The metallurgical properties of the CaO–SiO_(2)–Al_(2)O_(3)–4.6wt%Mg O–Fe_(2)O_(3)slag system,formed by the co-treatment process of spent automotive catalyst(SAC)and copper-bearing electroplating sludge(CBES),were...The metallurgical properties of the CaO–SiO_(2)–Al_(2)O_(3)–4.6wt%Mg O–Fe_(2)O_(3)slag system,formed by the co-treatment process of spent automotive catalyst(SAC)and copper-bearing electroplating sludge(CBES),were studied systematically in this paper.The slag structure,melting temperature,and viscous characteristics were investigated by Fourier transform infrared(FTIR)spectroscopy,Raman spectroscopy,Fact Sage calculation,and viscosity measurements.Experimental results show that the increase of Fe_(2)O_(3)content(3.8wt%–16.6wt%),the mass ratio of CaO/SiO_(2)(m(CaO)/m(SiO_(2)),0.5–1.3),and the mass ratio of SiO_(2)/Al_(2)O_(3)(m(SiO_(2))/m(Al_(2)O_(3)),1.0–5.0)can promote the depolymerization of silicate network,and the presence of a large amount of Fe_(2)O_(3)in form of tetrahedral and octahedral units ensures the charge compensation of Al^(3+)ions and makes Al_(2)O_(3)only behave as an acid oxide.Thermodynamic calculation and viscosity measurements show that with the increase of Fe_(2)O_(3)content,m(Ca O)/m(SiO_(2)),and m(SiO_(2))/m(Al_(2)O_(3)),the depolymerization of silicate network structure and low-melting-point phase transformation first occur within the slag,leading to the decrease in melting point and viscosity of the slag,while further increase causes the formation of high-melting-point phase and a resultant re-increase in viscosity and melting point.Based on experimental analysis,the preferred slag composition with low polymerization degree,viscosity,and melting point is as follows:Fe_(2)O_(3)content of 10.2wt%–13.4wt%,m(CaO)/m(SiO_(2))of 0.7–0.9 and m(SiO_(2))/m(Al_(2)O_(3))of 3.0–4.0.This work provides a theoretical support for slag design in co-smelting process of SAC and CBES.展开更多
Platinum(Pt)is a critical raw material for automotive catalytic converters due to its high-temperature stability,corrosion resistance and catalytic activity,whereas its limited primary resources and uneven distributio...Platinum(Pt)is a critical raw material for automotive catalytic converters due to its high-temperature stability,corrosion resistance and catalytic activity,whereas its limited primary resources and uneven distribution make it hard to meet the growing demand of platinum.Spent automotive catalyst(SAC)is currently the most important secondary resource of platinum,of which the platinum content is much higher than that of the primary platinum resources.The recovery process of platinum from spent automobile catalyst mainly consists of pretreatment followed by enrichment and refining,involving pyro-and hydrometallurgical techniques,among which enrichment and refining processes are extremely important for platinum recovery from spent automobile catalyst.This paper provides an overview of the technologies for platinum recovery from spent automotive catalyst.The emphasis is placed on the processes of enrichment and refining based on hydrometallurgical techniques.Future directions of research and development of platinum recovery from spent automobile catalyst are also proposed.展开更多
基金financially supported by the Guangzhou Basic and Applied Basic Research Project,China(No.202102020623)the Guangdong Academy of Sciences’Project of Science and Technology Development,China(No.2020 GDASYL-20200103101)+1 种基金the National Key Research and Development Program of China(No.2020YFC1908902)the Natural Science Foundation of Guangdong Province Project,China(No.2020A1515010729)。
文摘The metallurgical properties of the CaO–SiO_(2)–Al_(2)O_(3)–4.6wt%Mg O–Fe_(2)O_(3)slag system,formed by the co-treatment process of spent automotive catalyst(SAC)and copper-bearing electroplating sludge(CBES),were studied systematically in this paper.The slag structure,melting temperature,and viscous characteristics were investigated by Fourier transform infrared(FTIR)spectroscopy,Raman spectroscopy,Fact Sage calculation,and viscosity measurements.Experimental results show that the increase of Fe_(2)O_(3)content(3.8wt%–16.6wt%),the mass ratio of CaO/SiO_(2)(m(CaO)/m(SiO_(2)),0.5–1.3),and the mass ratio of SiO_(2)/Al_(2)O_(3)(m(SiO_(2))/m(Al_(2)O_(3)),1.0–5.0)can promote the depolymerization of silicate network,and the presence of a large amount of Fe_(2)O_(3)in form of tetrahedral and octahedral units ensures the charge compensation of Al^(3+)ions and makes Al_(2)O_(3)only behave as an acid oxide.Thermodynamic calculation and viscosity measurements show that with the increase of Fe_(2)O_(3)content,m(Ca O)/m(SiO_(2)),and m(SiO_(2))/m(Al_(2)O_(3)),the depolymerization of silicate network structure and low-melting-point phase transformation first occur within the slag,leading to the decrease in melting point and viscosity of the slag,while further increase causes the formation of high-melting-point phase and a resultant re-increase in viscosity and melting point.Based on experimental analysis,the preferred slag composition with low polymerization degree,viscosity,and melting point is as follows:Fe_(2)O_(3)content of 10.2wt%–13.4wt%,m(CaO)/m(SiO_(2))of 0.7–0.9 and m(SiO_(2))/m(Al_(2)O_(3))of 3.0–4.0.This work provides a theoretical support for slag design in co-smelting process of SAC and CBES.
基金financially supported by the Natural Science Foundation of Anhui Province(No.2108085J26)the National Natural Science Foundation of China(Nos.51904003 and U1703130)+1 种基金the Key Research and Development Plan of Anhui Province(No.2022n07020004)the Open Foundation of State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization(No.CNMRCUKF2208)。
文摘Platinum(Pt)is a critical raw material for automotive catalytic converters due to its high-temperature stability,corrosion resistance and catalytic activity,whereas its limited primary resources and uneven distribution make it hard to meet the growing demand of platinum.Spent automotive catalyst(SAC)is currently the most important secondary resource of platinum,of which the platinum content is much higher than that of the primary platinum resources.The recovery process of platinum from spent automobile catalyst mainly consists of pretreatment followed by enrichment and refining,involving pyro-and hydrometallurgical techniques,among which enrichment and refining processes are extremely important for platinum recovery from spent automobile catalyst.This paper provides an overview of the technologies for platinum recovery from spent automotive catalyst.The emphasis is placed on the processes of enrichment and refining based on hydrometallurgical techniques.Future directions of research and development of platinum recovery from spent automobile catalyst are also proposed.