期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Sustainable recycling of titanium from TiO_(2) in spent SCR denitration catalyst via molten salt electrolysis 被引量:4
1
作者 Xuyang Bai Xiaojia Shang +4 位作者 Heli Wan Yusi Che Bin Yang Jilin He Jianxun Song 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第7期557-563,共7页
Spent catalyst used for denitration by selective catalytic reduction(spent SCR denitration catalysts) is one of the important urban mines due to the high content of TiO_(2)(~85 wt%) and the massive accumulation amount... Spent catalyst used for denitration by selective catalytic reduction(spent SCR denitration catalysts) is one of the important urban mines due to the high content of TiO_(2)(~85 wt%) and the massive accumulation amount(over 100,000 tons),therefore,value-added reutilization of titanium in spent SCR catalysts is considerably meaningful.In this paper,a novel method is proposed for converting the titanium oxide in spent SCR denitration catalysts to metallic titanium.Specifically,titanium dioxide(TiO_(2)) was firstly obtained from spent SCR denitration catalysts after removing the impurities by hydrometallurgy process.Then,TiO_(2) is converted to Ti_(2)CO by carbothermic reduction method,and Ti_(2)CO was further purified by oleic acid capture.Finally,by utilizing the as-prepared Ti_(2)CO as the consumable anode in the NaCl-KCl molten salt,high-purity metallic titanium was deposited at cathode,all confirming the feasibility for the conversion of low-grade TiO_(2) in the spent catalysts,from 60 wt% to high-purity metallic Ti(99.5 wt%), furthermore,the energy consumption of this process is 3950 kWh tonne-1 Ti,which is lower than that of most traditional titanium metallurgy methods.The method herein can provide new insights for the value-added recycling of titanium resources in urban mines. 展开更多
关键词 spent scr denitration catalyst HYDROMETALLURGY IMPURITY Ti_(2)CO Molten salt
下载PDF
Comprehensive recovery of W,V,and Ti from spent selective reduction catalysts
2
作者 Li-Wen Ma Xiao-Li Xi +3 位作者 Jia-Peng Chen Fan Guo Zi-Jie Yang Zuo-Ren Nie 《Rare Metals》 SCIE EI CAS CSCD 2023年第10期3518-3531,共14页
In this study,spent WO_(3)/V_(2)O_(5)-TiO_(2) catalysts used for selective catalytic reduction were treated by a hydrometallurgical process to comprehensively recover valuable metallic elements,such as W,V,and Ti.Al a... In this study,spent WO_(3)/V_(2)O_(5)-TiO_(2) catalysts used for selective catalytic reduction were treated by a hydrometallurgical process to comprehensively recover valuable metallic elements,such as W,V,and Ti.Al and Si impurities were preferentially removed by selective micro wave-assisted alkali leaching.W and V were leached by enhanced high-pressure leaching with efficiencies estimated at 95% and 81%.The leaching of W and V followed the nuclear shrinkage model controlled by the combination of product layer diffusion and interfacial chemical reaction.A synergistic extraction was applied to separate W and V using an extractant mixture of di-(2-ethylhexyl)phosphoric acid P204 and the primary amine N1923.The extraction efficiencies of V and W reached 86.5% and 6.3%,respectively,with a separation coefficient(V/W) of 95.30.The product was precipitated after extraction to yield ammonium paratung state(APT) and NH_(4)VO_(3).The TiO_(2)catalyst carrier residue meets commercial specifications for reuse.This comprehensive recovery process with the characteristics of high-pressure leaching and synergistic extraction realizes the resourceful utilization of the spent catalysts. 展开更多
关键词 spent selective catalytic reduction(scr)catalysts Microwaveleaching Pressure leaching Synergistic extraction Comprehensive recovery
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部