Preparation of high purity ruthenium nitrosyl nitrate using spent Ru-Zn/ZrO_(2)catalyst was studied,including melting and leaching to obtain potassium ruthenate solution,reduction,dissolving,concentrating and drying t...Preparation of high purity ruthenium nitrosyl nitrate using spent Ru-Zn/ZrO_(2)catalyst was studied,including melting and leaching to obtain potassium ruthenate solution,reduction,dissolving,concentrating and drying to obtain ruthenium trichloride,nitrosation and hydrolysis to obtain ruthenium nitrosyl hydroxide,removing of K^(+)and Cl^(-),and neutralization with nitric acid.The effects of temperature,concentration,time and pH on the yield and purity of intermediates and final product were studied,and the optimum process conditions were obtained.The yield of ruthenium nitrosyl nitrate is 92%,the content of ruthenium in high purity product is 32.16%,and the content of Cl^(-)and K^(+)are much less than 0.005%.The reaction kinetics of ruthenium nitrosyl chloride to ruthenium nitrosyl hydroxide was studied.The reaction orders of Ru(NO)Cl_(3)at 40,55 and 70℃are 0.39,0.37 and 0.39,respectively,while those of KOH are 0.16,0.15 and 0.17,respectively.The activation energy is-2.33 k J/mol.展开更多
The study of the leaching of vanadium(V) and molybdenum(Mo) from spent petrochemical catalysts in sodium hydroxide(NaO H) medium was performed using two approaches, namely, conventional leaching and microwave-assisted...The study of the leaching of vanadium(V) and molybdenum(Mo) from spent petrochemical catalysts in sodium hydroxide(NaO H) medium was performed using two approaches, namely, conventional leaching and microwave-assisted leaching methods. The influence of microwave power, leaching time, leaching temperature, and NaOH concentration on the leaching efficiency of spent petrochemical catalyst was investigated. Under microwave-assisted conditions(600 W, 10 min, 90°C, 2.0 mol·L^(-1) NaOH, and 0.20 g·mL^(-1) solid–liquid ratio), the leaching efficiencies of V and Mo reached 94.35% and 96.23%, respectively. It has been confirmed that microwave energy has considerable potential to enhance the efficiency of the leaching process and reduce the leaching time. It is suggested that the enhancement of the leaching efficiencies of V and Mo can be attributed to the existence of a thermal gradient between solid and liquid and the generation of cracks on the mineral surface.展开更多
Spent catalyst used for denitration by selective catalytic reduction(spent SCR denitration catalysts) is one of the important urban mines due to the high content of TiO_(2)(~85 wt%) and the massive accumulation amount...Spent catalyst used for denitration by selective catalytic reduction(spent SCR denitration catalysts) is one of the important urban mines due to the high content of TiO_(2)(~85 wt%) and the massive accumulation amount(over 100,000 tons),therefore,value-added reutilization of titanium in spent SCR catalysts is considerably meaningful.In this paper,a novel method is proposed for converting the titanium oxide in spent SCR denitration catalysts to metallic titanium.Specifically,titanium dioxide(TiO_(2)) was firstly obtained from spent SCR denitration catalysts after removing the impurities by hydrometallurgy process.Then,TiO_(2) is converted to Ti_(2)CO by carbothermic reduction method,and Ti_(2)CO was further purified by oleic acid capture.Finally,by utilizing the as-prepared Ti_(2)CO as the consumable anode in the NaCl-KCl molten salt,high-purity metallic titanium was deposited at cathode,all confirming the feasibility for the conversion of low-grade TiO_(2) in the spent catalysts,from 60 wt% to high-purity metallic Ti(99.5 wt%), furthermore,the energy consumption of this process is 3950 kWh tonne-1 Ti,which is lower than that of most traditional titanium metallurgy methods.The method herein can provide new insights for the value-added recycling of titanium resources in urban mines.展开更多
An attempt has been made to investigate and optimize the recovery of Ni and Al through sulphuric acid(3.0-5.5 mol/L)leaching under different operating conditions.From the leaching experiments,it was possible to extrac...An attempt has been made to investigate and optimize the recovery of Ni and Al through sulphuric acid(3.0-5.5 mol/L)leaching under different operating conditions.From the leaching experiments,it was possible to extract 98.5%of NiO and 40.7%of Al_(2)O_(3)under the conditions of 5.5 mol/L H_(2)SO_(4),reaction time of 4 h,solid-to-liquid ratio 0.2 g/mL,temperature of 358 K,particle size<100μm,200-250 r/min with 5.0 g catalyst dosage.The leached liquor Al was separated by selective crystallization using 1.4 mol/L KOH and Ni was separated by selective precipitation using 0.3 mol/L H_(2)C_(2)O_(4).From the studies,it is possible to recover around 97.9%of NiO having 98.3%purity,around 25%of Al_(2)O_(3)was also recovered as alum-(K)having 99%purity and 14.7%of Al_(2)O_(3)as a salt of Al-K-C_(2)O_(4)-SO_(4).Sulphuric acid was found to be a suitable leaching agent for selective leaching and it was also observed that alum-(K)can be selectively crystallized from sulphate solutions.The study also indicated the effective extraction and recovery of nickel and aluminium which were well supported by characterization studies using TG-DTA/DTG and XRD techniques.展开更多
Sulfuric acid leaching process was applied to extract nickel from roasting-dissolving residue of a spent catalyst, the effect of different parameters on nickel extraction was investigated by leaching experiments, and ...Sulfuric acid leaching process was applied to extract nickel from roasting-dissolving residue of a spent catalyst, the effect of different parameters on nickel extraction was investigated by leaching experiments, and the leaching kinetics of nickel was analyzed. The experimental results indicate that the effects of particle size and sulfuric acid concentration on the nickel extraction are remarkable; the effect of reaction temperature is mild; while the effect of stirring speed in the range of 400-1 200 r/min is negligible. Decreasing particle size or increasing sulfuric acid concentration and reaction temperature, the nickel extraction efficiency is improved. 93.5% of nickel in residue is extracted under suitable leaching conditions, including particle size (0.074-0.100) mm, sulfuric acid concentration 30% (mass fraction), temperature 80 ~C, reaction time 180 min, mass ratio of liquid to solid 10 and stirring speed 800 r/min. The leaching kinetics analyses shows that the reaction rate of leaching process is controlled by diffusion through the product layer, and the calculated activation energy of 15.8 kJ/mol is characteristic for a diffusion controlled process.展开更多
Large quantities of spent hydrodesulfurization (HDS) catalysts are available from petrochemical industry. Disposal of spent catalyst is a problem as it falls under the category of hazardous industrial waste due to its...Large quantities of spent hydrodesulfurization (HDS) catalysts are available from petrochemical industry. Disposal of spent catalyst is a problem as it falls under the category of hazardous industrial waste due to its vanadium concentration. Most of these catalysts are usually supported on alumina containing a variable percentage of elements such as nickel or molybdenum. Hence these catalysts contain environmentally critical, and economically valuable metals such as molyb denum, vanadium, and, nickel. In this paper, a spent HDS catalyst was treated with caustic soda solution. Parameters such as temperature, time, and NaOH solution concentration have been studied thoroughly, in order to settle the appropriate conditions for the maximum recovery of molybdenum and vanadium. Under the best leaching conditions (20 %w NaOH, room temperature, 2 h) about 95% recovery of Mo and V was achieved, and the recovery of nickel obtained was of 99% in the form of NiAlO4.展开更多
The chemical composition, structure and thermal stability of the spent FCC equilibrium catalyst from an oil refinery were characterized by XRD, FT-IR, DTA-TG, BET, complete chemical analysis, SEM, and XRF. The spent F...The chemical composition, structure and thermal stability of the spent FCC equilibrium catalyst from an oil refinery were characterized by XRD, FT-IR, DTA-TG, BET, complete chemical analysis, SEM, and XRF. The spent FCC equilibrium catalyst, clay, barium carbonate, and talc were used as the main raw materials to prepare the alumina abrasion-resistant ceramic balls to be used in the powder grinding mill for manufacture of architecture tiles. The results showed that after proper formulation study, the spent FCC equilibrium catalyst could replace industrial alumina to prepare high performance grinding balls. Meanwhile, the various performance indices of the grinding ball could meet the quality standard for similar products, and additionally, the energy saving effect was achieved in the operation of the grinding section, resulting in a successful comprehensive utilization of solid wastes.展开更多
The selective dissolution of V and Fe from spent denitrification catalyst(SDC)with oxalic acid was investigated to minimise their environmental effects.The dissolution kinetics of different elements from SDC by using ...The selective dissolution of V and Fe from spent denitrification catalyst(SDC)with oxalic acid was investigated to minimise their environmental effects.The dissolution kinetics of different elements from SDC by using 0.1–1.5 mol L^(-1) oxalic acid concentration was studied at 60℃–90℃.V and Fe were preferentially released(65%and 81%)compared with Al,Ti and W within 5 min due to the redox reactions of oxalic acid.The dissolved fractions of Fe,V,Al,Wand Ti increased with the increase of oxalic acid concentration and reaction temperature.The dissolution kinetic experiments were analysed and controlled diffusion with n<0.5 according to the Avrami dissolve reaction model(R^(2)>0.92).The Arrhenius parameters of the Ea values of Ti,W,V,Fe and Al from SDC with oxalic acid were 30,26,20,19 and 11 kJ mol^(-1),respectively.The obtained Avrami equation of V and Fe was successfully used to predict their leaching behaviour in oxalic acid.Toxicity characteristic leaching procedure revealed that the toxicity risk of Vand Fe metals from SDC after leaching with oxalic acid decreased to below 5 mg kg^(-1) residua.Overall,the leaching residua by oxalic acid indicated its safety for the environment.展开更多
Traditionally,Ag-containing solid wastes are leached by nitric acid in order to recycle the noble metal.However,the huge amounts of emission of toxic nitrogen oxides demand the development of a new method for silver r...Traditionally,Ag-containing solid wastes are leached by nitric acid in order to recycle the noble metal.However,the huge amounts of emission of toxic nitrogen oxides demand the development of a new method for silver recycling.Recently,considering the Ce(Ⅳ)solution could be regenerated with electrolyzation method,our group invented a novel environmentally friendly process by using Ce(Ⅳ)as the oxidant to dissolve silver from the spent Ag/ɑ-Al_2O_3 catalysts without NO_x emission.To find out the optimal parameters,in this work,the leaching reaction was thoroughly investigated with respect to the temperature,oxidant and HNO_3 concentrations,stirring speed,and time.The optimized leaching reaction gave the leaching silver rate 99.8% in 1 h.The kinetic plots suggested a shrinking core model with the internal diffusion-controlled process and the activation energy of 38.83 k J·mol^(-1).The order in which the experimental conditions influence the reaction was determined through orthogonal analysis:temperature N oxidant concentration N HNO_3 concentration N stirring speed.展开更多
A new technology for microwave pretreatment of spent catalyst on Zn extraction by HCl leaching was proposed and the temperature-change curve of spent catalyst under microwave irradiation was measured.The influence of ...A new technology for microwave pretreatment of spent catalyst on Zn extraction by HCl leaching was proposed and the temperature-change curve of spent catalyst under microwave irradiation was measured.The influence of microwave pretreatment temperature and microwave irradiation time on zinc extraction was investigated and the mechanism of microwave pretreatment for spent catalyst was analyzed.The results show that microwave pretreatment can greatly enhance the leaching rate of Zn.The Zn extraction reaches 96.58%under the conditions of microwave pretreatment temperature of 950℃and the microwave irradiation time of 12 min.The blocked pores of spent catalyst can be opened through microwave pretreatment,increasing the contact area of leaching reagent and zinc.展开更多
Platinum group metals(PGMs),especially Pd,Pt,and Rh,have drawn great attention due to their unique features.Direct separation of Pd and Pt from highly acidic automobile catalyst leach liquors is disturbed by various f...Platinum group metals(PGMs),especially Pd,Pt,and Rh,have drawn great attention due to their unique features.Direct separation of Pd and Pt from highly acidic automobile catalyst leach liquors is disturbed by various factors.This work investigates the effect of various parameters including the acidity,extractant concentration,phase ratio A/O,and diluents on the Pd and Pt extraction and their stripping behaviors.The results show that the Pd and Pt are successfully separated from simulated leach liquor of spent automobile catalysts with monothioCyanex 272 and trioctylamine(TOA).Monothio-Cyanex 272 shows strong extractability and specific selectivity for Pd,and only one single stage is needed to recover more than 99.9% of Pd,leaving behind all the Pt,Rh,and base metals of Fe,Mg,Ce,Ni,Cu,and Co in the raffinate.The loaded Pd is efficiently stripped by acidic thiourea solutions.TOA shows strong extractability for Pt and Fe at acidity of 6 mol·L^(–1) HCl.More than 99.9% of Pt and all of the Fe are extracted into the organic phase after two stages of countercurrent extraction.Diluted HCl easily scrubs the loaded base metals(Fe,Cu,and Co).The loaded Pt is efficiently stripped by 1.0 mol·L^(–1) thiourea and 0.05–0.1 mol·L^(–1) Na OH solutions.Monothio-Cyanex 272 and TOA can realize the separation of Pd and Pt from highly acidic leach liquor of spent automobile catalysts.展开更多
A new technology was developed to recover multiple valuable elements from the spent Al2O3-based catalyst by X-ray phase analysis and exploratory experiments. The experimental results show that in the condition of roas...A new technology was developed to recover multiple valuable elements from the spent Al2O3-based catalyst by X-ray phase analysis and exploratory experiments. The experimental results show that in the condition of roasting temperature of 750℃ and roasting time of 30 min, molar ratio of Na2O to Al2O3 of 1.2, the leaching rates of alumina, vanadium and molybdenum in the spent catalyst are 97.2%, 95.8% and 98.9%, respectively. Vanadium and molybdenum in sodium aluminate solution can be recovered by precipitators A and B, and the precipitation rates of vanadium and molybdenum are 94.8% and 92.6%. Al(OH)3 was prepared from sodium aluminate solution in the carbonation decomposition process, and the purity of Al2O3 is 99.9% after calcination, the recovery of alumina reaches 90.6% in the whole process; the Ni-Co concentrate was leached by sulfuric acid, a nickel recovery of 98.2% and cobalt recovery over 98.5% can be obtained under the experimental condition of 30% H2SO4, 80℃, reaction time 4 h, mass ratio of liquid to solid 8, stirring rate 800r/min.展开更多
A new method was developed to optimize the microwave heating thickness of the spent automobile catalyst in order to improve the uniform distribution of the temperature field. The average penetration depth and the micr...A new method was developed to optimize the microwave heating thickness of the spent automobile catalyst in order to improve the uniform distribution of the temperature field. The average penetration depth and the microwave heating thickness of the spent automobile catalyst were calculated by Gauss model and numerical calculation based on dielectric loss tangent and reflection loss. The results showed that the spent automobile catalyst was a medium loss material. The average penetration depth was 1.11 m from room temperature to 800 ℃. The optimum microwave heating thickness of the spent automobile catalyst was about 0.83 m or 0.75 times of the average penetration depth. Industrial application analysis indicated that the optimization of heating thickness could improve the uniform distribution of the temperature field and reduce energy consumption.展开更多
The recovery of nickel from spent nickel catalyst for the preparation of nickel hydroxide was studied. Nickel was extracted from the spent catalyst by acid leaching with 1 mol/L sulfuric acid at 90 ℃. Purified nickel...The recovery of nickel from spent nickel catalyst for the preparation of nickel hydroxide was studied. Nickel was extracted from the spent catalyst by acid leaching with 1 mol/L sulfuric acid at 90 ℃. Purified nickel solution was used in the preparation of nickel hydroxide. Three different methods, namely urea hydrolysis, conventional, and hydrothermal methods, of precipitation using NaOH were employed to get various nickel hydroxides samples named as Ni(OH)E-U, Ni(OH)2-C, and Ni(OH)E-H, respectively. Hydrothermal treatment induced better crystallinity in the Ni(OH)2 compared with conventional method. Both Ni(OH)2-C and Ni(OH)E-H samples have mixed phases of fl-Ni(OH)2 and a*-Ni(OH)E.0.75H20 phases, whereas Ni(OH)2-U has only a*-Ni(OH)2.0.75H20. TEM image of Ni(OH)E-U sample shows rod-like Ni(OH)2 structures. Among all, Ni(OH)2-U shows the best electrochemical activity.展开更多
The metallurgical properties of the CaO–SiO_(2)–Al_(2)O_(3)–4.6wt%Mg O–Fe_(2)O_(3)slag system,formed by the co-treatment process of spent automotive catalyst(SAC)and copper-bearing electroplating sludge(CBES),were...The metallurgical properties of the CaO–SiO_(2)–Al_(2)O_(3)–4.6wt%Mg O–Fe_(2)O_(3)slag system,formed by the co-treatment process of spent automotive catalyst(SAC)and copper-bearing electroplating sludge(CBES),were studied systematically in this paper.The slag structure,melting temperature,and viscous characteristics were investigated by Fourier transform infrared(FTIR)spectroscopy,Raman spectroscopy,Fact Sage calculation,and viscosity measurements.Experimental results show that the increase of Fe_(2)O_(3)content(3.8wt%–16.6wt%),the mass ratio of CaO/SiO_(2)(m(CaO)/m(SiO_(2)),0.5–1.3),and the mass ratio of SiO_(2)/Al_(2)O_(3)(m(SiO_(2))/m(Al_(2)O_(3)),1.0–5.0)can promote the depolymerization of silicate network,and the presence of a large amount of Fe_(2)O_(3)in form of tetrahedral and octahedral units ensures the charge compensation of Al^(3+)ions and makes Al_(2)O_(3)only behave as an acid oxide.Thermodynamic calculation and viscosity measurements show that with the increase of Fe_(2)O_(3)content,m(Ca O)/m(SiO_(2)),and m(SiO_(2))/m(Al_(2)O_(3)),the depolymerization of silicate network structure and low-melting-point phase transformation first occur within the slag,leading to the decrease in melting point and viscosity of the slag,while further increase causes the formation of high-melting-point phase and a resultant re-increase in viscosity and melting point.Based on experimental analysis,the preferred slag composition with low polymerization degree,viscosity,and melting point is as follows:Fe_(2)O_(3)content of 10.2wt%–13.4wt%,m(CaO)/m(SiO_(2))of 0.7–0.9 and m(SiO_(2))/m(Al_(2)O_(3))of 3.0–4.0.This work provides a theoretical support for slag design in co-smelting process of SAC and CBES.展开更多
Auto-catalysts were the largest consumers of platinum group metals and the most important secondary resources, recovery of PGMs from spent auto-catalysts by leaching with various acidities were investigated. The leach...Auto-catalysts were the largest consumers of platinum group metals and the most important secondary resources, recovery of PGMs from spent auto-catalysts by leaching with various acidities were investigated. The leaching thermodynamics of PGMs at 363 K was first discussed. At 363 K the higher the acidities of HCl, the higher the leaching recoveries of PGMs, and the sequence of leaching recovery was Pd>Pt>Rh. When H2SO4 used alone, the leaching recoveries of PGMs was low, when the acidity of H2SO4 increasing, the leaching recovery of Rh kept stable.展开更多
Novel composite material with a wide pore distribution was synthesized by an in situ technique using spent FCC catalyst as raw material. The characterization results indicated that the composite material contained 56....Novel composite material with a wide pore distribution was synthesized by an in situ technique using spent FCC catalyst as raw material. The characterization results indicated that the composite material contained 56.7% of zeolite Y and exhibited a much larger specific surface area and pore volume as well as strong hydrothermal stability. Fluid catalytic cracking(FCC) catalyst was prepared based on the composite material. The results indicated that the as-prepared catalyst possessed a unique pore structure that was advantageous to the diffusion-controlled reactions. In addition, the attrition resistance, activity and hydrothermal stability of the studied catalyst were superior to those of the reference catalyst. The catalyst also exhibited excellent nickel and vanadium passivation performance, strong bottoms upgrading selectivity, and better gasoline and coke selectivity. In comparison to the reference catalyst, the yields of the gasoline and light oil increased by 1.61 and 1.31 percentage points, respectively, and the coke yield decreased by 0.22 percentage points, and the olefin content in the produced gasoline reduced by 2.51 percentage points, with the research octane number increased by 0.7 unit.展开更多
The improper disposal of spent selective catalytic reduction (SCR) catalysts causes environmental pollution and metal resource waste.A novel process to recover anatase titanium dioxide (TiO_(2)) from spent SCR catalys...The improper disposal of spent selective catalytic reduction (SCR) catalysts causes environmental pollution and metal resource waste.A novel process to recover anatase titanium dioxide (TiO_(2)) from spent SCR catalysts was proposed.The process included alkali (NaOH) hydrothermal treatment,sulfuric acid washing,and calcination.Anatase TiO_(2) in spent SCR catalyst was reconstructed by forming Na_(2)Ti_(2)O_(4)(OH)_(2) nanosheet during NaOH hydrothermal treatment and H_(2)Ti_(2)O_(4)(OH)_(2) during sulfuric acid washing.Anatase TiO_(2) was recovered by decomposing H_(2)Ti_(2)O_(4)(OH)_(2) during calcination.The surface pore properties of the recovered anatase TiO_(2) were adequately improved,and its specific surface area (SSA) and pore volume (PV) were 85 m^(2)·g^(-1)and 0.40 cm^(3)·g^(-1),respectively.The elements affecting catalytic abilities(arsenic and sodium) were also removed.The SCR catalyst was resynthesized using the recovered TiO_(2) as raw material,and its catalytic performance in NO selective reduction was comparable with that of commercial SCR catalyst.This study realized the sustainable recycling of anatase TiO_(2) from spent SCR catalyst.展开更多
Oxidation of coke deposited on spent catalytic cracking catalysts was compared with that of coal and coal char via the non-isothermal oxidation means, i.e. the thermal-gravimetric analysis (TGA) and the differential...Oxidation of coke deposited on spent catalytic cracking catalysts was compared with that of coal and coal char via the non-isothermal oxidation means, i.e. the thermal-gravimetric analysis (TGA) and the differential thermal analysis (DTA). Oxidation kinetic parameters were further investigated by model-fitting methods. The test results showed that the oxidation of spent catalysts was a quite mild process, while coal and coal char experienced sharp weight loss during oxidation. The temperature for commencement and termination of oxidation increased in the following order: coal〈coal char〈spent catalysts, and the oxidation of the three tested materials displayed a self-catalytic nature, with their largest oxidation rate appearing at a weight percent of 24.96%, 34.21% and 57.93%, respectively. The oxidation of spent catalysts obeyed a random nucleation model for the first-order reaction, with Ea=206.13 kJ/mol and lgA=10.10, and the oxidation of coal could be a diffusion-controlled reaction mechanism, with Ea=161.61 kJ/mol and lgA=7.74, while the oxidation of coal char also obeyed a random nucleation model for the first-order reaction, with Ea= 149.36 k J/mol and lgA=7.89.展开更多
基金Project(22178392)supported by the National Natural Science Foundation of China。
文摘Preparation of high purity ruthenium nitrosyl nitrate using spent Ru-Zn/ZrO_(2)catalyst was studied,including melting and leaching to obtain potassium ruthenate solution,reduction,dissolving,concentrating and drying to obtain ruthenium trichloride,nitrosation and hydrolysis to obtain ruthenium nitrosyl hydroxide,removing of K^(+)and Cl^(-),and neutralization with nitric acid.The effects of temperature,concentration,time and pH on the yield and purity of intermediates and final product were studied,and the optimum process conditions were obtained.The yield of ruthenium nitrosyl nitrate is 92%,the content of ruthenium in high purity product is 32.16%,and the content of Cl^(-)and K^(+)are much less than 0.005%.The reaction kinetics of ruthenium nitrosyl chloride to ruthenium nitrosyl hydroxide was studied.The reaction orders of Ru(NO)Cl_(3)at 40,55 and 70℃are 0.39,0.37 and 0.39,respectively,while those of KOH are 0.16,0.15 and 0.17,respectively.The activation energy is-2.33 k J/mol.
基金financially supported by the High-degree Talent Introduction Program of Guangdong Academy of Sciences(No.2017GDASCX-0841)the Science and Technology Program of Guangzhou(No.201607020021)+2 种基金the National Natural Science Foundation of China(No.51304055)the Innovative Platform Construction Program of Guangdong Academy of Sciences(No.2017GDASCX-0109)the Pearl River Nova Program of Guangzhou(No.201806010016)
文摘The study of the leaching of vanadium(V) and molybdenum(Mo) from spent petrochemical catalysts in sodium hydroxide(NaO H) medium was performed using two approaches, namely, conventional leaching and microwave-assisted leaching methods. The influence of microwave power, leaching time, leaching temperature, and NaOH concentration on the leaching efficiency of spent petrochemical catalyst was investigated. Under microwave-assisted conditions(600 W, 10 min, 90°C, 2.0 mol·L^(-1) NaOH, and 0.20 g·mL^(-1) solid–liquid ratio), the leaching efficiencies of V and Mo reached 94.35% and 96.23%, respectively. It has been confirmed that microwave energy has considerable potential to enhance the efficiency of the leaching process and reduce the leaching time. It is suggested that the enhancement of the leaching efficiencies of V and Mo can be attributed to the existence of a thermal gradient between solid and liquid and the generation of cracks on the mineral surface.
基金the National Natural Science Foundation of China(Grant No.51804277)supported by the State Key Laboratory of Special Rare Metal Materials(No.SKL2020K004)+1 种基金Northwest Rare Metal Materials Research Institutesupported by the State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization(No.CNMRCUKF2008)。
文摘Spent catalyst used for denitration by selective catalytic reduction(spent SCR denitration catalysts) is one of the important urban mines due to the high content of TiO_(2)(~85 wt%) and the massive accumulation amount(over 100,000 tons),therefore,value-added reutilization of titanium in spent SCR catalysts is considerably meaningful.In this paper,a novel method is proposed for converting the titanium oxide in spent SCR denitration catalysts to metallic titanium.Specifically,titanium dioxide(TiO_(2)) was firstly obtained from spent SCR denitration catalysts after removing the impurities by hydrometallurgy process.Then,TiO_(2) is converted to Ti_(2)CO by carbothermic reduction method,and Ti_(2)CO was further purified by oleic acid capture.Finally,by utilizing the as-prepared Ti_(2)CO as the consumable anode in the NaCl-KCl molten salt,high-purity metallic titanium was deposited at cathode,all confirming the feasibility for the conversion of low-grade TiO_(2) in the spent catalysts,from 60 wt% to high-purity metallic Ti(99.5 wt%), furthermore,the energy consumption of this process is 3950 kWh tonne-1 Ti,which is lower than that of most traditional titanium metallurgy methods.The method herein can provide new insights for the value-added recycling of titanium resources in urban mines.
文摘An attempt has been made to investigate and optimize the recovery of Ni and Al through sulphuric acid(3.0-5.5 mol/L)leaching under different operating conditions.From the leaching experiments,it was possible to extract 98.5%of NiO and 40.7%of Al_(2)O_(3)under the conditions of 5.5 mol/L H_(2)SO_(4),reaction time of 4 h,solid-to-liquid ratio 0.2 g/mL,temperature of 358 K,particle size<100μm,200-250 r/min with 5.0 g catalyst dosage.The leached liquor Al was separated by selective crystallization using 1.4 mol/L KOH and Ni was separated by selective precipitation using 0.3 mol/L H_(2)C_(2)O_(4).From the studies,it is possible to recover around 97.9%of NiO having 98.3%purity,around 25%of Al_(2)O_(3)was also recovered as alum-(K)having 99%purity and 14.7%of Al_(2)O_(3)as a salt of Al-K-C_(2)O_(4)-SO_(4).Sulphuric acid was found to be a suitable leaching agent for selective leaching and it was also observed that alum-(K)can be selectively crystallized from sulphate solutions.The study also indicated the effective extraction and recovery of nickel and aluminium which were well supported by characterization studies using TG-DTA/DTG and XRD techniques.
基金Project (50574101) supported by the National Natural Science Foundation of ChinaProject (2003UDBEA00C020) supported by the Collaborative Project of School and Province of Yunnan Province,China
文摘Sulfuric acid leaching process was applied to extract nickel from roasting-dissolving residue of a spent catalyst, the effect of different parameters on nickel extraction was investigated by leaching experiments, and the leaching kinetics of nickel was analyzed. The experimental results indicate that the effects of particle size and sulfuric acid concentration on the nickel extraction are remarkable; the effect of reaction temperature is mild; while the effect of stirring speed in the range of 400-1 200 r/min is negligible. Decreasing particle size or increasing sulfuric acid concentration and reaction temperature, the nickel extraction efficiency is improved. 93.5% of nickel in residue is extracted under suitable leaching conditions, including particle size (0.074-0.100) mm, sulfuric acid concentration 30% (mass fraction), temperature 80 ~C, reaction time 180 min, mass ratio of liquid to solid 10 and stirring speed 800 r/min. The leaching kinetics analyses shows that the reaction rate of leaching process is controlled by diffusion through the product layer, and the calculated activation energy of 15.8 kJ/mol is characteristic for a diffusion controlled process.
文摘Large quantities of spent hydrodesulfurization (HDS) catalysts are available from petrochemical industry. Disposal of spent catalyst is a problem as it falls under the category of hazardous industrial waste due to its vanadium concentration. Most of these catalysts are usually supported on alumina containing a variable percentage of elements such as nickel or molybdenum. Hence these catalysts contain environmentally critical, and economically valuable metals such as molyb denum, vanadium, and, nickel. In this paper, a spent HDS catalyst was treated with caustic soda solution. Parameters such as temperature, time, and NaOH solution concentration have been studied thoroughly, in order to settle the appropriate conditions for the maximum recovery of molybdenum and vanadium. Under the best leaching conditions (20 %w NaOH, room temperature, 2 h) about 95% recovery of Mo and V was achieved, and the recovery of nickel obtained was of 99% in the form of NiAlO4.
基金the funding provided by the Fujian Provincial Education Department Project(JA09054)the Project administered by the Fujian Normal University(XG-004)+4 种基金the Fujian Provincial Eco- nomic and Trade Commission Project(HE0536)the Open Project of the MOE's Key Laboratory for Medical and Photoelectrical Science and Technology(JYG0821)the Open Project of Hubei Province,the State Nationalities Committee,and the MOE Joint Key Laboratory for Catalytic Material Science(CHCL08008)the Fujian Provincial Testing Fund Project for the Key Laboratory of Highmolecular Materials(FJKL-POLY2010-17)the Training for Excellence Youth Skeleton Teacher of Fujian Normal University(No.2008100228).
文摘The chemical composition, structure and thermal stability of the spent FCC equilibrium catalyst from an oil refinery were characterized by XRD, FT-IR, DTA-TG, BET, complete chemical analysis, SEM, and XRF. The spent FCC equilibrium catalyst, clay, barium carbonate, and talc were used as the main raw materials to prepare the alumina abrasion-resistant ceramic balls to be used in the powder grinding mill for manufacture of architecture tiles. The results showed that after proper formulation study, the spent FCC equilibrium catalyst could replace industrial alumina to prepare high performance grinding balls. Meanwhile, the various performance indices of the grinding ball could meet the quality standard for similar products, and additionally, the energy saving effect was achieved in the operation of the grinding section, resulting in a successful comprehensive utilization of solid wastes.
基金The authors are grateful for the financial support of the National Natural Science Foundation of China(No.51574214).
文摘The selective dissolution of V and Fe from spent denitrification catalyst(SDC)with oxalic acid was investigated to minimise their environmental effects.The dissolution kinetics of different elements from SDC by using 0.1–1.5 mol L^(-1) oxalic acid concentration was studied at 60℃–90℃.V and Fe were preferentially released(65%and 81%)compared with Al,Ti and W within 5 min due to the redox reactions of oxalic acid.The dissolved fractions of Fe,V,Al,Wand Ti increased with the increase of oxalic acid concentration and reaction temperature.The dissolution kinetic experiments were analysed and controlled diffusion with n<0.5 according to the Avrami dissolve reaction model(R^(2)>0.92).The Arrhenius parameters of the Ea values of Ti,W,V,Fe and Al from SDC with oxalic acid were 30,26,20,19 and 11 kJ mol^(-1),respectively.The obtained Avrami equation of V and Fe was successfully used to predict their leaching behaviour in oxalic acid.Toxicity characteristic leaching procedure revealed that the toxicity risk of Vand Fe metals from SDC after leaching with oxalic acid decreased to below 5 mg kg^(-1) residua.Overall,the leaching residua by oxalic acid indicated its safety for the environment.
基金Supported by the Key Research Program of Frontier Sciences of CAS(QYZDJ-SSWJSC021)the Science and Technology Cooperation for Yunnan Provinces and CAS(2016IB002)+1 种基金Science and Technology Service Network Initiative of CAS(KFJ-SW-STS-148)National Natural Science Foundation of China(21506233,51402303,21606241,51374191)
文摘Traditionally,Ag-containing solid wastes are leached by nitric acid in order to recycle the noble metal.However,the huge amounts of emission of toxic nitrogen oxides demand the development of a new method for silver recycling.Recently,considering the Ce(Ⅳ)solution could be regenerated with electrolyzation method,our group invented a novel environmentally friendly process by using Ce(Ⅳ)as the oxidant to dissolve silver from the spent Ag/ɑ-Al_2O_3 catalysts without NO_x emission.To find out the optimal parameters,in this work,the leaching reaction was thoroughly investigated with respect to the temperature,oxidant and HNO_3 concentrations,stirring speed,and time.The optimized leaching reaction gave the leaching silver rate 99.8% in 1 h.The kinetic plots suggested a shrinking core model with the internal diffusion-controlled process and the activation energy of 38.83 k J·mol^(-1).The order in which the experimental conditions influence the reaction was determined through orthogonal analysis:temperature N oxidant concentration N HNO_3 concentration N stirring speed.
基金Project(2008DFA91500)supported by the China International Science and Technology Cooperation ProgramProject(2006GH01)supported by the International Collaboration Project of Yunnan Provincial Science and Technology DepartmentProject(14051157)supported by Yunnan Provincial Natural Science Foundation
文摘A new technology for microwave pretreatment of spent catalyst on Zn extraction by HCl leaching was proposed and the temperature-change curve of spent catalyst under microwave irradiation was measured.The influence of microwave pretreatment temperature and microwave irradiation time on zinc extraction was investigated and the mechanism of microwave pretreatment for spent catalyst was analyzed.The results show that microwave pretreatment can greatly enhance the leaching rate of Zn.The Zn extraction reaches 96.58%under the conditions of microwave pretreatment temperature of 950℃and the microwave irradiation time of 12 min.The blocked pores of spent catalyst can be opened through microwave pretreatment,increasing the contact area of leaching reagent and zinc.
基金financially supported by the National Key Research and Development Program for Young Scientists,China(No.2021YFC2901100)。
文摘Platinum group metals(PGMs),especially Pd,Pt,and Rh,have drawn great attention due to their unique features.Direct separation of Pd and Pt from highly acidic automobile catalyst leach liquors is disturbed by various factors.This work investigates the effect of various parameters including the acidity,extractant concentration,phase ratio A/O,and diluents on the Pd and Pt extraction and their stripping behaviors.The results show that the Pd and Pt are successfully separated from simulated leach liquor of spent automobile catalysts with monothioCyanex 272 and trioctylamine(TOA).Monothio-Cyanex 272 shows strong extractability and specific selectivity for Pd,and only one single stage is needed to recover more than 99.9% of Pd,leaving behind all the Pt,Rh,and base metals of Fe,Mg,Ce,Ni,Cu,and Co in the raffinate.The loaded Pd is efficiently stripped by acidic thiourea solutions.TOA shows strong extractability for Pt and Fe at acidity of 6 mol·L^(–1) HCl.More than 99.9% of Pt and all of the Fe are extracted into the organic phase after two stages of countercurrent extraction.Diluted HCl easily scrubs the loaded base metals(Fe,Cu,and Co).The loaded Pt is efficiently stripped by 1.0 mol·L^(–1) thiourea and 0.05–0.1 mol·L^(–1) Na OH solutions.Monothio-Cyanex 272 and TOA can realize the separation of Pd and Pt from highly acidic leach liquor of spent automobile catalysts.
基金Project(2003 UDBEA00C020) supported by the Collaborative Project of School and Province of Yunnan Province
文摘A new technology was developed to recover multiple valuable elements from the spent Al2O3-based catalyst by X-ray phase analysis and exploratory experiments. The experimental results show that in the condition of roasting temperature of 750℃ and roasting time of 30 min, molar ratio of Na2O to Al2O3 of 1.2, the leaching rates of alumina, vanadium and molybdenum in the spent catalyst are 97.2%, 95.8% and 98.9%, respectively. Vanadium and molybdenum in sodium aluminate solution can be recovered by precipitators A and B, and the precipitation rates of vanadium and molybdenum are 94.8% and 92.6%. Al(OH)3 was prepared from sodium aluminate solution in the carbonation decomposition process, and the purity of Al2O3 is 99.9% after calcination, the recovery of alumina reaches 90.6% in the whole process; the Ni-Co concentrate was leached by sulfuric acid, a nickel recovery of 98.2% and cobalt recovery over 98.5% can be obtained under the experimental condition of 30% H2SO4, 80℃, reaction time 4 h, mass ratio of liquid to solid 8, stirring rate 800r/min.
基金Project(51664037)supported by the National Natural Science Foundation of China。
文摘A new method was developed to optimize the microwave heating thickness of the spent automobile catalyst in order to improve the uniform distribution of the temperature field. The average penetration depth and the microwave heating thickness of the spent automobile catalyst were calculated by Gauss model and numerical calculation based on dielectric loss tangent and reflection loss. The results showed that the spent automobile catalyst was a medium loss material. The average penetration depth was 1.11 m from room temperature to 800 ℃. The optimum microwave heating thickness of the spent automobile catalyst was about 0.83 m or 0.75 times of the average penetration depth. Industrial application analysis indicated that the optimization of heating thickness could improve the uniform distribution of the temperature field and reduce energy consumption.
文摘The recovery of nickel from spent nickel catalyst for the preparation of nickel hydroxide was studied. Nickel was extracted from the spent catalyst by acid leaching with 1 mol/L sulfuric acid at 90 ℃. Purified nickel solution was used in the preparation of nickel hydroxide. Three different methods, namely urea hydrolysis, conventional, and hydrothermal methods, of precipitation using NaOH were employed to get various nickel hydroxides samples named as Ni(OH)E-U, Ni(OH)2-C, and Ni(OH)E-H, respectively. Hydrothermal treatment induced better crystallinity in the Ni(OH)2 compared with conventional method. Both Ni(OH)2-C and Ni(OH)E-H samples have mixed phases of fl-Ni(OH)2 and a*-Ni(OH)E.0.75H20 phases, whereas Ni(OH)2-U has only a*-Ni(OH)2.0.75H20. TEM image of Ni(OH)E-U sample shows rod-like Ni(OH)2 structures. Among all, Ni(OH)2-U shows the best electrochemical activity.
基金financially supported by the Guangzhou Basic and Applied Basic Research Project,China(No.202102020623)the Guangdong Academy of Sciences’Project of Science and Technology Development,China(No.2020 GDASYL-20200103101)+1 种基金the National Key Research and Development Program of China(No.2020YFC1908902)the Natural Science Foundation of Guangdong Province Project,China(No.2020A1515010729)。
文摘The metallurgical properties of the CaO–SiO_(2)–Al_(2)O_(3)–4.6wt%Mg O–Fe_(2)O_(3)slag system,formed by the co-treatment process of spent automotive catalyst(SAC)and copper-bearing electroplating sludge(CBES),were studied systematically in this paper.The slag structure,melting temperature,and viscous characteristics were investigated by Fourier transform infrared(FTIR)spectroscopy,Raman spectroscopy,Fact Sage calculation,and viscosity measurements.Experimental results show that the increase of Fe_(2)O_(3)content(3.8wt%–16.6wt%),the mass ratio of CaO/SiO_(2)(m(CaO)/m(SiO_(2)),0.5–1.3),and the mass ratio of SiO_(2)/Al_(2)O_(3)(m(SiO_(2))/m(Al_(2)O_(3)),1.0–5.0)can promote the depolymerization of silicate network,and the presence of a large amount of Fe_(2)O_(3)in form of tetrahedral and octahedral units ensures the charge compensation of Al^(3+)ions and makes Al_(2)O_(3)only behave as an acid oxide.Thermodynamic calculation and viscosity measurements show that with the increase of Fe_(2)O_(3)content,m(Ca O)/m(SiO_(2)),and m(SiO_(2))/m(Al_(2)O_(3)),the depolymerization of silicate network structure and low-melting-point phase transformation first occur within the slag,leading to the decrease in melting point and viscosity of the slag,while further increase causes the formation of high-melting-point phase and a resultant re-increase in viscosity and melting point.Based on experimental analysis,the preferred slag composition with low polymerization degree,viscosity,and melting point is as follows:Fe_(2)O_(3)content of 10.2wt%–13.4wt%,m(CaO)/m(SiO_(2))of 0.7–0.9 and m(SiO_(2))/m(Al_(2)O_(3))of 3.0–4.0.This work provides a theoretical support for slag design in co-smelting process of SAC and CBES.
文摘Auto-catalysts were the largest consumers of platinum group metals and the most important secondary resources, recovery of PGMs from spent auto-catalysts by leaching with various acidities were investigated. The leaching thermodynamics of PGMs at 363 K was first discussed. At 363 K the higher the acidities of HCl, the higher the leaching recoveries of PGMs, and the sequence of leaching recovery was Pd>Pt>Rh. When H2SO4 used alone, the leaching recoveries of PGMs was low, when the acidity of H2SO4 increasing, the leaching recovery of Rh kept stable.
基金provided by the National Natural Science Foundation of China(No.21371055)the Hunan provincial Natural Science Foundation of China(No.11JJ2008)the Hunan provincial Colleges and Universities Innovation Platform Open Fund Project(No.15K049)
文摘Novel composite material with a wide pore distribution was synthesized by an in situ technique using spent FCC catalyst as raw material. The characterization results indicated that the composite material contained 56.7% of zeolite Y and exhibited a much larger specific surface area and pore volume as well as strong hydrothermal stability. Fluid catalytic cracking(FCC) catalyst was prepared based on the composite material. The results indicated that the as-prepared catalyst possessed a unique pore structure that was advantageous to the diffusion-controlled reactions. In addition, the attrition resistance, activity and hydrothermal stability of the studied catalyst were superior to those of the reference catalyst. The catalyst also exhibited excellent nickel and vanadium passivation performance, strong bottoms upgrading selectivity, and better gasoline and coke selectivity. In comparison to the reference catalyst, the yields of the gasoline and light oil increased by 1.61 and 1.31 percentage points, respectively, and the coke yield decreased by 0.22 percentage points, and the olefin content in the produced gasoline reduced by 2.51 percentage points, with the research octane number increased by 0.7 unit.
基金supported by the National Natural Science Foundation of China (52274411)the National Natural Science Foundation of China (51904287)the Innovation Academy for Green Manufacture,Chinese Academy of Sciences (IAGM2022D11)。
文摘The improper disposal of spent selective catalytic reduction (SCR) catalysts causes environmental pollution and metal resource waste.A novel process to recover anatase titanium dioxide (TiO_(2)) from spent SCR catalysts was proposed.The process included alkali (NaOH) hydrothermal treatment,sulfuric acid washing,and calcination.Anatase TiO_(2) in spent SCR catalyst was reconstructed by forming Na_(2)Ti_(2)O_(4)(OH)_(2) nanosheet during NaOH hydrothermal treatment and H_(2)Ti_(2)O_(4)(OH)_(2) during sulfuric acid washing.Anatase TiO_(2) was recovered by decomposing H_(2)Ti_(2)O_(4)(OH)_(2) during calcination.The surface pore properties of the recovered anatase TiO_(2) were adequately improved,and its specific surface area (SSA) and pore volume (PV) were 85 m^(2)·g^(-1)and 0.40 cm^(3)·g^(-1),respectively.The elements affecting catalytic abilities(arsenic and sodium) were also removed.The SCR catalyst was resynthesized using the recovered TiO_(2) as raw material,and its catalytic performance in NO selective reduction was comparable with that of commercial SCR catalyst.This study realized the sustainable recycling of anatase TiO_(2) from spent SCR catalyst.
文摘Oxidation of coke deposited on spent catalytic cracking catalysts was compared with that of coal and coal char via the non-isothermal oxidation means, i.e. the thermal-gravimetric analysis (TGA) and the differential thermal analysis (DTA). Oxidation kinetic parameters were further investigated by model-fitting methods. The test results showed that the oxidation of spent catalysts was a quite mild process, while coal and coal char experienced sharp weight loss during oxidation. The temperature for commencement and termination of oxidation increased in the following order: coal〈coal char〈spent catalysts, and the oxidation of the three tested materials displayed a self-catalytic nature, with their largest oxidation rate appearing at a weight percent of 24.96%, 34.21% and 57.93%, respectively. The oxidation of spent catalysts obeyed a random nucleation model for the first-order reaction, with Ea=206.13 kJ/mol and lgA=10.10, and the oxidation of coal could be a diffusion-controlled reaction mechanism, with Ea=161.61 kJ/mol and lgA=7.74, while the oxidation of coal char also obeyed a random nucleation model for the first-order reaction, with Ea= 149.36 k J/mol and lgA=7.89.