期刊文献+
共找到15篇文章
< 1 >
每页显示 20 50 100
Direct Regeneration of Spent Lithium-Ion Battery Cathodes:From Theoretical Study to Production Practice
1
作者 Meiting Huang Mei Wang +9 位作者 Liming Yang Zhihao Wang Haoxuan Yu Kechun Chen Fei Han Liang Chen Chenxi Xu Lihua Wang Penghui Shao Xubiao Luo 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第10期304-336,共33页
Direct regeneration method has been widely concerned by researchers in the field of battery recycling because of its advantages of in situ regeneration,short process and less pollutant emission.In this review,we first... Direct regeneration method has been widely concerned by researchers in the field of battery recycling because of its advantages of in situ regeneration,short process and less pollutant emission.In this review,we firstly analyze the primary causes for the failure of three representative battery cathodes(lithium iron phosphate,layered lithium transition metal oxide and lithium cobalt oxide),targeting at illustrating their underlying regeneration mecha-nism and applicability.Efficient stripping of material from the collector to obtain pure cathode material has become a first challenge in recycling,for which we report several pretreatment methods currently available for subsequent regeneration processes.We review and discuss emphatically the research progress of five direct regeneration methods,including solid-state sintering,hydrothermal,eutectic molten salt,electrochemical and chemical lithiation methods.Finally,the application of direct regeneration technology in production practice is introduced,the problems exposed at the early stage of the industrialization of direct regeneration technol-ogy are revealed,and the prospect of future large-scale commercial production is proposed.It is hoped that this review will give readers a comprehensive and basic understanding of direct regeneration methods for used lithium-ion batteries and promote the industrial application of direct regeneration technology. 展开更多
关键词 spent libs Failure reasons Cathode recycling Direct regeneration Production practice
下载PDF
Development of sustainable and efficient recycling technology for spent Li-ion batteries: Traditional and transformation go hand in hand
2
作者 Zejian Liu Gongqi Liu +4 位作者 Leilei Cheng Jing Gu Haoran Yuan Yong Chen Yufeng Wu 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第5期802-830,共29页
Clean and efficient recycling of spent lithium-ion batteries(LIBs)has become an urgent need to promote sustainable and rapid development of human society.Therefore,we provide a critical and comprehensive overview of th... Clean and efficient recycling of spent lithium-ion batteries(LIBs)has become an urgent need to promote sustainable and rapid development of human society.Therefore,we provide a critical and comprehensive overview of the various technologies for recycling spent LIBs,starting with lithium-ion power batteries.Recent research on raw material collection,metallurgical recovery,separation and purification is highlighted,particularly in terms of all aspects of economic efficiency,energy consumption,technology transformation and policy management.Mechanisms and pathways for transformative full-component recovery of spent LIBs are explored,revealing a clean and efficient closed-loop recovery mechanism.Optimization methods are proposed for future recycling technologies,with a focus on how future research directions can be industrialized.Ultimately,based on life-cycle assessment,the challenges of future recycling are revealed from the LIBs supply chain and stability of the supply chain of the new energy battery industry to provide an outlook on clean and efficient short process recycling technologies.This work is designed to support the sustainable development of the new energy power industry,to help meet the needs of global decarbonization strategies and to respond to the major needs of industrialized recycling. 展开更多
关键词 spent libs Transformative recycling LCA analysis Policy guidance High value utilization
下载PDF
Valuable metals recovery from spent ternary lithium-ion battery:A review
3
作者 Hao Liao Shengen Zhang +3 位作者 Bo Liu Xuefeng He Jixin Deng Yunji Ding 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第12期2556-2581,共26页
Ternary lithium-ion batteries(LIBs),widely used in new energy vehicles and electronic products,are known for their high en-ergy density,wide operating temperature range,and excellent cycling performance.With the rapid... Ternary lithium-ion batteries(LIBs),widely used in new energy vehicles and electronic products,are known for their high en-ergy density,wide operating temperature range,and excellent cycling performance.With the rapid development of the battery industry,the recycling of spent ternary LIBs has become a hot topic because of their economic value and environmental concerns.To date,a con-siderable amount of literature has reported on the recycling of spent ternary LIBs designed to provide an efficient,economical,and envir-onmentally friendly method for battery recycling.This article examines the latest developments in various technologies for recycling spent ternary LIBs in both research and practical production,including pretreatment,pyrometallurgy,hydrometallurgy,pyro-hydrometallurgy,and direct regeneration.Suggestions for addressing challenges based on the benefits and disadvantages of each method are made.Finally,through a comparison of the feasibility and economic benefits of various technologies,the challenges faced during battery recycling are summarized,and future development directions are proposed. 展开更多
关键词 spent ternary libs recycling technologies valuable metals economic analysis
下载PDF
Pyrometallurgical recycling of spent lithium-ion batteries from conventional roasting to synergistic pyrolysis with organic wastes 被引量:2
4
作者 Chao Pan Yafei Shen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第10期547-561,I0014,共16页
The synergistic pyrolysis has been increasingly used for recycling spent lithium-ion batteries(LIBs)and organic wastes(hydrogen and carbon sources),which are in-situ transformed into various reducing agents such as H_... The synergistic pyrolysis has been increasingly used for recycling spent lithium-ion batteries(LIBs)and organic wastes(hydrogen and carbon sources),which are in-situ transformed into various reducing agents such as H_(2),CO,and char via carbothermal and/or gas thermal reduction.Compared with the conventional roasting methods,this“killing two birds with one stone”strategy can not only reduce the cost and energy consumption,but also realize the valorization of organic wastes.This paper concluded the research progress in synergistic pyrolysis recycling of spent LIBs and organic wastes.On the one hand,valued metals such as Li,Co,Ni,and Mn can be recovered through the pyrolysis of the cathode materials with inherent organic materials(e.g.,separator,electrolyte)or graphite anode.During the pyrolysis process,the organic materials are decomposed into char and gases(e.g.,CO,H_(2),and CH_(4))as reducing agents,while the cathode material is decomposed and then converted into Li_(2)CO_(3) and low-valent transition metals or their oxides via in-situ thermal reduction.The formed Li_(2)CO_(3) can be easily recovered by the water leaching process,while the formed transition metals or their oxides(e.g.,Co,CoO,Ni,MnO,etc.)can be recovered by the reductant-free acid leaching or magnetic separation process.On the other hand,organic wastes(e.g.,biomass,plastics,etc.)as abundant hydrogen and carbon sources can be converted into gas(e.g.,H_(2),CO,etc.)and char via pyrolysis.The cathode materials are decomposed and subsequently reduced by the pyrolysis gas and char.In addition,the pyrolysis oil and gas can be upgraded by catalytic reforming with the active metals derived from cathode material.Finally,great challenges are proposed to promote this promising technology in the industrial applications. 展开更多
关键词 Synergistic pyrolysis spent libs Biomass RECYCLING Reduction roasting
下载PDF
Recycling Spent LiCoO_(2)Battery as a High-efficient Lithiumdoped Graphitic Carbon Nitride/Co_(3)O_(4)Composite Photocatalyst and Its Synergistic Photocatalytic Mechanism
5
作者 Bo Niu Jiefeng Xiao Zhenming Xu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第2期45-53,共9页
The ever-increasing quantity of spent lithium-ion batteries(LIBs)is both a potential environmental pollutant and a valuable resource.The spent LIBs recycling mainly aimed at the separation of valuable elements.Some is... The ever-increasing quantity of spent lithium-ion batteries(LIBs)is both a potential environmental pollutant and a valuable resource.The spent LIBs recycling mainly aimed at the separation of valuable elements.Some issues still exist in these processes such as high energy consumption and complex separation procedures.This study avoided element separation and proposed a facile approach to transform spent LiCoO_(2) electrode into a lithium(Li)-doped graphitic carbon nitride(g-C_(3)N_(4))/Co_(3)O_(4) composite photocatalyst through one-pot in situ thermal reduction.During the thermal process,melamine served as the reductant for LiCoO_(2) decomposition and the raw material for g-C_(3)N_(4) production.Li was in situ doped in g-C_(3)N_(4) and the generated Co_(3)O_(4) was in situ integrated,forming a Li-doped g-C_(3)N_(4)/Co_(3)O_(4) composite photocatalyst.This special composite exhibited an enhanced photocatalytic performance,and its photocatalytic H2 production and RhB degradation rates were 8.7 and 6.8 times higher than those of g-C_(3)N_(4).The experiments combined with DFT calculation revealed that such enhanced photocatalytic efficiency was ascribed to the synergy effect of Li doping and Co_(3)O_(4) integrating,which extended the visible light absorption(450-900 nm)and facilitated the charge transfer and separation.This study transforms waste into a high-efficient catalyst,realizing high-valued utilization of waste and environmental protection. 展开更多
关键词 composite photocatalyst environmental protection spent libs synergy mechanism waste utilization
下载PDF
Review of preferentially selective lithium extraction from spent lithium batteries: Principle and performance 被引量:1
6
作者 Zhe Gao Meiting Huang +4 位作者 Liming Yang Yufa Feng Yuan Ding Penghui Shao Xubiao Luo 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第3期253-261,I0008,共10页
Lithium,as the lightest and lowest potential metal,is an ideal "battery metal" and the core strategic metal of the new energy industry revolution.Recovering lithium from spent lithium batteries(LIBs)has beco... Lithium,as the lightest and lowest potential metal,is an ideal "battery metal" and the core strategic metal of the new energy industry revolution.Recovering lithium from spent lithium batteries(LIBs)has become one of the significant approaches to obtaining lithium resources.At present,the lithium extraction being generally placed at the last step of the spent LIBs recovery process has puzzles such as high acid consumption,low Li recovery purity and low recovery efficiency.Selective lithium extraction at the first step of the recovery process can effectively solve those puzzles.Since lithium leaching is a non-spontaneous reaction requiring additional energy to achieve,it is found that these methods can be divided into five ways according to the different types of energy driving the reaction occurring:(ⅰ)electric energy driving lithium extraction;(ⅱ) chemical energy driving lithium extraction;(ⅲ) mechanical energy driving lithium extraction;(ⅳ) thermal energy driving lithium extraction;(ⅴ) other energy driving lithium extraction.Through the analysis of the principle,reaction process and results of recovering lithium methods can provide a few directions for scholars’ subsequent research.It is necessary to speed up the exploration of the principle of these methods.It is expected that this study could provide a reference for the research on the selective lithium extraction. 展开更多
关键词 LITHIUM spent lithium batteries(libs) Recovery efficiency Preferentially SELECTIVE
下载PDF
Recent advancements in hydrometallurgical recycling technologies of spent lithium-ion battery cathode materials
7
作者 Juan Wu Li Xiao +4 位作者 Li Shen Jian-Jun Ran Hui Zhong Yi-Rong Zhu Han Chen 《Rare Metals》 SCIE EI CAS CSCD 2024年第3期879-899,共21页
The rapidly increasing production of lithium-ion batteries(LIBs)and their limited service time increases the number of spent LIBs,eventually causing serious environmental issues and resource wastage.From the perspecti... The rapidly increasing production of lithium-ion batteries(LIBs)and their limited service time increases the number of spent LIBs,eventually causing serious environmental issues and resource wastage.From the perspectives of clean production and the development of the LIB industry,the effective recovery and recycling of spent LIBs require urgent solutions.This study provides an overview of the current hydrometallurgical processes employed in the recycling of spent cathode materials,focusing on the leaching of valuable metals and their postprocessing.In particular,this research reviews the various leaching systems(inorganic acid,organic acid,and ammonia)and the separation of valuable metals,and then,recommendations for subsequent study are offered in an attempt to contribute to the development of highly efficient methods for recycling spent cathode materials.In addition,a range of existing technologies,such as solvent extraction,chemical precipitation,electrochemical deposition,and regeneration,for the postprocessing of leaching solutions are summarized.Finally,the promising technologies,existing challenges and suggestions with respect to the development of effective and environmentally friendly recycling methods for handling spent cathode materials are identified. 展开更多
关键词 spent lithium-ion batteries(libs) Cathode material HYDROMETALLURGY LEACHING RECYCLING
原文传递
Engineering classification recycling of spent lithium-ion batteries through pretreatment:a comprehensive review from laboratory to scale-up application
8
作者 Shu-Xuan Yan You-Zhou Jiang +5 位作者 Xiang-Ping Chen Lu Yuan Ting-Ting Min Yu Cao Wan-Li Peng Tao Zhou 《Rare Metals》 SCIE EI CAS CSCD 2024年第3期915-941,共27页
The lithium-ion batteries(LIBs)have been widely equipped in electric/hybrid electric vehicles(EVs/HEVs)and the portable electronics due to their excellent electrochemical performances.However,a large number of retired... The lithium-ion batteries(LIBs)have been widely equipped in electric/hybrid electric vehicles(EVs/HEVs)and the portable electronics due to their excellent electrochemical performances.However,a large number of retired LIBs that consist of toxic substances(e.g.,heavy metals,electrolytes)and valuable metals(e.g.,Li,Co)will inevitably flow into the waste stream,and their incineration or landfill treatment will cause severe risks to ecosystem and human beings.The sustainable and efficient treatment or recycling of valuable resources from spent LIBs should be fully recognized for environmental and resource security.As one of the most important processes for spent LIBs recycling,the pretreatment is an indispensable step,which is directly related to the subsequent metal extraction and separation processes.Although considerable progresses have been made regarding the pretreatment technologies,there are few summarized reports concerning critical processes of spent LIBs recycling,especially combination of currently available recycling technologies with industrialized applications during pretreatments.Therefore,comprehensive review of the current prevailing pretreatment technologies in laboratory to existing scale-up applications is quite necessary to reveal cutting-edge development in the field of pretreatment.In this review,the current pretreatment technologies are systematically categorized and introduced,along with critical discussions.This review focused on the various options for pretreatment processes itself,instead of general spent LIBs recycling technologies without the focused topics that have been sophisticatedly reviewed by previous studies.Here,the deactivation,discharge,dismantling,separation,liberation of active material and electrolyte treatment have been summarized with the in-depth discussion of the technology development and current status of each category.Finally,current states of industrial development are also reviewed and discussed for the development of efficient and environmentally friendly recycling technologies for future applications.This review tends to present a focused topic concerning the pretreatment of spent LIBs to potential readers with a comprehensive illustration of the development on both cutting-edge technologies and scale-up applications. 展开更多
关键词 spent lithium-ion batteries(libs) RECYCLING PRETREATMENT Valuable metals Cutting-edge technologies Industrialized application
原文传递
Selective lithium recovery from black powder of spent lithiumion batteries via sulfation reaction:phase conversion and impurities influence 被引量:1
9
作者 Hao Liu Jia-Liang Zhang +3 位作者 Guo-Qiang Liang Meng Wang Yong-Qiang Chen Cheng-Yan Wang 《Rare Metals》 SCIE EI CAS CSCD 2023年第7期2350-2360,共11页
The aim of this study is to present a new understanding for the selective lithium recovery from spent lithium-ion batteries(LIBs)via sulfation roasting.The composition of roasting products and reaction behavior of imp... The aim of this study is to present a new understanding for the selective lithium recovery from spent lithium-ion batteries(LIBs)via sulfation roasting.The composition of roasting products and reaction behavior of impurity elements were analyzed through thermodynamic calculations.Then,the effects of sulfuric acid dosage,roasting temperature,roasting time,and impurity elements were assessed on the leaching efficiency of valuable metals.Characterization methods such as X-ray diffraction(XRD),scanning electron microscopy-energy dispersive spectroscopy(SEM-EDS),and X-ray photoelectron spectroscopy(XPS)were employed to analyze the phase transformation mechanism during roasting process.The results indicate that after sulfation roasting(n(H_(2)SO_(4)):n(Li)=0.5,550℃,2 h),94%lithium can be selectively recovered by water leaching and more than 95%Ni,Co,and Mn can be leached through acid leaching without the addition of reduction agent.During the sulfation roasting process,the lithium in LiNi_(x)Mn_(y)Co_zO_(2)is mainly converted to Li_(2)SO_(4),while the Ni,Co and Mn are first transformed to sulfate and then converted into oxide form.In addition,impurity elements such as Al and F will combine with lithium to form LiF and LiAlO_(2),which will reduce the leaching rate of lithium.These results provide a new understanding on the mechanisms of phase conversion during sulfation roasting and reveal the influence of impurity elements for the lithium recovery from spent LIBs. 展开更多
关键词 spent lithium-ion batteries(libs) Thermodynamic calculations Sulfation roasting Impurity elements Conversion mechanism
原文传递
Enhanced leaching of metals from spent lithium-ion batteries by catalytic carbothermic reduction 被引量:1
10
作者 Ying-Chao Zhang Wen-Hao Yu Sheng-Ming Xu 《Rare Metals》 SCIE EI CAS CSCD 2023年第8期2688-2699,共12页
Spent Li-ion battery(LIB)recycling has become a challenge with the rapidly developing electric vehicle(EV)industry.To address the problems of high cost and low recovery of Li in the recycling of spent LIBs using tradi... Spent Li-ion battery(LIB)recycling has become a challenge with the rapidly developing electric vehicle(EV)industry.To address the problems of high cost and low recovery of Li in the recycling of spent LIBs using traditional hydrometallurgical processes,we developed an alkali metal catalytic carbothermic reduction method to recover spent LiNi_(x)Co_(y)Mn_(z)O_(2)(NCM).Using alkali metal catalysts,such as NaOH,significantly reduced the temperature required for carbothermic NCM material reduction and realized targeted control of the phase of the reduction product,where Li was first separated by prior water leaching,followed by Ni,Co,and Mn recycling by acid leaching.The optimized carbothermic reduction conditions were a reaction time of 3 h,temperature of 550℃,NaOH dosage of 15 wt%,and graphite dosage of 15 wt%.The Li leaching efficiency reached 78.5 wt%during water leaching.And during acid leaching,the Ni,Co and Mn leaching efficiencies were 99.8 wt%,99.7 wt%,and 99.5wt%,respectively.This study provides strong technical support for the development of LIB industry. 展开更多
关键词 spent lithium-ion battery(LIB) Battery recycling LEACHING Lithium recovery Alkali metal catalytic carbothermic reduction
原文传递
A unique co-recovery strategy of cathode and anode from spent LiFePO_(4) battery 被引量:3
11
作者 Kai-Di Du Yun-Feng Meng +4 位作者 Xin-Xin Zhao Xiao-Tong Wang Xiao-Xi Luo Wei Zhang Xing-Long Wu 《Science China Materials》 SCIE EI CAS CSCD 2022年第3期637-645,共9页
Along with the explosive growth in the market of new energy electric vehicles,the demand for Li-ion batteries(LIBs)has correspondingly expanded.Given the limited life of LIBs,numbers of spent LIBs are bound to be prod... Along with the explosive growth in the market of new energy electric vehicles,the demand for Li-ion batteries(LIBs)has correspondingly expanded.Given the limited life of LIBs,numbers of spent LIBs are bound to be produced.Because of the severe threats and challenges of spent LIBs to the environment,resources,and global sustainable development,the recycling and reuse of spent LIBs have become urgent.Herein,we propose a novel green and efficient direct recycling method,which realizes the concurrent reuse of LiFePO_(4)(LFP)cathode and graphite anode from spent LFP batteries.By optimizing the proportion of LFP and graphite,a hybrid LFP/graphite(LFPG)cathode was designed for a new type of dualion battery(DIB)that can achieve co-participation in the storage of both anions and cations.The hybrid LFPG cathode combines the excellent stability of LFP and the high conductivity of graphite to exhibit an extraordinary electrochemical performance.The best compound,i.e.,LFP:graphite=3:1,with the highest reversible capacity(~130 mAhg^(-1) at 25 mAg^(-1)),high voltage platform of 4.95 V,and outstanding cycle performance,was achieved.The specific diffusion behavior of Li^(+) and PF_(6)^(-) in the hybrid cathode was studied using electrode kinetic tests,further clarifying the working mechanism of DIBs.This study provides a new strategy toward the large-scale recycling of positive and negative electrodes of spent LIBs and establishes a precedent for designing new hybrid cathode materials for DIBs with superior performance using spent LIBs. 展开更多
关键词 LiFePO_(4) GRAPHITE dual-ion batteries spent libs RECYCLE
原文传递
Preparing graphene from anode graphite of spent lithium-ion batteries 被引量:8
12
作者 Wenxuan Zhang Zhanpeng Liu +4 位作者 Jing Xia Feng Li Wenzhi He Guangming Li Juwen Huang 《Frontiers of Environmental Science & Engineering》 SCIE EI CAS CSCD 2017年第5期77-84,共8页
With extensive use of lithium ion batteries (LIBs), amounts of LIBs were discarded, giving rise to growth of resources demand and environmental risk. In view of wide usage of natural graphite and the high content (... With extensive use of lithium ion batteries (LIBs), amounts of LIBs were discarded, giving rise to growth of resources demand and environmental risk. In view of wide usage of natural graphite and the high content (12%-21%) of anode graphite in spent LIBs, recycling anode graphite from spent LIBs cannot only alleviate the shortage of natural graphite, but also promote the sustainable development of related industries. After calcined at 600°Cfor 1 h to remove organic substances, anode graphite was used to prepare graphene by oxidation-reduction method. Effect of pH and N2H4·H2O amount on reduction of graphite oxide were probed. Structure of graphite, graphite oxide and graphene were characterized by XRD, Raman and FTIR. Graphite oxide could be completely reduced to graphene at pH 11 and 0.25 mL N2H4·H2O. Due to the presence of some oxygen-containing groups and structure defects in anode graphite, concentrated H2SO4 and KMnO4 consumptions were 40% and around 28.6% less than graphene preparation from natural graphite, respectively. 展开更多
关键词 spent libs Graphite Graphite oxide Graphene
原文传递
Highly selective metal recovery from spent lithium-ion batteries through stoichiometric hydrogen ion replacement 被引量:1
13
作者 Weiguang Lv Xiaohong Zheng +6 位作者 Li Li Hongbin Cao Yi Zhang Renjie Chen Hancheng Ou Fei Kang Zhi Sun 《Frontiers of Chemical Science and Engineering》 SCIE EI CSCD 2021年第5期1243-1256,共14页
Spent lithium-ion battery recycling has attracted significant attention because of its importance in regard to the environment and resource importance.Traditional hydrometallurgical methods usually leach all valuable ... Spent lithium-ion battery recycling has attracted significant attention because of its importance in regard to the environment and resource importance.Traditional hydrometallurgical methods usually leach all valuable metals and subsequently extract target meals to prepare corresponding materials.However,Li recovery in these processes requires lengthy operational procedures,and the recovery efficiency is low.In this research,we demonstrate a method to selectively recover lithium before the leaching of other elements by introducing a hydrothermal treatment.Approximately 90%of Li is leached from high-Ni layered oxide cathode powders,while consuming a nearly stoichiometric amount of hydrogen ions.With this selective recovery of Li,the transition metals remain as solid residue hydroxides or oxides.Furthermore,the extraction of Li is found to be highly dependent on the content of transition metals in the cathode materials.A high leaching selectivity of Li(>98%)and nearly 95%leaching efficiency of Li can be reached with LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2).In this case,both the energy and material consumption during the proposed Li recovery is significantly decreased compared to traditional methods;furthermore,the proposed method makes full use of H+to leach Li+.This research is expected to provide new understanding for selectively recovering metal from secondary resources. 展开更多
关键词 RECYCLING spent libs selective recovery hydrothermal treatment
原文传递
Template-free preparation of porous Co microfibers from spent lithium-ion batteries as a promising microwave absorber 被引量:1
14
作者 Xiao-Min Wu Fei Xie +4 位作者 Yong-Lin Yao Yue Sun Zhong-Sheng Hua Zhuo Zhao Yong-Xiang Yang 《Rare Metals》 SCIE EI CAS CSCD 2022年第10期3475-3485,共11页
In order to take full advantage of the secondary resources,in this paper,we reported a template-free process to prepare porous Co microfibers from spent lithiumion batteries(LIBs).First,the waste LiCoO_(2) powders wer... In order to take full advantage of the secondary resources,in this paper,we reported a template-free process to prepare porous Co microfibers from spent lithiumion batteries(LIBs).First,the waste LiCoO_(2) powders were leached by oxalic acid at a suitable temperature,and rodlike cobalt oxalate powders were obtained.Second,the porous Co microfibers were prepared by using the cobalt oxalate as precursors through a thermal decomposition at420 ℃ under nitrogen atmosphere.The prepared Co microfibers possess diameters of 1-2 μm,and each microfiber consists of small particles with size of100-200 nm.The Co microfibers(25 wt%)/paraffin composite exhibited excellent microwave absorption performance.When the sample thickness is 4.5 mm,the reflection losses reach-36.14 and-38.20 dB at 4.16 and 17.60 GHz,respectively,and the effective bandwidth reaches up to 5.52 GHz.This indicates that the Co microfibers can be used as a promising microwave absorber.Therefore,this paper demonstrates a novel process to make a high value-added product through recycling from the spent lithium-ion batteries.In addition,it is advantageous to eliminate the hazard of spent lithium-ion batteries and electromagnetic radiation to environment and human health. 展开更多
关键词 spent lithium-ion batteries(libs) Co microfibers RECYCLING Oxalic acid leaching Microwave absorption
原文传递
Direct reuse of oxide scrap from retired lithium-ion batteries:advanced cathode materials for sodium-ion batteries 被引量:4
15
作者 Miao Du Kai-Di Du +7 位作者 Jin-Zhi Guo Yan Liu Vanchiappan Aravindan Jia-Lin Yang Kai-Yang Zhang Zhen-Yi Gu Xiao-Tong Wang Xing-Long Wu 《Rare Metals》 SCIE EI CAS CSCD 2023年第5期1603-1613,共11页
The direct reuse of retired lithium-ion batteries(LIBs)cathode materials is one of the optimum choices for"waste-to-wealth"by virtue of sustainable and high economic efficiency.Considering the harmfulness of... The direct reuse of retired lithium-ion batteries(LIBs)cathode materials is one of the optimum choices for"waste-to-wealth"by virtue of sustainable and high economic efficiency.Considering the harmfulness of retired LIBs and the serious shortage of lithium resources,in this work,the spent oxide cathode materials after simple treatment are directly applied to the sodium-ion batteries(SIBs)and exhibit promising application possibilities in advanced SIBs.The spent oxide cathode shows an appropriate initial discharge capacity of 109 mAh·g^(-1)and exhibits transition and activation processes at a current density of 25 mA·g^(-1).Further,it demonstrates decent cycle performance and comparatively good electrode kinetics performance(the apparent ion diffusion coefficient at steady state is about 1×10^(-12)cm^(2)·s^(-1)).The"waste-towealth"concept of this work provides an economical and sustainable strategy for directly reusing the retired LIBs and supplies a large amount of raw material for the largescale application of SIBs. 展开更多
关键词 spent lithium-ion batteries(libs) Oxides Reuse Sodium-ion batteries(SIBs) Kinetics property
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部