The recycling and reutilization of spent lithium-ion batteries(LIBs)have become an important measure to alleviate problems like resource scarcity and environmental pollution.Although some progress has been made,batter...The recycling and reutilization of spent lithium-ion batteries(LIBs)have become an important measure to alleviate problems like resource scarcity and environmental pollution.Although some progress has been made,battery recycling technology still faces challenges in terms of efficiency,effectiveness and environmental sustainability.This review aims to systematically review and analyze the current status of spent LIB recycling,and conduct a detailed comparison and evaluation of different recycling processes.In addition,this review introduces emerging recycling techniques,including deep eutectic solvents,molten salt roasting,and direct regeneration,with the intent of enhancing recycling efficiency and diminishing environmental repercussions.Furthermore,to increase the added value of recycled materials,this review proposes the concept of upgrading recycled materials into high value-added functional materials,such as catalysts,adsorbents,and graphene.Through life cycle assessment,the paper also explores the economic and environmental impacts of current battery recycling and highlights the importance that future recycling technologies should achieve a balance between recycling efficiency,economics and environmental benefits.Finally,this review outlines the opportunities and challenges of recycling key materials for next-generation batteries,and proposes relevant policy recommendations to promote the green and sustainable development of batteries,circular economy,and ecological civilization.展开更多
Developing single-crystalline Ni-rich cathodes is an effective strategy to improve the safety and cycle life of Li-ion batteries(LIBs).However,the easy-to-loss of Li and O in high-temperature lithiation results in uns...Developing single-crystalline Ni-rich cathodes is an effective strategy to improve the safety and cycle life of Li-ion batteries(LIBs).However,the easy-to-loss of Li and O in high-temperature lithiation results in unsatisfactory ordered layered structure and stoichiometry.Herein,we demonstrate the synthesis of highly-ordered and fully-stoichiometric single-crystalline LiNi_(0.83)Co_(0.12)Mn_(0.05)O_(2)(SC-NCM83)cathodes by the regulation of pre-lithiation kinetics.The well-balanced pre-lithiation kinetics have been proved to greatly improve the proportion of layered phase in the intermediate by inhibiting the formation of metastable spinel phase,which promoted the rapid transformation of the intermediate into highly-ordered layered SC-NCM83 in the subsequent lithiation process.After coating a layer of Li_(2)O–B_(2)O_(3),the resultant cathodes deliver superior cycling stability with 90.9%capacity retention at 1C after 300 cycles in pouch-type full batteries.The enhancement mechanism has also been clarified.These findings exhibit fundamental insights into the pre-lithiation kinetics process for guiding the synthesis of high-quality singlecrystalline Ni-rich cathodes.展开更多
Fast-charging and low temperature operation are of vital importance for the further development of lithium-ion batteries(LIBs),which is hindered by the utilization of conventional carbonate-based electrolytes due to t...Fast-charging and low temperature operation are of vital importance for the further development of lithium-ion batteries(LIBs),which is hindered by the utilization of conventional carbonate-based electrolytes due to their slow kinetics,narrow operating temperature and voltage range.Herein,an acetonitrile(AN)-based localized high-concentration electrolyte(LHCE)is proposed to retain liquid state and high ionic conductivity at ultra-low temperatures while possessing high oxidation stability.We originally reveal the excellent thermal shielding effect of non-solvating diluent to prevent the aggregation of Li^(+) solvates as temperature drops,maintaining the merits of fast Li transport and facile desolvation as at room temperature,which bestows the graphite electrode with remarkable low temperature performance(264 mA h g^(-1) at-20 C).Remarkably,an extremely high capacity retention of 97%is achieved for high-voltage high-energy graphite||NCM batteries after 250 cycles at-20 C,and a high capacity of 110 mA h g^(-1)(71%of its room-temperature capacity)is retained at-30°C.The study unveils the key role of the non-solvating diluents and provides instructive guidance in designing electrolytes towards fast-charging and low temperature LIBs.展开更多
This review highlights the importance of recovering valuable metals from spent Li-ion battery(LIB)cathodes through the resynthesis of cathode active materials(CAMs).The resynthesis process of CAMs,a promising recyclin...This review highlights the importance of recovering valuable metals from spent Li-ion battery(LIB)cathodes through the resynthesis of cathode active materials(CAMs).The resynthesis process of CAMs,a promising recycling method that directly produces CAM precursors from LIB leachate,is explored.This process encompasses six key steps,including pretreatment,leaching,purification,adjustment of metal concentrations,precursor synthesis,and sintering.The review also investigates the potential introduction of impurity elements during CAM resynthesis and provides tolerance levels for these impurities based on thorough reference analysis.Additionally,it addresses challenges related to the commercialization of the resynthesis process.Notably,this review represents the first comprehensive assessment of CAM resynthesis,including the systematic evaluation of 12 impurity elements(Fe,Li,Al,Cu,C,P,F,Na,Cl,S,Mg,and Zn).Overall,this comprehensive review is poised to support the commercial development of resynthesized CAMs by offering valuable guidelines for managing impurities and streamlining the purification process.展开更多
The worldwide proliferation of portable electronics has resulted in a dramatic increase in the number of spent lithium-ion batteries(LIBs).However,traditional recycling methods still have limitations because of such h...The worldwide proliferation of portable electronics has resulted in a dramatic increase in the number of spent lithium-ion batteries(LIBs).However,traditional recycling methods still have limitations because of such huge amounts of spent LIBs.Therefore,we proposed an ecofriendly and sustainable double recycling strategy to concurrently reuse the cathode(LiCoO_(2))and anode(graphite)materials of spent LIBs and recycled LiCoPO_(4)/graphite(RLCPG)in Li^(+)/PF^(-)_(6) co-de/intercalation dual-ion batteries.The recycle-derived dualion batteries of Li/RLCPG show impressive electrochemical performance,with an appropriate discharge capacity of 86.2 mAh·g^(-1) at25 mA·g^(-1) and 69%capacity retention after 400 cycles.Dual recycling of the cathode and anode from spent LIBs avoids wastage of resources and yields cathode materials with excellent performance,thereby offering an ecofriendly and sustainable way to design novel secondary batteries.展开更多
Traditional hydrometallurgical methods for recovering spent lithium-ion batteries(LIBs)involve acid leaching to simultaneously extract all valuable metals into the leachate.These methods usually are followed by a seri...Traditional hydrometallurgical methods for recovering spent lithium-ion batteries(LIBs)involve acid leaching to simultaneously extract all valuable metals into the leachate.These methods usually are followed by a series of separation steps such as precipitation,extraction,and stripping to separate the individual valuable metals.In this study,we present a process for selectively leaching lithium through the synergistic effect of sulfuric and oxalic acids.Under optimal leaching conditions(leaching time of 1.5 h,leaching temperature of 70°C,liquid-solid ratio of 4 mL/g,oxalic acid ratio of 1.3,and sulfuric acid ratio of 1.3),the lithium leaching efficiency reached89.6%,and the leaching efficiencies of Ni,Co,and Mn were 12.8%,6.5%,and 21.7%.X-ray diffraction(XRD)and inductively coupled plasma optical emission spectrometer(ICP-OES)analyses showed that most of the Ni,Co,and Mn in the raw material remained as solid residue oxides and oxalates.This study offers a new approach to enriching the relevant theory for selectively recovering lithium from spent LIBs.展开更多
The proper recycling of spent lithium-ion batteries(LIBs)can promote the recovery and utilization of valuable resources,while also negative environmental effects resulting from the presence of toxic and hazardous subs...The proper recycling of spent lithium-ion batteries(LIBs)can promote the recovery and utilization of valuable resources,while also negative environmental effects resulting from the presence of toxic and hazardous substances.In this study,a new environmentally friendly hydro-metallurgical process was proposed for leaching lithium(Li),nickel(Ni),cobalt(Co),and manganese(Mn)from spent LIBs using sulfuric acid with citric acid as a reductant.The effects of the concentration of sulfuric acid,the leaching temperature,the leaching time,the solid-liquid ratio,and the reducing agent dosage on the leaching behavior of the above elements were investigated.Key parameters were optimized using response surface methodology(RSM)to maximize the recovery of metals from spent LIBs.The maxim-um recovery efficiencies of Li,Ni,Co,and Mn can reach 99.08%,98.76%,98.33%,and 97.63%.under the optimized conditions(the sulfuric acid concentration was 1.16 mol/L,the citric acid dosage was 15wt%,the solid-liquid ratio was 40 g/L,and the temperature was 83℃ for 120 min),respectively.It was found that in the collaborative leaching process of sulfuric acid and citric acid,the citric acid initially provided strong reducing CO_(2)^(-),and the transition metal ions in the high state underwent a reduction reaction to produce transition metal ions in the low state.Additionally,citric acid can also act as a proton donor and chelate with lower-priced transition metal ions,thus speeding up the dissolution process.展开更多
Combining the first-principles calculations and structural enumeration with recognition,the delithiation process of LiNiO_(2)is investigated,where various supercell shapes are considered in order to obtain the formati...Combining the first-principles calculations and structural enumeration with recognition,the delithiation process of LiNiO_(2)is investigated,where various supercell shapes are considered in order to obtain the formation energy of Li_(x)NiO_(2).Meanwhile,the voltage profile is simulated and the ordered phases of lithium vacancies corresponding to concentrations of 1/4,2/5,3/7,1/2,2/3,3/4,5/6,and 6/7 are predicted.To understand the capacity decay in the experiment during the charge/discharge cycles,deoxygenation and Li/Ni antisite defects are calculated,revealing that the chains of oxygen vacancies will be energetically preferrable.It can be inferred that in the absence of oxygen atom in high delithiate state,the diffusion of Ni atoms is facilitated and the formation of Li/Ni antisite is induced.展开更多
Two-dimensional(2D)metal-organic frameworks(MOFs)are rapidly emerging as a unique class of mushrooming family of 2D materials offering distinctive features,such as hierarchical porosity,extensive surface area,easily a...Two-dimensional(2D)metal-organic frameworks(MOFs)are rapidly emerging as a unique class of mushrooming family of 2D materials offering distinctive features,such as hierarchical porosity,extensive surface area,easily available active sites,and versatile,adaptable structures.These promising characteristics have positioned them as highly appealing alternatives for a wide range of applications in energy storage technologies,including lithium batteries.Nevertheless,the poor conductivity and limited stability of 2D MOFs have limited their real applications in electrochemical energy storage.These limitations have therefore warranted ongoing research to enhance the performance of 2D MOFs.Given the significance of 2D MOF-based materials as an emerging class of advanced materials,a multitude of strategy has been devised to address these challenges such as synthesizing 2D conductive MOFs and derivatives along with 2D MOF hybridization.One promising approach involves the use of 2D MOF derivatives,including transition metal oxides,which due to their abundant unsatu rated active metal sites and shorter diffusion paths,offer superior electrochemical performance.Additionally,by combining pristine 2D MOFs with other materials,hybrid 2D MOF materials can be created.These hybrids,with their enhanced stability and conductivity,can be directly utilized as active materials in lithium batteries.In the present review,we categorize 2D MOF-based materials into three distinct groups:pristine 2D MOFs,2D MOFderived materials,and 2D MOF hybrid materials.The synthesis methods for each group,along with their specific applications as electrode materials in lithium-ion batteries,are discussed in detail.This comprehensive review provides insights into the potential of 2D MOFs while highlighting the opportunities and challenges that are present in this evolving field.展开更多
Graphitized spent carbon cathode(SCC)is a hazardous solid waste generated in the aluminum electrolysis process.In this study,a flotation-acid leaching process is proposed for the purification of graphitized SCC,and th...Graphitized spent carbon cathode(SCC)is a hazardous solid waste generated in the aluminum electrolysis process.In this study,a flotation-acid leaching process is proposed for the purification of graphitized SCC,and the use of the purified SCC as an anode material for lithium-ion batteries is explored.The flotation and acid leaching processes were separately optimized through one-way experiments.The maximum SCC carbon content(93wt%)was achieved at a 90%proportion of−200-mesh flotation particle size,a slurry concentration of 10wt%,a rotation speed of 1600 r/min,and an inflatable capacity of 0.2 m^(3)/h(referred to as FSCC).In the subsequent acid leaching process,the SCC carbon content reached 99.58wt%at a leaching concentration of 5 mol/L,a leaching time of 100 min,a leaching temperature of 85°C,and an HCl/FSCC volume ratio of 5:1.The purified graphitized SCC(referred to as FSCC-CL)was utilized as an anode material,and it exhibited an initial capacity of 348.2 mAh/g at 0.1 C and a reversible capacity of 347.8 mAh/g after 100 cycles.Moreover,compared with commercial graphite,FSCC-CL exhibited better reversibility and cycle stability.Thus,purified SCC is an important candidate for anode material,and the flotation-acid leaching purification method is suitable for the resourceful recycling of SCC.展开更多
We propose a method for producing composite materials(hTNO@C_(60))comprising crystalline C_(60)particles and hollow-structu red TiNb_(2)O_(7)(hTNO)nanofibers via facile liquid-liquid interface precipitation followed b...We propose a method for producing composite materials(hTNO@C_(60))comprising crystalline C_(60)particles and hollow-structu red TiNb_(2)O_(7)(hTNO)nanofibers via facile liquid-liquid interface precipitation followed by low-temperature annealing.This allows the systematic design of crystalline C_(60)as an active material for Li-ion battery anodes.The hTNO@C_(60)composite demonstrates outstanding cyclic stability,retaining a capacity of 465 mA h g^(-1)after 1,000 cycles at 1 A g^(-1)It maintains a capacity of 98 mA h g^(-1)even after16,000 ultralong cycles at 8 A g^(-1)The enhancement in electrochemical properties is attributed to the successful growth and uniform doping of crystalline C_(60),resulting in improved electrical conductivity.The excellent electrochemical stability and properties of these composites make them promising anode materials.展开更多
Lithium-ion batteries(LIBs)containing graphite as anode material and LiCoO_(2),LiMn_(2)O_(4),and LiNi_(x)Mn_(y)Co_(z)O_(2) as cathode materials are the most used worldwide because of their high energy density,capacita...Lithium-ion batteries(LIBs)containing graphite as anode material and LiCoO_(2),LiMn_(2)O_(4),and LiNi_(x)Mn_(y)Co_(z)O_(2) as cathode materials are the most used worldwide because of their high energy density,capacitance,durability,and safety.However,such widespread use implies the generation of large amounts of electronic waste.It is estimated that more than 11 million ton of LIBs waste will have been generated by 2030.Battery recycling can contribute to minimizing environmental contamination and reducing production costs through the recovery of high-value raw materials such as lithium,cobalt,and nickel.The most common processes used to recycle spent LIBs are pyrometallurgical,biometallurgical,and hydrometallurgical.Given the current scenario,it is necessary to develop environmentally friendly methods to recycle batteries and synthesize materials with multiple technological applications.This study presents a review of industrial and laboratory processes for recycling spent LIBs and producing materials that can be used in new batteries,energy storage devices,electrochemical sensors,and photocatalytic reactions.展开更多
To effectively separate and recover Co(Ⅱ) from the leachate of spent lithium-ion battery cathodes,we investigated solvent extraction with quaternary ammonium salt N263 in the sodium nitrite system.NO_(2)^(-)combines ...To effectively separate and recover Co(Ⅱ) from the leachate of spent lithium-ion battery cathodes,we investigated solvent extraction with quaternary ammonium salt N263 in the sodium nitrite system.NO_(2)^(-)combines with Co(Ⅱ) to form an anion [Co(NO_(2))_(3)]^(-),and it is then extracted by N263.The extraction of Co(Ⅱ) is related to the concentration of NO_(2)^(-).The extraction efficiency of Co(Ⅱ) reaches the maximum of99.16%,while the extraction efficiencies of Ni(Ⅱ),Mn(Ⅱ),and Li(Ⅰ) are 9.27%-9.80% under the following conditions:30vol% of N263 and15vol% of iso-propyl alcohol in sulfonated kerosene,the volume ratio of the aqueous-to-organic phase is 2:1,the extraction time is 30 min,and1 M sodium nitrite in 0.1 MHNO_(3).The theoretical stages require for the Co(Ⅱ) extraction are performed in the McCabe–Thiele diagram,and the extraction efficiency of Co(Ⅱ) reaches more than 99.00% after three-stage counter-current extraction with Co(Ⅱ) concentration of 2544mg/L.When the HCl concentration is 1.5 M,the volume ratio of the aqueous-to-organic phase is 1:1,the back-extraction efficiency of Co(Ⅱ)achieves 91.41%.After five extraction and back-extraction cycles,the Co(Ⅱ) extraction efficiency can still reach 93.89%.The Co(Ⅱ) extraction efficiency in the actual leaching solution reaches 100%.展开更多
It is challenging to efficiently and economically recycle many lithium-ion batteries(LIBs)because of the low valuation of commodity metals and materials,such as LiFePO_(4).There are millions of tons of spent LIBs wher...It is challenging to efficiently and economically recycle many lithium-ion batteries(LIBs)because of the low valuation of commodity metals and materials,such as LiFePO_(4).There are millions of tons of spent LIBs where the barrier to recycling is economical,and to make recycling more feasible,it is required that the value of the processed recycled material exceeds the value of raw commodity materials.The presented research illustrates improved profitability and economics for recycling spent LIBs by utilizing the surplus energy in lithiated graphite to drive the preparation of organolithiums to add value to the recycled lithium materials.This study methodology demonstrates that the surplus energy of lithiated graphite obtained from spent LIBs can be utilized to prepare high-value organolithiums,thereby significantly improving the economic profitability of LIB recycling.Organolithiums(R-O-Li and R-Li)were prepared using alkyl alcohol(R-OH)and alkyl bromide(R-Br)as substrates,where R includes varying hindered alkyl hydrocarbons.The organolithiums extracted from per kilogram of recycled LIBs can increase the economic value between$29.5 and$226.5 kg^(−1) cell.The value of the organolithiums is at least 5.4 times the total theoretical value of spent materials,improving the profitability of recycling LIBs over traditional pyrometallurgical($0.86 kg^(−1) cell),hydrometallurgical($1.00 kg^(−1) cell),and physical direct recycling methods($5.40 kg^(−1) cell).展开更多
Phosphides possess large reversible capacity, small voltage hysteresis, and high energy efficiency, thus promising to be new anode candidates to replace commercial graphite for Li-ion batteries(LIBs).Through a facile ...Phosphides possess large reversible capacity, small voltage hysteresis, and high energy efficiency, thus promising to be new anode candidates to replace commercial graphite for Li-ion batteries(LIBs).Through a facile mechanochemistry method, we prepare a novel ternary phosphide of Ga0.5Al0.5P whose crystalline structure is determined to be a cation-disordered cubic zinc sulfide structure according to XRD refinement. As an anode for LIBs, the Ga0.5Al0.5P delivers a reversible capacity of 1,352 mA h g^(-1)at100 mA g^(-1)with an initial Coulombic efficiency(ICE) up to 90.0% based on a reversible Li-storage mechanism integrating intercalation and subsequent conversion processes as confirmed by various characterizations techniques including in-situ XRD, ex-situ Raman, and XPS and electrochemical characterizations.Graphite-modified Ga0.5Al0.5P exhibits a long-lasting cycling stability of retaining 1,182 mA h g^(-1)after300 cycles at 100 m A g^(-1), and 625 mA h g^(-1)after 800 cycles at 2,000 mA g^(-1), and a high-rate performance of remaining 342 m A h g^(-1)at 20,000 mA g^(-1). The outstanding electrochemical performances can be attributed to enhanced reaction kinetics enabled by the capacitive behaviors and the faster Liion diffusion enabled by the cation-mixing. Importantly, by tuning the cationic ratio, we develop a novel series of cation-mixed compounds of Ga_(1/3)Al_(2/3)P, Ga_(1/4)Al_(3/4)P, Ga_(1/5)Al_(4/5)P, Ga_(2/3)Al_(1/3)P, Ga_(3/4)Al_(1/4)P, and Ga_(4/5)Al_(1/5)P, which demonstrate large capacity, high ICE, and suitable anode potentials. Broadly, these compounds with disordered lattices probably present novel physicochemical properties, and high electrochemical performances, thus providing a new perspective for new materials design.展开更多
To reduce the carbon footprint in the transportation sector and improve overall vehicle efficiency,a large number of electric vehicles are being manufactured.This is due to the fact that environmental concerns and the...To reduce the carbon footprint in the transportation sector and improve overall vehicle efficiency,a large number of electric vehicles are being manufactured.This is due to the fact that environmental concerns and the depletion of fossil fuels have become significant global problems.Lithium-ion batteries(LIBs)have been distinguished themselves from alternative energy storage technologies for electric vehicles(EVs) due to superior qualities like high energy and power density,extended cycle life,and low maintenance cost to a competitive price.However,there are still certain challenges to be solved,like EV fast charging,longer lifetime,and reduced weight.For fast charging,the multi-stage constant current(MSCC) charging technique is an emerging solution to improve charging efficiency,reduce temperature rise during charging,increase charging/discharging capacities,shorten charging time,and extend the cycle life.However,there are large variations in the implementation of the number of stages,stage transition criterion,and C-rate selection for each stage.This paper provides a review of these problems by compiling information from the literature.An overview of the impact of different design parameters(number of stages,stage transition,and C-rate) that the MSCC charging techniques have had on the LIB performance and cycle life is described in detail and analyzed.The impact of design parameters on lifetime,charging efficiency,charging and discharging capacity,charging speed,and rising temperature during charging is presented,and this review provides guidelines for designing advanced fast charging strategies and determining future research gaps.展开更多
Si is considered as the promising anode materials for lithium-ion batteries(LIBs)owing to their high capacities of 4200 mAh g-1and natural abundancy.However,severe electrode pulverization and poor electronic and Li-io...Si is considered as the promising anode materials for lithium-ion batteries(LIBs)owing to their high capacities of 4200 mAh g-1and natural abundancy.However,severe electrode pulverization and poor electronic and Li-ionic conductivities hinder their practical applications.To resolve the afore-mentioned problems,we first demonstrate a cation-mixed disordered lattice and unique Li storage mechanism of single-phase ternary GaSiP_(2)compound,where the liquid metallic Ga and highly reactive P are incorporated into Si through a ball milling method.As confirmed by experimental and theoretical analyses,the introduced Ga and P enables to achieve the stronger resistance against volume variation and metallic conductivity,respectively,while the cation-mixed lattice provides the faster Li-ionic diffusion capability than those of the parent GaP and Si phases.The resulting GaSiP_(2)electrodes delivered the high specific capacity of 1615 mAh g-1and high initial Coulombic efficiency of 91%,while the graphite-modified GaSiP_(2)(GaSiP_(2)@C)achieved 83%of capacity retention after 900 cycles and high-rate capacity of 800 at 10,000 mA g-1.Furthermore,the LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)//Ga SiP_(2)@C full cells achieved the high specific capacity of 1049 mAh g-1after 100 cycles,paving a way for the rational design of high-performance LIB anode materials.展开更多
Lithium,as the lightest and lowest potential metal,is an ideal "battery metal" and the core strategic metal of the new energy industry revolution.Recovering lithium from spent lithium batteries(LIBs)has beco...Lithium,as the lightest and lowest potential metal,is an ideal "battery metal" and the core strategic metal of the new energy industry revolution.Recovering lithium from spent lithium batteries(LIBs)has become one of the significant approaches to obtaining lithium resources.At present,the lithium extraction being generally placed at the last step of the spent LIBs recovery process has puzzles such as high acid consumption,low Li recovery purity and low recovery efficiency.Selective lithium extraction at the first step of the recovery process can effectively solve those puzzles.Since lithium leaching is a non-spontaneous reaction requiring additional energy to achieve,it is found that these methods can be divided into five ways according to the different types of energy driving the reaction occurring:(ⅰ)electric energy driving lithium extraction;(ⅱ) chemical energy driving lithium extraction;(ⅲ) mechanical energy driving lithium extraction;(ⅳ) thermal energy driving lithium extraction;(ⅴ) other energy driving lithium extraction.Through the analysis of the principle,reaction process and results of recovering lithium methods can provide a few directions for scholars’ subsequent research.It is necessary to speed up the exploration of the principle of these methods.It is expected that this study could provide a reference for the research on the selective lithium extraction.展开更多
This study explored the complex effect of graphite tortuosity on the electrochemical performance of Ni-rich NCA90 Li-ion batteries(LIBs).Different levels of graphite anode tortuosity were analyzed,revealing that low-t...This study explored the complex effect of graphite tortuosity on the electrochemical performance of Ni-rich NCA90 Li-ion batteries(LIBs).Different levels of graphite anode tortuosity were analyzed,revealing that low-tortuosity electrodes had better graphite utilization.The in-plane tortuosities of the graphite anode electrodes examined were 1.70,1.94,2.05,and 2.18,while their corresponding through-plane tortuosities were 4.74,6.94,8.19,and 9.80.In-operando X-ray diffraction and differential electrochemical mass spectrometry were employed to investigate the charge storage mechanism and gas evolution.The study revealed that while graphite electrode tortuosity impacted the amount of Li present in the lithiated graphite phase due to diffusion constraints,it did not affect gas generation.The Li-ion utilization in low-tortuosity electrodes was higher than that in high-tortuosity electrodes because of solid-diffusion limitations.Additionally,the galvanostatic intermittent titration technique(GITT) was employed to investigate a lithium-ion diffusion coefficient.Our results indicate that the lithium-ion diffusion coefficient exhibits a significant difference only during LiC_(6) phase transition.We also observed that the use of a lower tortuosity electrode leads to improved lithium-ion insertion.Consequently,graphite utilization is influenced by the porous electrode design.Safety tests adhering to UN38.3 guidelines verified battery safety.The study demonstrated the practical application of optimized NCA90 LIB cells with diverse graphite electrode tortuosities in a high-performance Lamborghini GoKart,paving the way for further advancements in Ni-rich LIB technology.展开更多
The demand for Li-ion batteries (LIBs) for vehicles is increasing. However, LIBs use valuable rare metals, such as Co and Li, aswell as environmentally toxic reagents. LIBs are also necessary to utilize for a long per...The demand for Li-ion batteries (LIBs) for vehicles is increasing. However, LIBs use valuable rare metals, such as Co and Li, aswell as environmentally toxic reagents. LIBs are also necessary to utilize for a long period and to recycle useful materials. The reduction, reuse,and recycle (3R) of spent LIBs is an important consideration in constructing a circular economy. In this paper, a flowsheet of the 3R of LIBs isproposed and methods to reduce the utilization of valuable rare metals and the amount of spent LIBs by remanufacturing used parts and designingnew batteries considering the concept of 3R are described. Next, several technological processes for the reuse and recycling of LIBs are introduced.These technologies include discharge, sorting, crushing, binder removal, physical separation, and pyrometallurgical and hydrometallurgicalprocessing. Each process, as well as the related physical, chemical, and biological treatments, are discussed. Finally, the problem of developedtechnologies and future subjects for 3R of LIBs are described.展开更多
基金financially supported by the National Natural Science Foundation of China(NSFC)(52274295)the Natural Science Foundation of Hebei Province(E2020501001,E2021501029,A2021501007,E2022501028,E2022501029)+5 种基金the Natural Science Foundation-Steel,the Iron Foundation of Hebei Province(No.E2022501030)the Performance subsidy fund for Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province(22567627H)the Science and Technology Project of Hebei Education Department(ZD2022158)the Central Guided Local Science and Technology Development Fund Project of Hebei province(226Z4401G)the China Scholarship Council(No.202206080061,202206050119)the 2023 Hebei Provincial Postgraduate Student Innovation Ability training funding project(CXZZSS2023195)。
文摘The recycling and reutilization of spent lithium-ion batteries(LIBs)have become an important measure to alleviate problems like resource scarcity and environmental pollution.Although some progress has been made,battery recycling technology still faces challenges in terms of efficiency,effectiveness and environmental sustainability.This review aims to systematically review and analyze the current status of spent LIB recycling,and conduct a detailed comparison and evaluation of different recycling processes.In addition,this review introduces emerging recycling techniques,including deep eutectic solvents,molten salt roasting,and direct regeneration,with the intent of enhancing recycling efficiency and diminishing environmental repercussions.Furthermore,to increase the added value of recycled materials,this review proposes the concept of upgrading recycled materials into high value-added functional materials,such as catalysts,adsorbents,and graphene.Through life cycle assessment,the paper also explores the economic and environmental impacts of current battery recycling and highlights the importance that future recycling technologies should achieve a balance between recycling efficiency,economics and environmental benefits.Finally,this review outlines the opportunities and challenges of recycling key materials for next-generation batteries,and proposes relevant policy recommendations to promote the green and sustainable development of batteries,circular economy,and ecological civilization.
基金supported by the National Natural Science Foundation of China(21975074,91834301)the Innovation Program of Shanghai Municipal Education Commissionthe Fundamental Research Funds for the Central Universities.
文摘Developing single-crystalline Ni-rich cathodes is an effective strategy to improve the safety and cycle life of Li-ion batteries(LIBs).However,the easy-to-loss of Li and O in high-temperature lithiation results in unsatisfactory ordered layered structure and stoichiometry.Herein,we demonstrate the synthesis of highly-ordered and fully-stoichiometric single-crystalline LiNi_(0.83)Co_(0.12)Mn_(0.05)O_(2)(SC-NCM83)cathodes by the regulation of pre-lithiation kinetics.The well-balanced pre-lithiation kinetics have been proved to greatly improve the proportion of layered phase in the intermediate by inhibiting the formation of metastable spinel phase,which promoted the rapid transformation of the intermediate into highly-ordered layered SC-NCM83 in the subsequent lithiation process.After coating a layer of Li_(2)O–B_(2)O_(3),the resultant cathodes deliver superior cycling stability with 90.9%capacity retention at 1C after 300 cycles in pouch-type full batteries.The enhancement mechanism has also been clarified.These findings exhibit fundamental insights into the pre-lithiation kinetics process for guiding the synthesis of high-quality singlecrystalline Ni-rich cathodes.
基金supported by the National Natural Science Foundation of China (No.92372123)the Natural Science Foundation of Guangdong Province (No.2022B1515020005)the Department of Science and Technology of Guangdong Province (No.2020B0101030005)
文摘Fast-charging and low temperature operation are of vital importance for the further development of lithium-ion batteries(LIBs),which is hindered by the utilization of conventional carbonate-based electrolytes due to their slow kinetics,narrow operating temperature and voltage range.Herein,an acetonitrile(AN)-based localized high-concentration electrolyte(LHCE)is proposed to retain liquid state and high ionic conductivity at ultra-low temperatures while possessing high oxidation stability.We originally reveal the excellent thermal shielding effect of non-solvating diluent to prevent the aggregation of Li^(+) solvates as temperature drops,maintaining the merits of fast Li transport and facile desolvation as at room temperature,which bestows the graphite electrode with remarkable low temperature performance(264 mA h g^(-1) at-20 C).Remarkably,an extremely high capacity retention of 97%is achieved for high-voltage high-energy graphite||NCM batteries after 250 cycles at-20 C,and a high capacity of 110 mA h g^(-1)(71%of its room-temperature capacity)is retained at-30°C.The study unveils the key role of the non-solvating diluents and provides instructive guidance in designing electrolytes towards fast-charging and low temperature LIBs.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(Ministry of Science and ICT(RS-2023-00254424)Ministry of Education(2020R1A6A1A03038540))。
文摘This review highlights the importance of recovering valuable metals from spent Li-ion battery(LIB)cathodes through the resynthesis of cathode active materials(CAMs).The resynthesis process of CAMs,a promising recycling method that directly produces CAM precursors from LIB leachate,is explored.This process encompasses six key steps,including pretreatment,leaching,purification,adjustment of metal concentrations,precursor synthesis,and sintering.The review also investigates the potential introduction of impurity elements during CAM resynthesis and provides tolerance levels for these impurities based on thorough reference analysis.Additionally,it addresses challenges related to the commercialization of the resynthesis process.Notably,this review represents the first comprehensive assessment of CAM resynthesis,including the systematic evaluation of 12 impurity elements(Fe,Li,Al,Cu,C,P,F,Na,Cl,S,Mg,and Zn).Overall,this comprehensive review is poised to support the commercial development of resynthesized CAMs by offering valuable guidelines for managing impurities and streamlining the purification process.
基金the National Natural Science Foundation of China(No.52173246)the Science and Technology Planning Project of Guangzhou City,China(No.2023B03J1278)。
文摘The worldwide proliferation of portable electronics has resulted in a dramatic increase in the number of spent lithium-ion batteries(LIBs).However,traditional recycling methods still have limitations because of such huge amounts of spent LIBs.Therefore,we proposed an ecofriendly and sustainable double recycling strategy to concurrently reuse the cathode(LiCoO_(2))and anode(graphite)materials of spent LIBs and recycled LiCoPO_(4)/graphite(RLCPG)in Li^(+)/PF^(-)_(6) co-de/intercalation dual-ion batteries.The recycle-derived dualion batteries of Li/RLCPG show impressive electrochemical performance,with an appropriate discharge capacity of 86.2 mAh·g^(-1) at25 mA·g^(-1) and 69%capacity retention after 400 cycles.Dual recycling of the cathode and anode from spent LIBs avoids wastage of resources and yields cathode materials with excellent performance,thereby offering an ecofriendly and sustainable way to design novel secondary batteries.
基金financially supported by the Young Scientists Fund of the National Natural Science Foundation of China(Nos.52104395 and 52304365)the Science and Technology Planning Project of Guangzhou,China(Nos.202102021080 and 2024A04J10006)+1 种基金the National Key R&D Program of China(No.2021YFC2902605)the Natural Science Foundation of Guangdong Province,China(Nos.2023A1515030145 and 2023A1515011847)。
文摘Traditional hydrometallurgical methods for recovering spent lithium-ion batteries(LIBs)involve acid leaching to simultaneously extract all valuable metals into the leachate.These methods usually are followed by a series of separation steps such as precipitation,extraction,and stripping to separate the individual valuable metals.In this study,we present a process for selectively leaching lithium through the synergistic effect of sulfuric and oxalic acids.Under optimal leaching conditions(leaching time of 1.5 h,leaching temperature of 70°C,liquid-solid ratio of 4 mL/g,oxalic acid ratio of 1.3,and sulfuric acid ratio of 1.3),the lithium leaching efficiency reached89.6%,and the leaching efficiencies of Ni,Co,and Mn were 12.8%,6.5%,and 21.7%.X-ray diffraction(XRD)and inductively coupled plasma optical emission spectrometer(ICP-OES)analyses showed that most of the Ni,Co,and Mn in the raw material remained as solid residue oxides and oxalates.This study offers a new approach to enriching the relevant theory for selectively recovering lithium from spent LIBs.
基金supported by Key R&D Program of Zhejiang Province,China (No.2022C03061)the National Natural Science Foundation of China (No.52074204)the Fundamental Research Funds for the Central Universities (No.2023-vb-032).
文摘The proper recycling of spent lithium-ion batteries(LIBs)can promote the recovery and utilization of valuable resources,while also negative environmental effects resulting from the presence of toxic and hazardous substances.In this study,a new environmentally friendly hydro-metallurgical process was proposed for leaching lithium(Li),nickel(Ni),cobalt(Co),and manganese(Mn)from spent LIBs using sulfuric acid with citric acid as a reductant.The effects of the concentration of sulfuric acid,the leaching temperature,the leaching time,the solid-liquid ratio,and the reducing agent dosage on the leaching behavior of the above elements were investigated.Key parameters were optimized using response surface methodology(RSM)to maximize the recovery of metals from spent LIBs.The maxim-um recovery efficiencies of Li,Ni,Co,and Mn can reach 99.08%,98.76%,98.33%,and 97.63%.under the optimized conditions(the sulfuric acid concentration was 1.16 mol/L,the citric acid dosage was 15wt%,the solid-liquid ratio was 40 g/L,and the temperature was 83℃ for 120 min),respectively.It was found that in the collaborative leaching process of sulfuric acid and citric acid,the citric acid initially provided strong reducing CO_(2)^(-),and the transition metal ions in the high state underwent a reduction reaction to produce transition metal ions in the low state.Additionally,citric acid can also act as a proton donor and chelate with lower-priced transition metal ions,thus speeding up the dissolution process.
基金Project supported by the Science Fund of the Guangdong Major Project of Basic and Applied Basic Research,China(Grant No.2019B030302011)the Fund of the Science and Technology Program of Guangzhou,China(Grant No.202201010090)。
文摘Combining the first-principles calculations and structural enumeration with recognition,the delithiation process of LiNiO_(2)is investigated,where various supercell shapes are considered in order to obtain the formation energy of Li_(x)NiO_(2).Meanwhile,the voltage profile is simulated and the ordered phases of lithium vacancies corresponding to concentrations of 1/4,2/5,3/7,1/2,2/3,3/4,5/6,and 6/7 are predicted.To understand the capacity decay in the experiment during the charge/discharge cycles,deoxygenation and Li/Ni antisite defects are calculated,revealing that the chains of oxygen vacancies will be energetically preferrable.It can be inferred that in the absence of oxygen atom in high delithiate state,the diffusion of Ni atoms is facilitated and the formation of Li/Ni antisite is induced.
基金based upon research funded by the Iran National Science Foundation. (INSF)under project No.4022382 and 4025075。
文摘Two-dimensional(2D)metal-organic frameworks(MOFs)are rapidly emerging as a unique class of mushrooming family of 2D materials offering distinctive features,such as hierarchical porosity,extensive surface area,easily available active sites,and versatile,adaptable structures.These promising characteristics have positioned them as highly appealing alternatives for a wide range of applications in energy storage technologies,including lithium batteries.Nevertheless,the poor conductivity and limited stability of 2D MOFs have limited their real applications in electrochemical energy storage.These limitations have therefore warranted ongoing research to enhance the performance of 2D MOFs.Given the significance of 2D MOF-based materials as an emerging class of advanced materials,a multitude of strategy has been devised to address these challenges such as synthesizing 2D conductive MOFs and derivatives along with 2D MOF hybridization.One promising approach involves the use of 2D MOF derivatives,including transition metal oxides,which due to their abundant unsatu rated active metal sites and shorter diffusion paths,offer superior electrochemical performance.Additionally,by combining pristine 2D MOFs with other materials,hybrid 2D MOF materials can be created.These hybrids,with their enhanced stability and conductivity,can be directly utilized as active materials in lithium batteries.In the present review,we categorize 2D MOF-based materials into three distinct groups:pristine 2D MOFs,2D MOFderived materials,and 2D MOF hybrid materials.The synthesis methods for each group,along with their specific applications as electrode materials in lithium-ion batteries,are discussed in detail.This comprehensive review provides insights into the potential of 2D MOFs while highlighting the opportunities and challenges that are present in this evolving field.
基金supported by the National Natural Science Foundation of China(No.52274346).
文摘Graphitized spent carbon cathode(SCC)is a hazardous solid waste generated in the aluminum electrolysis process.In this study,a flotation-acid leaching process is proposed for the purification of graphitized SCC,and the use of the purified SCC as an anode material for lithium-ion batteries is explored.The flotation and acid leaching processes were separately optimized through one-way experiments.The maximum SCC carbon content(93wt%)was achieved at a 90%proportion of−200-mesh flotation particle size,a slurry concentration of 10wt%,a rotation speed of 1600 r/min,and an inflatable capacity of 0.2 m^(3)/h(referred to as FSCC).In the subsequent acid leaching process,the SCC carbon content reached 99.58wt%at a leaching concentration of 5 mol/L,a leaching time of 100 min,a leaching temperature of 85°C,and an HCl/FSCC volume ratio of 5:1.The purified graphitized SCC(referred to as FSCC-CL)was utilized as an anode material,and it exhibited an initial capacity of 348.2 mAh/g at 0.1 C and a reversible capacity of 347.8 mAh/g after 100 cycles.Moreover,compared with commercial graphite,FSCC-CL exhibited better reversibility and cycle stability.Thus,purified SCC is an important candidate for anode material,and the flotation-acid leaching purification method is suitable for the resourceful recycling of SCC.
基金supported by a research program through the National Research Foundation of Korea (NRF),funded by MSIT and MEST (NRF-2018R1A5A1025594,NRF-2021R1A4A1022198,and 2022R1A2B5B01001943)。
文摘We propose a method for producing composite materials(hTNO@C_(60))comprising crystalline C_(60)particles and hollow-structu red TiNb_(2)O_(7)(hTNO)nanofibers via facile liquid-liquid interface precipitation followed by low-temperature annealing.This allows the systematic design of crystalline C_(60)as an active material for Li-ion battery anodes.The hTNO@C_(60)composite demonstrates outstanding cyclic stability,retaining a capacity of 465 mA h g^(-1)after 1,000 cycles at 1 A g^(-1)It maintains a capacity of 98 mA h g^(-1)even after16,000 ultralong cycles at 8 A g^(-1)The enhancement in electrochemical properties is attributed to the successful growth and uniform doping of crystalline C_(60),resulting in improved electrical conductivity.The excellent electrochemical stability and properties of these composites make them promising anode materials.
基金the Brazilian Federal Agency for Support and Evaluation of Graduate Education(CAPES)the Brazilian National Council for Scientific and Technological Development(CNPq,306239/2019-1)for their financial support。
文摘Lithium-ion batteries(LIBs)containing graphite as anode material and LiCoO_(2),LiMn_(2)O_(4),and LiNi_(x)Mn_(y)Co_(z)O_(2) as cathode materials are the most used worldwide because of their high energy density,capacitance,durability,and safety.However,such widespread use implies the generation of large amounts of electronic waste.It is estimated that more than 11 million ton of LIBs waste will have been generated by 2030.Battery recycling can contribute to minimizing environmental contamination and reducing production costs through the recovery of high-value raw materials such as lithium,cobalt,and nickel.The most common processes used to recycle spent LIBs are pyrometallurgical,biometallurgical,and hydrometallurgical.Given the current scenario,it is necessary to develop environmentally friendly methods to recycle batteries and synthesize materials with multiple technological applications.This study presents a review of industrial and laboratory processes for recycling spent LIBs and producing materials that can be used in new batteries,energy storage devices,electrochemical sensors,and photocatalytic reactions.
基金financially supported by the National Natural Science Foundation of China(No.51804084)the Natural Science Foundation of Guangxi Province,China(No.2021GXNSFAA220096)the Science and Technology Major Project of Guangxi Province,China(No.AA17204100)。
文摘To effectively separate and recover Co(Ⅱ) from the leachate of spent lithium-ion battery cathodes,we investigated solvent extraction with quaternary ammonium salt N263 in the sodium nitrite system.NO_(2)^(-)combines with Co(Ⅱ) to form an anion [Co(NO_(2))_(3)]^(-),and it is then extracted by N263.The extraction of Co(Ⅱ) is related to the concentration of NO_(2)^(-).The extraction efficiency of Co(Ⅱ) reaches the maximum of99.16%,while the extraction efficiencies of Ni(Ⅱ),Mn(Ⅱ),and Li(Ⅰ) are 9.27%-9.80% under the following conditions:30vol% of N263 and15vol% of iso-propyl alcohol in sulfonated kerosene,the volume ratio of the aqueous-to-organic phase is 2:1,the extraction time is 30 min,and1 M sodium nitrite in 0.1 MHNO_(3).The theoretical stages require for the Co(Ⅱ) extraction are performed in the McCabe–Thiele diagram,and the extraction efficiency of Co(Ⅱ) reaches more than 99.00% after three-stage counter-current extraction with Co(Ⅱ) concentration of 2544mg/L.When the HCl concentration is 1.5 M,the volume ratio of the aqueous-to-organic phase is 1:1,the back-extraction efficiency of Co(Ⅱ)achieves 91.41%.After five extraction and back-extraction cycles,the Co(Ⅱ) extraction efficiency can still reach 93.89%.The Co(Ⅱ) extraction efficiency in the actual leaching solution reaches 100%.
基金National Natural Science Foundation of China,Grant/Award Number:51232005Key-Area Research and Development Program of Guangdong Province,Grant/Award Number:2020B090919003+1 种基金Joint Fund of the National Natural Science Foundation of China,Grant/Award Number:U1401243Shenzhen Technical Plan Project,Grant/Award Number:CYJ20170412170911187。
文摘It is challenging to efficiently and economically recycle many lithium-ion batteries(LIBs)because of the low valuation of commodity metals and materials,such as LiFePO_(4).There are millions of tons of spent LIBs where the barrier to recycling is economical,and to make recycling more feasible,it is required that the value of the processed recycled material exceeds the value of raw commodity materials.The presented research illustrates improved profitability and economics for recycling spent LIBs by utilizing the surplus energy in lithiated graphite to drive the preparation of organolithiums to add value to the recycled lithium materials.This study methodology demonstrates that the surplus energy of lithiated graphite obtained from spent LIBs can be utilized to prepare high-value organolithiums,thereby significantly improving the economic profitability of LIB recycling.Organolithiums(R-O-Li and R-Li)were prepared using alkyl alcohol(R-OH)and alkyl bromide(R-Br)as substrates,where R includes varying hindered alkyl hydrocarbons.The organolithiums extracted from per kilogram of recycled LIBs can increase the economic value between$29.5 and$226.5 kg^(−1) cell.The value of the organolithiums is at least 5.4 times the total theoretical value of spent materials,improving the profitability of recycling LIBs over traditional pyrometallurgical($0.86 kg^(−1) cell),hydrometallurgical($1.00 kg^(−1) cell),and physical direct recycling methods($5.40 kg^(−1) cell).
基金supported by the National Natural Science Foundation of China (22178068)the Brain Pool program (2021H1D3A2A02045576) funded by National Research Foundation of Korea (NRF)。
文摘Phosphides possess large reversible capacity, small voltage hysteresis, and high energy efficiency, thus promising to be new anode candidates to replace commercial graphite for Li-ion batteries(LIBs).Through a facile mechanochemistry method, we prepare a novel ternary phosphide of Ga0.5Al0.5P whose crystalline structure is determined to be a cation-disordered cubic zinc sulfide structure according to XRD refinement. As an anode for LIBs, the Ga0.5Al0.5P delivers a reversible capacity of 1,352 mA h g^(-1)at100 mA g^(-1)with an initial Coulombic efficiency(ICE) up to 90.0% based on a reversible Li-storage mechanism integrating intercalation and subsequent conversion processes as confirmed by various characterizations techniques including in-situ XRD, ex-situ Raman, and XPS and electrochemical characterizations.Graphite-modified Ga0.5Al0.5P exhibits a long-lasting cycling stability of retaining 1,182 mA h g^(-1)after300 cycles at 100 m A g^(-1), and 625 mA h g^(-1)after 800 cycles at 2,000 mA g^(-1), and a high-rate performance of remaining 342 m A h g^(-1)at 20,000 mA g^(-1). The outstanding electrochemical performances can be attributed to enhanced reaction kinetics enabled by the capacitive behaviors and the faster Liion diffusion enabled by the cation-mixing. Importantly, by tuning the cationic ratio, we develop a novel series of cation-mixed compounds of Ga_(1/3)Al_(2/3)P, Ga_(1/4)Al_(3/4)P, Ga_(1/5)Al_(4/5)P, Ga_(2/3)Al_(1/3)P, Ga_(3/4)Al_(1/4)P, and Ga_(4/5)Al_(1/5)P, which demonstrate large capacity, high ICE, and suitable anode potentials. Broadly, these compounds with disordered lattices probably present novel physicochemical properties, and high electrochemical performances, thus providing a new perspective for new materials design.
文摘To reduce the carbon footprint in the transportation sector and improve overall vehicle efficiency,a large number of electric vehicles are being manufactured.This is due to the fact that environmental concerns and the depletion of fossil fuels have become significant global problems.Lithium-ion batteries(LIBs)have been distinguished themselves from alternative energy storage technologies for electric vehicles(EVs) due to superior qualities like high energy and power density,extended cycle life,and low maintenance cost to a competitive price.However,there are still certain challenges to be solved,like EV fast charging,longer lifetime,and reduced weight.For fast charging,the multi-stage constant current(MSCC) charging technique is an emerging solution to improve charging efficiency,reduce temperature rise during charging,increase charging/discharging capacities,shorten charging time,and extend the cycle life.However,there are large variations in the implementation of the number of stages,stage transition criterion,and C-rate selection for each stage.This paper provides a review of these problems by compiling information from the literature.An overview of the impact of different design parameters(number of stages,stage transition,and C-rate) that the MSCC charging techniques have had on the LIB performance and cycle life is described in detail and analyzed.The impact of design parameters on lifetime,charging efficiency,charging and discharging capacity,charging speed,and rising temperature during charging is presented,and this review provides guidelines for designing advanced fast charging strategies and determining future research gaps.
基金supported by National Natural Science Foundation of China(No.22178068)the Brain Pool(BP)program(No.2021H1D3A2A02045576)funded by National Research Foundation of KoreaNational Research Foundation of Korea grant funded by the Korea government(MSIT)(No.NRF-2020R1A3B2079803 and No.2021M3D1A2043791)。
文摘Si is considered as the promising anode materials for lithium-ion batteries(LIBs)owing to their high capacities of 4200 mAh g-1and natural abundancy.However,severe electrode pulverization and poor electronic and Li-ionic conductivities hinder their practical applications.To resolve the afore-mentioned problems,we first demonstrate a cation-mixed disordered lattice and unique Li storage mechanism of single-phase ternary GaSiP_(2)compound,where the liquid metallic Ga and highly reactive P are incorporated into Si through a ball milling method.As confirmed by experimental and theoretical analyses,the introduced Ga and P enables to achieve the stronger resistance against volume variation and metallic conductivity,respectively,while the cation-mixed lattice provides the faster Li-ionic diffusion capability than those of the parent GaP and Si phases.The resulting GaSiP_(2)electrodes delivered the high specific capacity of 1615 mAh g-1and high initial Coulombic efficiency of 91%,while the graphite-modified GaSiP_(2)(GaSiP_(2)@C)achieved 83%of capacity retention after 900 cycles and high-rate capacity of 800 at 10,000 mA g-1.Furthermore,the LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)//Ga SiP_(2)@C full cells achieved the high specific capacity of 1049 mAh g-1after 100 cycles,paving a way for the rational design of high-performance LIB anode materials.
基金financially supported by the National Key Research and Development Program of China(2019YFC1907900)the Key Project of Research and Development Plan of Jiangxi Province(20201BBE51007)the National Science Fund for Distinguished Young Scholars(52125002)。
文摘Lithium,as the lightest and lowest potential metal,is an ideal "battery metal" and the core strategic metal of the new energy industry revolution.Recovering lithium from spent lithium batteries(LIBs)has become one of the significant approaches to obtaining lithium resources.At present,the lithium extraction being generally placed at the last step of the spent LIBs recovery process has puzzles such as high acid consumption,low Li recovery purity and low recovery efficiency.Selective lithium extraction at the first step of the recovery process can effectively solve those puzzles.Since lithium leaching is a non-spontaneous reaction requiring additional energy to achieve,it is found that these methods can be divided into five ways according to the different types of energy driving the reaction occurring:(ⅰ)electric energy driving lithium extraction;(ⅱ) chemical energy driving lithium extraction;(ⅲ) mechanical energy driving lithium extraction;(ⅳ) thermal energy driving lithium extraction;(ⅴ) other energy driving lithium extraction.Through the analysis of the principle,reaction process and results of recovering lithium methods can provide a few directions for scholars’ subsequent research.It is necessary to speed up the exploration of the principle of these methods.It is expected that this study could provide a reference for the research on the selective lithium extraction.
基金financially supported under the Program Management Unit for National Competitiveness Enhancement (PMUC) by the Office of the National Higher Education Science Research and Innovation Policy Council (NXPO) PTT Public Company LimitedIRPC Public Company Limited, Thailand Science Research and Innovation (TSRI) under the Fundamental Fund by TSRI (FRB660004/0457)+2 种基金Vidyasirimedhi Institute of Science and Technology (VISTEC)Energy Policy and Planning Office (EPPO), Ministry of Energy, Thailandthe Frontier Research Centre (FRC) supported this work, VISTEC。
文摘This study explored the complex effect of graphite tortuosity on the electrochemical performance of Ni-rich NCA90 Li-ion batteries(LIBs).Different levels of graphite anode tortuosity were analyzed,revealing that low-tortuosity electrodes had better graphite utilization.The in-plane tortuosities of the graphite anode electrodes examined were 1.70,1.94,2.05,and 2.18,while their corresponding through-plane tortuosities were 4.74,6.94,8.19,and 9.80.In-operando X-ray diffraction and differential electrochemical mass spectrometry were employed to investigate the charge storage mechanism and gas evolution.The study revealed that while graphite electrode tortuosity impacted the amount of Li present in the lithiated graphite phase due to diffusion constraints,it did not affect gas generation.The Li-ion utilization in low-tortuosity electrodes was higher than that in high-tortuosity electrodes because of solid-diffusion limitations.Additionally,the galvanostatic intermittent titration technique(GITT) was employed to investigate a lithium-ion diffusion coefficient.Our results indicate that the lithium-ion diffusion coefficient exhibits a significant difference only during LiC_(6) phase transition.We also observed that the use of a lower tortuosity electrode leads to improved lithium-ion insertion.Consequently,graphite utilization is influenced by the porous electrode design.Safety tests adhering to UN38.3 guidelines verified battery safety.The study demonstrated the practical application of optimized NCA90 LIB cells with diverse graphite electrode tortuosities in a high-performance Lamborghini GoKart,paving the way for further advancements in Ni-rich LIB technology.
文摘The demand for Li-ion batteries (LIBs) for vehicles is increasing. However, LIBs use valuable rare metals, such as Co and Li, aswell as environmentally toxic reagents. LIBs are also necessary to utilize for a long period and to recycle useful materials. The reduction, reuse,and recycle (3R) of spent LIBs is an important consideration in constructing a circular economy. In this paper, a flowsheet of the 3R of LIBs isproposed and methods to reduce the utilization of valuable rare metals and the amount of spent LIBs by remanufacturing used parts and designingnew batteries considering the concept of 3R are described. Next, several technological processes for the reuse and recycling of LIBs are introduced.These technologies include discharge, sorting, crushing, binder removal, physical separation, and pyrometallurgical and hydrometallurgicalprocessing. Each process, as well as the related physical, chemical, and biological treatments, are discussed. Finally, the problem of developedtechnologies and future subjects for 3R of LIBs are described.