三维注册是移动增强现实的关键技术之一,提出了一种在线学习的跟踪注册方法,能够精确地对自然场景进行跟踪注册.该方法首先改进SURF(speeded up robust features)描述符匹配方法,提高初始注册矩阵的正确性;然后,通过对场景进行有效的在...三维注册是移动增强现实的关键技术之一,提出了一种在线学习的跟踪注册方法,能够精确地对自然场景进行跟踪注册.该方法首先改进SURF(speeded up robust features)描述符匹配方法,提高初始注册矩阵的正确性;然后,通过对场景进行有效的在线学习,提高注册精度;最后,利用前一帧的注册矩阵快速恢复已丢失的关键点,以提高注册的速度.实验结果表明,该方法能够较为流畅地对视频帧进行跟踪,并能保持较好的注册精度.展开更多
如何构造紧凑而有效的特征描述子是机器视觉和模式识别领域重要的研究课题之一。针对SURF(Speeded Up Robust Features)算法的Haar描述子不能充分利用特征点周围信息的缺陷,该文提出了一种新的局部不变描述子——加窗灰度差直方图(Windo...如何构造紧凑而有效的特征描述子是机器视觉和模式识别领域重要的研究课题之一。针对SURF(Speeded Up Robust Features)算法的Haar描述子不能充分利用特征点周围信息的缺陷,该文提出了一种新的局部不变描述子——加窗灰度差直方图(Windowed Intensity Difference Histogram,WIDH),该描述子基于特征点周围邻域一个较小的核心区域,通过窗口模板的移动充分利用外围作用区域的灰度差信息,构造了一个维度低且辨识力很强,运算简单高效的描述矢量。实验表明,将WIDH用于改进SURF算法的Haar描述子时,可以用更低维的矢量获取与SURF相近或更好的辨识能力。在抗模糊性和抗噪性方面,WIDH明显优于SURF的Haar描述子,相同的错误率下查全率分别提高了大约35%和50%。展开更多
文摘三维注册是移动增强现实的关键技术之一,提出了一种在线学习的跟踪注册方法,能够精确地对自然场景进行跟踪注册.该方法首先改进SURF(speeded up robust features)描述符匹配方法,提高初始注册矩阵的正确性;然后,通过对场景进行有效的在线学习,提高注册精度;最后,利用前一帧的注册矩阵快速恢复已丢失的关键点,以提高注册的速度.实验结果表明,该方法能够较为流畅地对视频帧进行跟踪,并能保持较好的注册精度.