Tuning Strong Metal-support Interactions(SMSI)is a key strategy to obtain highly active catalysts,but conventional methods usually enable TiO_(x) encapsulation of noble metal components to minimize the exposure of nob...Tuning Strong Metal-support Interactions(SMSI)is a key strategy to obtain highly active catalysts,but conventional methods usually enable TiO_(x) encapsulation of noble metal components to minimize the exposure of noble metals.This study demonstrates a catalyst preparation method to modulate a weak encapsulation of Pt metal nanoparticles(NPs)with the supported TiO_(2),achieving the moderate suppression of SMSI effects.The introduction of silica inhibits this encapsulation,as reflected in the characterization results such as XPS and HRTEM,while the Ti^(4+) to Ti^(3+) conversion due to SMSI can still be found on the support surface.Furthermore,the hydrogenation of cinnamaldehyde(CAL)as a probe reaction revealed that once this encapsulation behavior was suppressed,the adsorption capacity of the catalyst for small molecules like H_(2) and CO was enhanced,which thereby improved the catalytic activity and facilitated the hydrogenation of CAL.Meanwhile,the introduction of SiO_(2) also changed the surface structure of the catalyst,which inhibited the occurrence of the acetal reaction and improved the conversion efficiency of C=O and C=C hydrogenation.Systematic manipulation of SMSI formation and its consequence on the performance in catalytic hydrogenation reactions are discussed.展开更多
Platinum group metals(PGMs),especially Pd,Pt,and Rh,have drawn great attention due to their unique features.Direct separation of Pd and Pt from highly acidic automobile catalyst leach liquors is disturbed by various f...Platinum group metals(PGMs),especially Pd,Pt,and Rh,have drawn great attention due to their unique features.Direct separation of Pd and Pt from highly acidic automobile catalyst leach liquors is disturbed by various factors.This work investigates the effect of various parameters including the acidity,extractant concentration,phase ratio A/O,and diluents on the Pd and Pt extraction and their stripping behaviors.The results show that the Pd and Pt are successfully separated from simulated leach liquor of spent automobile catalysts with monothioCyanex 272 and trioctylamine(TOA).Monothio-Cyanex 272 shows strong extractability and specific selectivity for Pd,and only one single stage is needed to recover more than 99.9% of Pd,leaving behind all the Pt,Rh,and base metals of Fe,Mg,Ce,Ni,Cu,and Co in the raffinate.The loaded Pd is efficiently stripped by acidic thiourea solutions.TOA shows strong extractability for Pt and Fe at acidity of 6 mol·L^(–1) HCl.More than 99.9% of Pt and all of the Fe are extracted into the organic phase after two stages of countercurrent extraction.Diluted HCl easily scrubs the loaded base metals(Fe,Cu,and Co).The loaded Pt is efficiently stripped by 1.0 mol·L^(–1) thiourea and 0.05–0.1 mol·L^(–1) Na OH solutions.Monothio-Cyanex 272 and TOA can realize the separation of Pd and Pt from highly acidic leach liquor of spent automobile catalysts.展开更多
A new method was developed to optimize the microwave heating thickness of the spent automobile catalyst in order to improve the uniform distribution of the temperature field. The average penetration depth and the micr...A new method was developed to optimize the microwave heating thickness of the spent automobile catalyst in order to improve the uniform distribution of the temperature field. The average penetration depth and the microwave heating thickness of the spent automobile catalyst were calculated by Gauss model and numerical calculation based on dielectric loss tangent and reflection loss. The results showed that the spent automobile catalyst was a medium loss material. The average penetration depth was 1.11 m from room temperature to 800 ℃. The optimum microwave heating thickness of the spent automobile catalyst was about 0.83 m or 0.75 times of the average penetration depth. Industrial application analysis indicated that the optimization of heating thickness could improve the uniform distribution of the temperature field and reduce energy consumption.展开更多
Auto-catalysts were the largest consumers of platinum group metals and the most important secondary resources, recovery of PGMs from spent auto-catalysts by leaching with various acidities were investigated. The leach...Auto-catalysts were the largest consumers of platinum group metals and the most important secondary resources, recovery of PGMs from spent auto-catalysts by leaching with various acidities were investigated. The leaching thermodynamics of PGMs at 363 K was first discussed. At 363 K the higher the acidities of HCl, the higher the leaching recoveries of PGMs, and the sequence of leaching recovery was Pd>Pt>Rh. When H2SO4 used alone, the leaching recoveries of PGMs was low, when the acidity of H2SO4 increasing, the leaching recovery of Rh kept stable.展开更多
The structure and catalytic properties of PtSn catalysts supported on SUZ-4 and ZSM-5 zeolite have been studied by using various experimental techniques including XRD,nitrogen adsorption,NH3-TPD,TG,H2-TPR and TPO tech...The structure and catalytic properties of PtSn catalysts supported on SUZ-4 and ZSM-5 zeolite have been studied by using various experimental techniques including XRD,nitrogen adsorption,NH3-TPD,TG,H2-TPR and TPO techniques combined with propane dehydrogenation tests.It has been shown that SUZ-4-supported PtSnNa(PtSnNa/SUZ-4) was determined to be a better catalyst for propane dehydrogenation than conventional catalysts supported on ZSM-5,owing to its higher catalytic activity and stability.Dibenzothiophene poisoning experiments were performed to investigate the detailed structures of the two supported catalysts.The characterization of the two catalysts indicates that the distribution of Pt on the porous support affects the activity.In contrast to ZSM-5-supported catalysts,Pt particles on the PtSnNa/SUZ-4 are primarily dispersed over the external surface and are not as readily deactivated by carbon deposition.This is because that the strong acid sites of the SUZ-4 zeolite evidently prevented the impregnation of the Pt precursor H_2PtCl_6 into the zeolite.In contrast,the weak acid sites of the ZSM-5 zeolite led to more of the precursor entering the zeolite tunnels,followed by transformation to highly dispersed Pt clusters during calcination.In the case of the PtSnNa/ZSM-5,the interactions between Sn oxides and the support were lessened,owing to the weaker acidity of the ZSM-5 zeolite.The dispersed Sn oxides were therefore easier to reduce to the metallic state,thus decreasing the catalytic activity for hydrocarbon dehydrogenation.展开更多
Platinum/cerium-zirconium-sulfate(Pt/Ce-Zr-SO_4^(2-)) catalysts were prepared by wetness impregnation.Catalytic activities were evaluated from the combustion of propene and CO.Sulfate(SO_4^(2-))addition improv...Platinum/cerium-zirconium-sulfate(Pt/Ce-Zr-SO_4^(2-)) catalysts were prepared by wetness impregnation.Catalytic activities were evaluated from the combustion of propene and CO.Sulfate(SO_4^(2-))addition improved the catalytic activity significantly.When using Pt/Ce-Zr-SO_4^(2-) with 10 wt%SO_4^(2-),the temperature for 90%conversion of propene and CO decreased by 75℃ compared with Pt/Ce-Zr.The conversion exceeded 95%at 240℃ even after 0.02%sulfur dioxide poisoning for 20 h.Temperature-programmed desorption of CO and X-ray photoelectron spectroscopy analyses revealed an improvement in Pt dispersion onto the Ce-Zr-SO_4^(2-) support,and the increased number of Pt particles built up more Pt^(-)-(SO_4^(2-))^(-) couples,which resulted in excellent activity.The increased total acidity and new Bronsted acid sites on the surface provided the Pt/Ce-Zr-SO_4^(2-) with good sulfur resistance.展开更多
Platinum nanoparticles supported on carbons(Pt/C,60%,mass fraction) electrocatalysts for direct methanol fuel cell(DMFC) were prepared by citrate-stabilized method with different reductants and carbon supports.The...Platinum nanoparticles supported on carbons(Pt/C,60%,mass fraction) electrocatalysts for direct methanol fuel cell(DMFC) were prepared by citrate-stabilized method with different reductants and carbon supports.The catalysts were characterized by X-ray diffraction(XRD),transmission electron microscopy(TEM) and cyclic voltammetry(CV).It is found that the size of Pt nanoparticles on carbon is controllable by citrate addition and reductant optimization,and the form of carbon support has a great influence on electrocatalytic activity of catalysts.The citrate-stabilized Pt nanoparticles supported on BP2000 carbon,which was reduced by formaldehyde,exhibit the best performance with about 2 nm in diameter and 66.46 m2/g(Pt) in electrocatalytic active surface(EAS) area.Test on single DMFC with 60%(mass fraction) Pt/BP2000 as cathode electrocatalyst showed maximum power density at 78.8 mW/cm2.展开更多
A variety of spherical and structured activated charcoal supported Pt/Fe3O4 composites with an average particle size of ~100 nm have been synthesized by a self-assembly method using the difference of reduction potenti...A variety of spherical and structured activated charcoal supported Pt/Fe3O4 composites with an average particle size of ~100 nm have been synthesized by a self-assembly method using the difference of reduction potential between Pt (Ⅳ) and Fe (Ⅱ) precursors as driving force. The formed Fe3O4 nanoparticles (NPs) effectively prevent the aggregation of Pt nanocrystallites and promote the dispersion of Pt NPs on the surface of catalyst, which will be favorable for the exposure of Pt active sites for high-efficient adsorption and contact of substrate and hydrogen donor. The electron-enrichment state of Pt NPs donated by Fe304 nanocrystallites is corroborated by XPS measurement, which is responsible for promoting and activating the terminal C=O bond of adsorbed substrate via a vertical configuration. The experimental results show that the activated charcoal supported Pt/Fe3O4 catalyst exhibits 94.8% selectivity towards cinnamyl alcohol by the transfer hydrogenation of einnamaldehyde with Pt loading of 2.46% under the optimum conditions of 120 ℃ for 6 h, and 2-propanol as a hydrogen donor. Additionally, the present study demonstrates that a high-efficient and recyclable catalyst can be rapidly separated from the mixture due to its natural magnetism upon the application of magnetic field.展开更多
A series of K-promoted Pt/Al2O3 catalysts were tested for CO oxidation. It was found that the addition of K significantly enhanced the activity. A detailed kinetic study showed that the activation energies of the K-co...A series of K-promoted Pt/Al2O3 catalysts were tested for CO oxidation. It was found that the addition of K significantly enhanced the activity. A detailed kinetic study showed that the activation energies of the K-containing catalysts were lower than those of the K-free ones, particularly for catalysts with high Pt contents (51.6 k)/mol for 0.42K-2.0Pt/Al2O3 and 6:3.6 kJ/mol for 2.0Pt/Al2O3 ). The CO reaction orders were higher for the K-containing catalysts (about -0.2) than for the K-free ones (about -0.5), with the former having much lower equilibrium constants for CO adsorption than the latter. In situ Fourier-transform infrared spectroscopy showed that surface CO desorption from the 0.42K-2.0Pt/Al2O3 catalyst was easier than from 2.0Pt/Al2O3. The promoting effect of K was therefore caused by weakening of the interactions between CO and surface Pt atoms. This decreased coverage of the catalyst with CO and facilitated competitive O2 chemisorption on the Pt surface, and significantly lowered the reaction barrier between chemisorbed CO and O2 species.展开更多
The study of the leaching of vanadium(V) and molybdenum(Mo) from spent petrochemical catalysts in sodium hydroxide(NaO H) medium was performed using two approaches, namely, conventional leaching and microwave-assisted...The study of the leaching of vanadium(V) and molybdenum(Mo) from spent petrochemical catalysts in sodium hydroxide(NaO H) medium was performed using two approaches, namely, conventional leaching and microwave-assisted leaching methods. The influence of microwave power, leaching time, leaching temperature, and NaOH concentration on the leaching efficiency of spent petrochemical catalyst was investigated. Under microwave-assisted conditions(600 W, 10 min, 90°C, 2.0 mol·L^(-1) NaOH, and 0.20 g·mL^(-1) solid–liquid ratio), the leaching efficiencies of V and Mo reached 94.35% and 96.23%, respectively. It has been confirmed that microwave energy has considerable potential to enhance the efficiency of the leaching process and reduce the leaching time. It is suggested that the enhancement of the leaching efficiencies of V and Mo can be attributed to the existence of a thermal gradient between solid and liquid and the generation of cracks on the mineral surface.展开更多
Reverse water gas shift (RWGS) reaction can serve as a pivotal stage in the CO2 conversion processes, which is vital for the utilization of CO2. In this study, RWGS reaction was performed over Pt/CeO2 catalysts at the...Reverse water gas shift (RWGS) reaction can serve as a pivotal stage in the CO2 conversion processes, which is vital for the utilization of CO2. In this study, RWGS reaction was performed over Pt/CeO2 catalysts at the temperature range of 200-500 degrees C under ambient pressure. Compared with pure CeO2, Pt/CeO2 catalysts exhibited superior RWGS activity at lower reaction temperature. Meanwhile, the calculated TOF and E-a values are approximately the same over these Pt/CeO2 catalysts pretreated under various calcination conditions, indicating that the RWGS reaction is not affected by the morphologies of anchored Pt nanoparticles or the primary crystallinity of CeO2. TPR and XPS results indicated that the incorporation of Pt promoted the reducibility of CeO2 support and remarkably increased the content of Ce 3 + sites on the catalyst surface. Furthermore, the CO TPSR-MS signal under the condition of pure CO2 flow over Pt/CeO 2 catalyst is far lower than that under the condition of adsorbed CO2 with H-2 -assisted flow, revealing that CO2 molecules adsorbed on Ce3+ active sites have difficult in generating CO directly. Meanwhile, the adsorbed CO2 with the assistance of H-2 can form formate species easily over Ce3+ active sites and then decompose into Ce3+-CO species for CO production, which was identified by in-situ FTIR. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B. V. and Science Press. All rights reserved.展开更多
Monometallic catalyst Pt/SAPO-11 was prepared by impregnation method.Bimetallic catalysts LaPt/SAPO-11 or CePt/SAPO-11 was prepared by sequential impregnation method.The catalysts were characterized by X-ray diffracti...Monometallic catalyst Pt/SAPO-11 was prepared by impregnation method.Bimetallic catalysts LaPt/SAPO-11 or CePt/SAPO-11 was prepared by sequential impregnation method.The catalysts were characterized by X-ray diffraction(XRD),nitrogen adsorption,temperature-programmed desorption of ammonia(NH3-TPD),and Fourier transform infrared spectroscopy(FT-IR) techniques.The results showed that with the addition of rare earths the BET surface areas,pore volume,the amount of Bronsted acid and the total acidity of catalys...展开更多
Pt/WO3/C nanocomposites with parallel WO3 nanorods were synthesized and applied as the cathode catalyst for proton exchange membrane fuel cells (PEMFCs). Electrochemical results and single cell tests show that an en...Pt/WO3/C nanocomposites with parallel WO3 nanorods were synthesized and applied as the cathode catalyst for proton exchange membrane fuel cells (PEMFCs). Electrochemical results and single cell tests show that an enhanced activity for the oxygen reduction reaction (ORR) is obtained for the Pt/WO3/C catalyst compared with Pt/C. The higher catalytic activity might be ascribed to the improved Pt dispersion with smaller particle sizes. The Pt/WO3/C catalyst also exhibits a good electrochemical stability under potential cycling. Thus, the Pt/WO3/C catalyst can be used as a potential PEMFC cathode catalyst.展开更多
It is reported for the first time that the Pt/C catalyst can be prepared with a new and simple organic sol method using SnCl2 as the reductant. It was found that the average size of the Pt particles in the Pt/C cataly...It is reported for the first time that the Pt/C catalyst can be prepared with a new and simple organic sol method using SnCl2 as the reductant. It was found that the average size of the Pt particles in the Pt/C catalysts could be controlled with controlling the preparation conditions. The effect of the average sizes of the Pt particles in the Pt/C catalysts obtained with this method on the electrocatalytical activity of the oxidation of methanol was investigated.展开更多
Proton exchange membrane fuel cells(PEMFCs) are considered a promising power source for electric vehicles and stationary residential applications. However, current PEMFCs have several problems that require solutions, ...Proton exchange membrane fuel cells(PEMFCs) are considered a promising power source for electric vehicles and stationary residential applications. However, current PEMFCs have several problems that require solutions, including high cost, insufficient power density, and limited performance durability. A kinetically sluggish oxygen reduction reaction(ORR) is primarily responsible for these issues. The development of advanced Pt-based catalysts is crucial for solving these problems if the large-scale application of PEMFCs is to be realized. In this review, we summarize the recent progress in the development of Pt M alloy(M = Fe, Co, Ni, etc.) catalysts with an emphasis on ordered Pt M intermetallic catalysts, which exhibit significantly enhanced activity and stability. In addition to exploring the intrinsic catalytic performance in traditional aqueous electrolytes via engineering nanostructures, morphologies, and crystallinity of Pt M particles, we highlight recent efforts to study catalysts under real fuel cell environments by the membrane electrode assembly(MEA).展开更多
Understanding carbon-supported Pt-catalyzed oxygen reduction reaction(ORR)from the perspective of the active sites is of fundamental and practical importance.In this study,three differently sized carbon nanotube-suppo...Understanding carbon-supported Pt-catalyzed oxygen reduction reaction(ORR)from the perspective of the active sites is of fundamental and practical importance.In this study,three differently sized carbon nanotube-supported Pt nanoparticles(Pt/CNT)are prepared by both atomic layer deposition(ALD)and impregnation methods.The performances of the catalysts toward the ORR in acidic media are comparatively studied to probe the effects of the sizes of the Pt nanoparticles together with their distributions,electronic properties,and local environments.The ALD-Pt/CNT catalysts show much higher ORR activity and selectivity than the impregnation-Pt/CNT catalysts.This outstanding ORR performance is ascribed to the well-controlled Pt particle sizes and distributions,desirable Pt^04f binding energy,and the Cl-free Pt surfaces based on the electrocatalytic measurements,catalyst characterizations,and model calculations.The insights reported here could guide the rational design and fine-tuning of carbon-supported Pt catalysts for the ORR.展开更多
Pt-based catalysts are widely used in propane dehydrogenation reaction for the production of propylene.Suppressing irreversible deactivation caused by the sintering of Pt particles under harsh conditions and regenerat...Pt-based catalysts are widely used in propane dehydrogenation reaction for the production of propylene.Suppressing irreversible deactivation caused by the sintering of Pt particles under harsh conditions and regeneration process is a significant challenge in this catalyst.Herein,a series of highly ordered mesoporous Al_(2)O_(3) supports with different levels of Al3+penta sites,are fabricated and used as the support to disperse Pt-Sn_(2) clusters.Characterizations of Pt-Sn_(2)/meso-Al_(2)O_(3) with XRD,NMR,CO-IR,STEM,TG,and Raman techniques along with propane dehydrogenation-regeneration cycles test reveal the structure-stability-re generability relationship.The coordinatively unsaturated pentacoordinate Al_(Al3+penta)^(3+)can strongly anchor Pt atoms via a formation of Al-O-Pt bond,and thus stabilize the Pt-based particles at the surface of Al_(2)O_(3).The stability and regenerability of Pt-Sn2/meso-Al_(2)O_(3) are strongly dependent on the content of Al3+penta sites in the Al_(2)O_(3) structure,and a high level of Al3+penta sites can effectively prevent the agglomeration of Pt-Sn2 clusters into large Pt nanoparticles in the consecutive dehydrogenation-regeneration cycles.The Pt-Sn2/meso-Al_(2)O_(3)-600 with the highest level of Al_(penta)^(3+) (50.8%)delivers the best performance in propane dehydrogenation,which exhibits propane conversion of 40%and propylene selectivity above 98%at 570℃ with 10 vol%C_(3)H_(8) and 10 vol% H_(2) feed.A slow deactivation in this catalyst is ascribed to the formation of coke,and the catalytic performance can be fully restored in the consecutive dehydrogenation-regeneration cycles via a simple calcination treatment.展开更多
基金the National Natural Science Foundation of China(21576291,22003076)National Natural Science Foundation of China-Outstanding Youth foundation(22322814)the Fundamental Research Funds for the Central Universities(23CX03007A,22CX06012A)are gratefully acknowledge。
文摘Tuning Strong Metal-support Interactions(SMSI)is a key strategy to obtain highly active catalysts,but conventional methods usually enable TiO_(x) encapsulation of noble metal components to minimize the exposure of noble metals.This study demonstrates a catalyst preparation method to modulate a weak encapsulation of Pt metal nanoparticles(NPs)with the supported TiO_(2),achieving the moderate suppression of SMSI effects.The introduction of silica inhibits this encapsulation,as reflected in the characterization results such as XPS and HRTEM,while the Ti^(4+) to Ti^(3+) conversion due to SMSI can still be found on the support surface.Furthermore,the hydrogenation of cinnamaldehyde(CAL)as a probe reaction revealed that once this encapsulation behavior was suppressed,the adsorption capacity of the catalyst for small molecules like H_(2) and CO was enhanced,which thereby improved the catalytic activity and facilitated the hydrogenation of CAL.Meanwhile,the introduction of SiO_(2) also changed the surface structure of the catalyst,which inhibited the occurrence of the acetal reaction and improved the conversion efficiency of C=O and C=C hydrogenation.Systematic manipulation of SMSI formation and its consequence on the performance in catalytic hydrogenation reactions are discussed.
基金financially supported by the National Key Research and Development Program for Young Scientists,China(No.2021YFC2901100)。
文摘Platinum group metals(PGMs),especially Pd,Pt,and Rh,have drawn great attention due to their unique features.Direct separation of Pd and Pt from highly acidic automobile catalyst leach liquors is disturbed by various factors.This work investigates the effect of various parameters including the acidity,extractant concentration,phase ratio A/O,and diluents on the Pd and Pt extraction and their stripping behaviors.The results show that the Pd and Pt are successfully separated from simulated leach liquor of spent automobile catalysts with monothioCyanex 272 and trioctylamine(TOA).Monothio-Cyanex 272 shows strong extractability and specific selectivity for Pd,and only one single stage is needed to recover more than 99.9% of Pd,leaving behind all the Pt,Rh,and base metals of Fe,Mg,Ce,Ni,Cu,and Co in the raffinate.The loaded Pd is efficiently stripped by acidic thiourea solutions.TOA shows strong extractability for Pt and Fe at acidity of 6 mol·L^(–1) HCl.More than 99.9% of Pt and all of the Fe are extracted into the organic phase after two stages of countercurrent extraction.Diluted HCl easily scrubs the loaded base metals(Fe,Cu,and Co).The loaded Pt is efficiently stripped by 1.0 mol·L^(–1) thiourea and 0.05–0.1 mol·L^(–1) Na OH solutions.Monothio-Cyanex 272 and TOA can realize the separation of Pd and Pt from highly acidic leach liquor of spent automobile catalysts.
基金Project(51664037)supported by the National Natural Science Foundation of China。
文摘A new method was developed to optimize the microwave heating thickness of the spent automobile catalyst in order to improve the uniform distribution of the temperature field. The average penetration depth and the microwave heating thickness of the spent automobile catalyst were calculated by Gauss model and numerical calculation based on dielectric loss tangent and reflection loss. The results showed that the spent automobile catalyst was a medium loss material. The average penetration depth was 1.11 m from room temperature to 800 ℃. The optimum microwave heating thickness of the spent automobile catalyst was about 0.83 m or 0.75 times of the average penetration depth. Industrial application analysis indicated that the optimization of heating thickness could improve the uniform distribution of the temperature field and reduce energy consumption.
文摘Auto-catalysts were the largest consumers of platinum group metals and the most important secondary resources, recovery of PGMs from spent auto-catalysts by leaching with various acidities were investigated. The leaching thermodynamics of PGMs at 363 K was first discussed. At 363 K the higher the acidities of HCl, the higher the leaching recoveries of PGMs, and the sequence of leaching recovery was Pd>Pt>Rh. When H2SO4 used alone, the leaching recoveries of PGMs was low, when the acidity of H2SO4 increasing, the leaching recovery of Rh kept stable.
基金supported by the Jiangsu Planned Projects for Postdoctoral Research Funds(1301080C)NNSFC(21202141,21173182)+1 种基金Key Science&Technology Specific Projects of Yangzhou(YZ20122029)the Innovation Foundation of Yangzhou University(2015CXJ009)~~
文摘The structure and catalytic properties of PtSn catalysts supported on SUZ-4 and ZSM-5 zeolite have been studied by using various experimental techniques including XRD,nitrogen adsorption,NH3-TPD,TG,H2-TPR and TPO techniques combined with propane dehydrogenation tests.It has been shown that SUZ-4-supported PtSnNa(PtSnNa/SUZ-4) was determined to be a better catalyst for propane dehydrogenation than conventional catalysts supported on ZSM-5,owing to its higher catalytic activity and stability.Dibenzothiophene poisoning experiments were performed to investigate the detailed structures of the two supported catalysts.The characterization of the two catalysts indicates that the distribution of Pt on the porous support affects the activity.In contrast to ZSM-5-supported catalysts,Pt particles on the PtSnNa/SUZ-4 are primarily dispersed over the external surface and are not as readily deactivated by carbon deposition.This is because that the strong acid sites of the SUZ-4 zeolite evidently prevented the impregnation of the Pt precursor H_2PtCl_6 into the zeolite.In contrast,the weak acid sites of the ZSM-5 zeolite led to more of the precursor entering the zeolite tunnels,followed by transformation to highly dispersed Pt clusters during calcination.In the case of the PtSnNa/ZSM-5,the interactions between Sn oxides and the support were lessened,owing to the weaker acidity of the ZSM-5 zeolite.The dispersed Sn oxides were therefore easier to reduce to the metallic state,thus decreasing the catalytic activity for hydrocarbon dehydrogenation.
基金supported by the National Natural Science Foundation of China(21506194,21676255)the Provincial Natural Science Foundation of Zhejiang Province(LY16B070011)the Commission of Science and Technology of Zhejiang Province(2017C33106,2017C03007)~~
文摘Platinum/cerium-zirconium-sulfate(Pt/Ce-Zr-SO_4^(2-)) catalysts were prepared by wetness impregnation.Catalytic activities were evaluated from the combustion of propene and CO.Sulfate(SO_4^(2-))addition improved the catalytic activity significantly.When using Pt/Ce-Zr-SO_4^(2-) with 10 wt%SO_4^(2-),the temperature for 90%conversion of propene and CO decreased by 75℃ compared with Pt/Ce-Zr.The conversion exceeded 95%at 240℃ even after 0.02%sulfur dioxide poisoning for 20 h.Temperature-programmed desorption of CO and X-ray photoelectron spectroscopy analyses revealed an improvement in Pt dispersion onto the Ce-Zr-SO_4^(2-) support,and the increased number of Pt particles built up more Pt^(-)-(SO_4^(2-))^(-) couples,which resulted in excellent activity.The increased total acidity and new Bronsted acid sites on the surface provided the Pt/Ce-Zr-SO_4^(2-) with good sulfur resistance.
基金Project(50573041)supported by the National Natural Science Foundation of China
文摘Platinum nanoparticles supported on carbons(Pt/C,60%,mass fraction) electrocatalysts for direct methanol fuel cell(DMFC) were prepared by citrate-stabilized method with different reductants and carbon supports.The catalysts were characterized by X-ray diffraction(XRD),transmission electron microscopy(TEM) and cyclic voltammetry(CV).It is found that the size of Pt nanoparticles on carbon is controllable by citrate addition and reductant optimization,and the form of carbon support has a great influence on electrocatalytic activity of catalysts.The citrate-stabilized Pt nanoparticles supported on BP2000 carbon,which was reduced by formaldehyde,exhibit the best performance with about 2 nm in diameter and 66.46 m2/g(Pt) in electrocatalytic active surface(EAS) area.Test on single DMFC with 60%(mass fraction) Pt/BP2000 as cathode electrocatalyst showed maximum power density at 78.8 mW/cm2.
基金This work is supported by the National Natural Science Foundation of China (No.51372248, No.51432009 and No.51502297), Instrument Developing Project of the Chinese Academy of Sciences (No.yz201421), the CAS/SAFEA International Partnership Program for Creative Research Teams of Chinese Academy of Sciences, China.
文摘A variety of spherical and structured activated charcoal supported Pt/Fe3O4 composites with an average particle size of ~100 nm have been synthesized by a self-assembly method using the difference of reduction potential between Pt (Ⅳ) and Fe (Ⅱ) precursors as driving force. The formed Fe3O4 nanoparticles (NPs) effectively prevent the aggregation of Pt nanocrystallites and promote the dispersion of Pt NPs on the surface of catalyst, which will be favorable for the exposure of Pt active sites for high-efficient adsorption and contact of substrate and hydrogen donor. The electron-enrichment state of Pt NPs donated by Fe304 nanocrystallites is corroborated by XPS measurement, which is responsible for promoting and activating the terminal C=O bond of adsorbed substrate via a vertical configuration. The experimental results show that the activated charcoal supported Pt/Fe3O4 catalyst exhibits 94.8% selectivity towards cinnamyl alcohol by the transfer hydrogenation of einnamaldehyde with Pt loading of 2.46% under the optimum conditions of 120 ℃ for 6 h, and 2-propanol as a hydrogen donor. Additionally, the present study demonstrates that a high-efficient and recyclable catalyst can be rapidly separated from the mixture due to its natural magnetism upon the application of magnetic field.
基金financially supported by the National Natural Science Foundation of China(21173195)~~
文摘A series of K-promoted Pt/Al2O3 catalysts were tested for CO oxidation. It was found that the addition of K significantly enhanced the activity. A detailed kinetic study showed that the activation energies of the K-containing catalysts were lower than those of the K-free ones, particularly for catalysts with high Pt contents (51.6 k)/mol for 0.42K-2.0Pt/Al2O3 and 6:3.6 kJ/mol for 2.0Pt/Al2O3 ). The CO reaction orders were higher for the K-containing catalysts (about -0.2) than for the K-free ones (about -0.5), with the former having much lower equilibrium constants for CO adsorption than the latter. In situ Fourier-transform infrared spectroscopy showed that surface CO desorption from the 0.42K-2.0Pt/Al2O3 catalyst was easier than from 2.0Pt/Al2O3. The promoting effect of K was therefore caused by weakening of the interactions between CO and surface Pt atoms. This decreased coverage of the catalyst with CO and facilitated competitive O2 chemisorption on the Pt surface, and significantly lowered the reaction barrier between chemisorbed CO and O2 species.
基金financially supported by the High-degree Talent Introduction Program of Guangdong Academy of Sciences(No.2017GDASCX-0841)the Science and Technology Program of Guangzhou(No.201607020021)+2 种基金the National Natural Science Foundation of China(No.51304055)the Innovative Platform Construction Program of Guangdong Academy of Sciences(No.2017GDASCX-0109)the Pearl River Nova Program of Guangzhou(No.201806010016)
文摘The study of the leaching of vanadium(V) and molybdenum(Mo) from spent petrochemical catalysts in sodium hydroxide(NaO H) medium was performed using two approaches, namely, conventional leaching and microwave-assisted leaching methods. The influence of microwave power, leaching time, leaching temperature, and NaOH concentration on the leaching efficiency of spent petrochemical catalyst was investigated. Under microwave-assisted conditions(600 W, 10 min, 90°C, 2.0 mol·L^(-1) NaOH, and 0.20 g·mL^(-1) solid–liquid ratio), the leaching efficiencies of V and Mo reached 94.35% and 96.23%, respectively. It has been confirmed that microwave energy has considerable potential to enhance the efficiency of the leaching process and reduce the leaching time. It is suggested that the enhancement of the leaching efficiencies of V and Mo can be attributed to the existence of a thermal gradient between solid and liquid and the generation of cracks on the mineral surface.
基金National Natural Science Foundation of China (nos.21476226 and 21506204)National Key Projects for Fundamental Research and Development of China (2016YFB0600902)+1 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB17020400)the Youth Innovation Promotion Association CAS for financial support
文摘Reverse water gas shift (RWGS) reaction can serve as a pivotal stage in the CO2 conversion processes, which is vital for the utilization of CO2. In this study, RWGS reaction was performed over Pt/CeO2 catalysts at the temperature range of 200-500 degrees C under ambient pressure. Compared with pure CeO2, Pt/CeO2 catalysts exhibited superior RWGS activity at lower reaction temperature. Meanwhile, the calculated TOF and E-a values are approximately the same over these Pt/CeO2 catalysts pretreated under various calcination conditions, indicating that the RWGS reaction is not affected by the morphologies of anchored Pt nanoparticles or the primary crystallinity of CeO2. TPR and XPS results indicated that the incorporation of Pt promoted the reducibility of CeO2 support and remarkably increased the content of Ce 3 + sites on the catalyst surface. Furthermore, the CO TPSR-MS signal under the condition of pure CO2 flow over Pt/CeO 2 catalyst is far lower than that under the condition of adsorbed CO2 with H-2 -assisted flow, revealing that CO2 molecules adsorbed on Ce3+ active sites have difficult in generating CO directly. Meanwhile, the adsorbed CO2 with the assistance of H-2 can form formate species easily over Ce3+ active sites and then decompose into Ce3+-CO species for CO production, which was identified by in-situ FTIR. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B. V. and Science Press. All rights reserved.
基金supported by the Foundation of Jiangsu Key Laboratory of Precious Metals Chemistry (SYGK0710)Natural Scientific Foundation of Jiangsu Teachers University of Technology (KYY06029)
文摘Monometallic catalyst Pt/SAPO-11 was prepared by impregnation method.Bimetallic catalysts LaPt/SAPO-11 or CePt/SAPO-11 was prepared by sequential impregnation method.The catalysts were characterized by X-ray diffraction(XRD),nitrogen adsorption,temperature-programmed desorption of ammonia(NH3-TPD),and Fourier transform infrared spectroscopy(FT-IR) techniques.The results showed that with the addition of rare earths the BET surface areas,pore volume,the amount of Bronsted acid and the total acidity of catalys...
基金financially supported by the National Natural Science Fundation of China(No.51125007)the National Basic Research Program(No.2012CB215500)
文摘Pt/WO3/C nanocomposites with parallel WO3 nanorods were synthesized and applied as the cathode catalyst for proton exchange membrane fuel cells (PEMFCs). Electrochemical results and single cell tests show that an enhanced activity for the oxygen reduction reaction (ORR) is obtained for the Pt/WO3/C catalyst compared with Pt/C. The higher catalytic activity might be ascribed to the improved Pt dispersion with smaller particle sizes. The Pt/WO3/C catalyst also exhibits a good electrochemical stability under potential cycling. Thus, the Pt/WO3/C catalyst can be used as a potential PEMFC cathode catalyst.
文摘It is reported for the first time that the Pt/C catalyst can be prepared with a new and simple organic sol method using SnCl2 as the reductant. It was found that the average size of the Pt particles in the Pt/C catalysts could be controlled with controlling the preparation conditions. The effect of the average sizes of the Pt particles in the Pt/C catalysts obtained with this method on the electrocatalytical activity of the oxidation of methanol was investigated.
文摘Proton exchange membrane fuel cells(PEMFCs) are considered a promising power source for electric vehicles and stationary residential applications. However, current PEMFCs have several problems that require solutions, including high cost, insufficient power density, and limited performance durability. A kinetically sluggish oxygen reduction reaction(ORR) is primarily responsible for these issues. The development of advanced Pt-based catalysts is crucial for solving these problems if the large-scale application of PEMFCs is to be realized. In this review, we summarize the recent progress in the development of Pt M alloy(M = Fe, Co, Ni, etc.) catalysts with an emphasis on ordered Pt M intermetallic catalysts, which exhibit significantly enhanced activity and stability. In addition to exploring the intrinsic catalytic performance in traditional aqueous electrolytes via engineering nanostructures, morphologies, and crystallinity of Pt M particles, we highlight recent efforts to study catalysts under real fuel cell environments by the membrane electrode assembly(MEA).
基金financially supported by the Natural Science Foundation of China(21922803 and 21776077)the Shanghai Natural Science Foundation(17ZR1407300 and 17ZR1407500)+3 种基金the Program for the Professor of Special Appointment(Eastern Scholar)at Shanghai Institutions of Higher Learningthe Shanghai Rising-Star Program(17QA1401200)the State Key Laboratory of Organic-Inorganic Composites(oic-201801007)the Open Project of State Key Laboratory of Chemical Engineering(SKLChe-15C03)。
文摘Understanding carbon-supported Pt-catalyzed oxygen reduction reaction(ORR)from the perspective of the active sites is of fundamental and practical importance.In this study,three differently sized carbon nanotube-supported Pt nanoparticles(Pt/CNT)are prepared by both atomic layer deposition(ALD)and impregnation methods.The performances of the catalysts toward the ORR in acidic media are comparatively studied to probe the effects of the sizes of the Pt nanoparticles together with their distributions,electronic properties,and local environments.The ALD-Pt/CNT catalysts show much higher ORR activity and selectivity than the impregnation-Pt/CNT catalysts.This outstanding ORR performance is ascribed to the well-controlled Pt particle sizes and distributions,desirable Pt^04f binding energy,and the Cl-free Pt surfaces based on the electrocatalytic measurements,catalyst characterizations,and model calculations.The insights reported here could guide the rational design and fine-tuning of carbon-supported Pt catalysts for the ORR.
基金Financial supports of the National Natural Science Foundation of China(21878050,91934301)the State Key Laboratory of Coal Conversion(J21-22-620)the 111 Project(D17005)。
文摘Pt-based catalysts are widely used in propane dehydrogenation reaction for the production of propylene.Suppressing irreversible deactivation caused by the sintering of Pt particles under harsh conditions and regeneration process is a significant challenge in this catalyst.Herein,a series of highly ordered mesoporous Al_(2)O_(3) supports with different levels of Al3+penta sites,are fabricated and used as the support to disperse Pt-Sn_(2) clusters.Characterizations of Pt-Sn_(2)/meso-Al_(2)O_(3) with XRD,NMR,CO-IR,STEM,TG,and Raman techniques along with propane dehydrogenation-regeneration cycles test reveal the structure-stability-re generability relationship.The coordinatively unsaturated pentacoordinate Al_(Al3+penta)^(3+)can strongly anchor Pt atoms via a formation of Al-O-Pt bond,and thus stabilize the Pt-based particles at the surface of Al_(2)O_(3).The stability and regenerability of Pt-Sn2/meso-Al_(2)O_(3) are strongly dependent on the content of Al3+penta sites in the Al_(2)O_(3) structure,and a high level of Al3+penta sites can effectively prevent the agglomeration of Pt-Sn2 clusters into large Pt nanoparticles in the consecutive dehydrogenation-regeneration cycles.The Pt-Sn2/meso-Al_(2)O_(3)-600 with the highest level of Al_(penta)^(3+) (50.8%)delivers the best performance in propane dehydrogenation,which exhibits propane conversion of 40%and propylene selectivity above 98%at 570℃ with 10 vol%C_(3)H_(8) and 10 vol% H_(2) feed.A slow deactivation in this catalyst is ascribed to the formation of coke,and the catalytic performance can be fully restored in the consecutive dehydrogenation-regeneration cycles via a simple calcination treatment.