Platinum group metals(PGMs),especially Pd,Pt,and Rh,have drawn great attention due to their unique features.Direct separation of Pd and Pt from highly acidic automobile catalyst leach liquors is disturbed by various f...Platinum group metals(PGMs),especially Pd,Pt,and Rh,have drawn great attention due to their unique features.Direct separation of Pd and Pt from highly acidic automobile catalyst leach liquors is disturbed by various factors.This work investigates the effect of various parameters including the acidity,extractant concentration,phase ratio A/O,and diluents on the Pd and Pt extraction and their stripping behaviors.The results show that the Pd and Pt are successfully separated from simulated leach liquor of spent automobile catalysts with monothioCyanex 272 and trioctylamine(TOA).Monothio-Cyanex 272 shows strong extractability and specific selectivity for Pd,and only one single stage is needed to recover more than 99.9% of Pd,leaving behind all the Pt,Rh,and base metals of Fe,Mg,Ce,Ni,Cu,and Co in the raffinate.The loaded Pd is efficiently stripped by acidic thiourea solutions.TOA shows strong extractability for Pt and Fe at acidity of 6 mol·L^(–1) HCl.More than 99.9% of Pt and all of the Fe are extracted into the organic phase after two stages of countercurrent extraction.Diluted HCl easily scrubs the loaded base metals(Fe,Cu,and Co).The loaded Pt is efficiently stripped by 1.0 mol·L^(–1) thiourea and 0.05–0.1 mol·L^(–1) Na OH solutions.Monothio-Cyanex 272 and TOA can realize the separation of Pd and Pt from highly acidic leach liquor of spent automobile catalysts.展开更多
A new method was developed to optimize the microwave heating thickness of the spent automobile catalyst in order to improve the uniform distribution of the temperature field. The average penetration depth and the micr...A new method was developed to optimize the microwave heating thickness of the spent automobile catalyst in order to improve the uniform distribution of the temperature field. The average penetration depth and the microwave heating thickness of the spent automobile catalyst were calculated by Gauss model and numerical calculation based on dielectric loss tangent and reflection loss. The results showed that the spent automobile catalyst was a medium loss material. The average penetration depth was 1.11 m from room temperature to 800 ℃. The optimum microwave heating thickness of the spent automobile catalyst was about 0.83 m or 0.75 times of the average penetration depth. Industrial application analysis indicated that the optimization of heating thickness could improve the uniform distribution of the temperature field and reduce energy consumption.展开更多
基金financially supported by the National Key Research and Development Program for Young Scientists,China(No.2021YFC2901100)。
文摘Platinum group metals(PGMs),especially Pd,Pt,and Rh,have drawn great attention due to their unique features.Direct separation of Pd and Pt from highly acidic automobile catalyst leach liquors is disturbed by various factors.This work investigates the effect of various parameters including the acidity,extractant concentration,phase ratio A/O,and diluents on the Pd and Pt extraction and their stripping behaviors.The results show that the Pd and Pt are successfully separated from simulated leach liquor of spent automobile catalysts with monothioCyanex 272 and trioctylamine(TOA).Monothio-Cyanex 272 shows strong extractability and specific selectivity for Pd,and only one single stage is needed to recover more than 99.9% of Pd,leaving behind all the Pt,Rh,and base metals of Fe,Mg,Ce,Ni,Cu,and Co in the raffinate.The loaded Pd is efficiently stripped by acidic thiourea solutions.TOA shows strong extractability for Pt and Fe at acidity of 6 mol·L^(–1) HCl.More than 99.9% of Pt and all of the Fe are extracted into the organic phase after two stages of countercurrent extraction.Diluted HCl easily scrubs the loaded base metals(Fe,Cu,and Co).The loaded Pt is efficiently stripped by 1.0 mol·L^(–1) thiourea and 0.05–0.1 mol·L^(–1) Na OH solutions.Monothio-Cyanex 272 and TOA can realize the separation of Pd and Pt from highly acidic leach liquor of spent automobile catalysts.
基金Project(51664037)supported by the National Natural Science Foundation of China。
文摘A new method was developed to optimize the microwave heating thickness of the spent automobile catalyst in order to improve the uniform distribution of the temperature field. The average penetration depth and the microwave heating thickness of the spent automobile catalyst were calculated by Gauss model and numerical calculation based on dielectric loss tangent and reflection loss. The results showed that the spent automobile catalyst was a medium loss material. The average penetration depth was 1.11 m from room temperature to 800 ℃. The optimum microwave heating thickness of the spent automobile catalyst was about 0.83 m or 0.75 times of the average penetration depth. Industrial application analysis indicated that the optimization of heating thickness could improve the uniform distribution of the temperature field and reduce energy consumption.