toyota Prius and Nissan Van demonstration cars installed with high-efficiency InGaP/GaAs/InGaAs 3-junction solar cell modules with a module efficiency of more than 30%. The temperature rise of some PV modules studied in this study was shown to be expressed by some coefficients related to solar irradiation, wind speed and radiative cooling. The potential of VIPV-EV to be deployed in 10 major cities was also analyzed. Although sunshine cities such as Phoenix show the high reduction ratio of driving range with 17% due to temperature rise of VIPV modules, populous cities such as Tokyo show low reduction ratio of 9%. It was also shown in this paper that the difference between the driving distance of VIPV-EV driving in the morning and the afternoon is due to PV modules’ radiative cooling. In addition, the importance of heat dissipation of PV modules and the development of high-efficiency PV modules with better temperature coefficients was suggested in order to expand driving range of VIPV-EV. The effects of air-conditioner usage and partial shading in addition to the effects of temperature rise of VIPV modules were suggested as the other power losses of VIPV-EV.
基金Under the auspices of the National Key Research and Development Program of China (No.2017YFA0604902,2017YFA0604903,2017YFA0604901)。
文摘Mangroves play a pivotal role in tropical and subtropical coastal ecosystem,yet they are highly vulnerable to the effects of climate change,particularly the accelerated global sea level rise(SLR)and stronger tropical cyclones(TCs).However,there is a lack of research addressing future simultaneous combined impacts of the slow-onset of SLR and rapid-onset of TCs on China's mangroves.In order to develop a comprehensive risk assessment method considering the superimposed effects of these two factors and analyze risk for mangroves in Dongzhaigang,Hainan Island,China,we used observational and climate model data to assess the risks to mangroves under low,intermediate,and very high greenhouse gas(GHG)emission scenarios(such as SSP1-2.6,SSP2-4.5,and SSP5-8.5)in 2030,2050,and 2100,and compiled a risk assessment scheme for mangroves in Dongzhaigang,China.The results showed that the combined risks from SLR and TCs will continue to rise;however,SLRs will increase in intensity,and TCs will decrease.The comprehensive risk of the Dongzhaigang mangroves posed by climate change will remain low under SSP1-2.6 and SSP2-4.5 scenarios by 2030,but it will increase substantially by 2100.While under SSP5-8.5 scenario,the risks to mangroves in Dongzhaigang are projected to increase considerably by 2050,and approximately 68.8%of mangroves will be at very high risk by 2100.The risk to the Dongzhaigang mangroves is not only influenced by the hazards but also closely linked to their exposure and vulnerability.We therefore propose climate resilience developmental responses for mangroves to address the effects of climate change.This study for the combined impact of TCs and SLR on mangroves in Dongzhaigang,China can enrich the method system of mangrove risk assessment and provide references for scientific management.