It is useful for practical operation to study the rules of production of propylene by the catalytic conversion of heavy oil in FCC (fluid catalytic cracking). The effects of temperature and C/O ratio (catalyst to o...It is useful for practical operation to study the rules of production of propylene by the catalytic conversion of heavy oil in FCC (fluid catalytic cracking). The effects of temperature and C/O ratio (catalyst to oil weight ratio) on the distribution of the product and the yield of propylene were investigated on a micro reactor unit with two model catalysts, namely ZSM-5/Al2O3 and USY/Al2O3, and Fushun vacuum gas oil (VGO) was used as the feedstock. The conversion of heavy oil over ZSM-5 catalyst can be comparable to that of USY catalyst at high temperature and high C/O ratio. The rate of conversion of heavy oil using the ZSM-5 equilibrium catalyst is lower compared with the USY equilibrium catalyst under the general FCC conditions and this can be attributed to the poor steam ability of the ZSM-5 equilibrium catalyst. The difference in pore topologies of USY and ZSM-5 is the reason why the principal products for the above two catalysts is different, namely gasoline and liquid petroleum gas (LPG), repspectively. So the LPG selectivity, especially the propylene selectivity, may decline if USY is added into the FCC catalyst for maximizing the production of propylene. Increasing the C/O ratio is the most economical method for the increase of LPG yield than the increase of the temperature of the two model catalysts, because the loss of light oil is less in the former case. There is an inverse correlation between HTC (hydrogen transfer coefficient) and the yield of propylene, and restricting the hydrogen transfer reaction is the more important measure in increasing the yield of propylene of the ZSM-5 catalyst. The ethylene yield of ZSM-5/A1203 is higher, but the gaseous side products with low value are not enhanced when ZSM-5 catalyst is used. Moreover, for LPG and the end products, dry gas and coke, their ranges of reaction conditions to which their yields are dependent are different, and that of end products is more severe than that of LPG. So it is clear that maximizing LPG and propylene and restricting dry gas and coke can be both achieved via increasing the severity of reaction conditions among the range of reaction conditions which LPG yield is sensitive to.展开更多
Driven by the increasing supply of heavy oils with deteriorating quality,a high nickel-resistant catalyst for catalytic cracking of inferior crude oils was developed by the Research Institute of Petroleum Processing(R...Driven by the increasing supply of heavy oils with deteriorating quality,a high nickel-resistant catalyst for catalytic cracking of inferior crude oils was developed by the Research Institute of Petroleum Processing(RIPP).Catalyst performance was evaluated in a laboratory fixed fluidized bed reactor.The test results showed that the high nickel resistance catalyst exhibited good bottoms crackability,good nickel resistance,and good adaptability to changes in operating parameters,which had no adverse effect on the product distribution,indicating to a most promising prospect for application of this catalyst in catalytic cracking of inferior crude oil.展开更多
The cracking of polyolefins, especially polyethylene in the molten state was effectively catalyzed by the powdery spent FCC (Fluid Catalytic Cracking) catalyst which was dispersed in it. The activation energy of the...The cracking of polyolefins, especially polyethylene in the molten state was effectively catalyzed by the powdery spent FCC (Fluid Catalytic Cracking) catalyst which was dispersed in it. The activation energy of the catalytic cracking of polyethylene was about 74 kJ/mol. The cracked product was naphtha and middle distillate as the major product and gaseous hydrocarbon (C1-C4) as the minor product while little heavy oil was produced. The chemical compositions of the product were: aromatic hydrocarbons, isoparaffins and branched olefins, whereas that of the non-catalyzed products were: n-olefins and n-paraffins with minor amount of dienes with increasing the process time. Additionally, the product pattern shifted from naphtha rich product to kerosene and gas-oil rich product. However, any catalytic product showed low fluid point (〈 -10 ℃), while that of the non-catalyzed product was as high as 40 ℃. Catalyst could process, more than 100 times by weight of polyethylene with fairly small amount (- 30 wt%) of coke deposition. Spent catalyst gave higher hydrocarbons while fresh catalyst gave gaseous product as the major product. Other polyolefins such as polypropylene and polystyrene were tested on same catalyst to show that their reactivity is higher than that of polyethylene and gave the aliphatic products, alkyl benzenes and C6-C9 iso-paraffins as the major product. Product pattern of the cracked product suggested that the reaction proceeded via the primary reactions making paraffins and olefins which were followed by the isomerization, secondary cracking, aromatization and hydrogen transfer which based on the carbenium ion mechanism.展开更多
In this work, Zr-M(M=Cu, Mn, Ce) type sulfur transfer agent was prepared by impregnation method. Under the condition similar to that in the regenerator of FCC units, the influence of different active metal components ...In this work, Zr-M(M=Cu, Mn, Ce) type sulfur transfer agent was prepared by impregnation method. Under the condition similar to that in the regenerator of FCC units, the influence of different active metal components and their contents on sulfur transfer agent were investigated. Moreover, the crystalline structure of sulfur transfer agent was characterized by X-ray diffraction(XRD) and Fourier transforms infrared spectroscopy(FT-IR). The result showed that the Zr-Mn sulfur transfer agent could effectively reduce the SO2 content in FCC regenerator flue gas, featuring high SO2 adsorption capacity. The sulfur transfer agent was inactivated in 40—60 min during the test. In the course of reduction reaction, after several reaction cycles, the formation of SO2 ceased and only H2 S was detected as the reduction product.展开更多
SINOPEC Research Institute of Petroleum Processing has developed a FCC catalyst to crack heavy oil feedstock to improve high-value products yield, and its commercial application has been conducted successfully in RFCC...SINOPEC Research Institute of Petroleum Processing has developed a FCC catalyst to crack heavy oil feedstock to improve high-value products yield, and its commercial application has been conducted successfully in RFCCU at SINOPEC Jingmen Branch Company. This catalyst has revealed its excellent bottoms crackability and coke selectivity. Commercial application tests showed that the slurry yield decreased by 2.84%, and the coke make dropped by 0.64%, with the total yield of LPG, gasoline and diesel increased by 3.99%.展开更多
文摘It is useful for practical operation to study the rules of production of propylene by the catalytic conversion of heavy oil in FCC (fluid catalytic cracking). The effects of temperature and C/O ratio (catalyst to oil weight ratio) on the distribution of the product and the yield of propylene were investigated on a micro reactor unit with two model catalysts, namely ZSM-5/Al2O3 and USY/Al2O3, and Fushun vacuum gas oil (VGO) was used as the feedstock. The conversion of heavy oil over ZSM-5 catalyst can be comparable to that of USY catalyst at high temperature and high C/O ratio. The rate of conversion of heavy oil using the ZSM-5 equilibrium catalyst is lower compared with the USY equilibrium catalyst under the general FCC conditions and this can be attributed to the poor steam ability of the ZSM-5 equilibrium catalyst. The difference in pore topologies of USY and ZSM-5 is the reason why the principal products for the above two catalysts is different, namely gasoline and liquid petroleum gas (LPG), repspectively. So the LPG selectivity, especially the propylene selectivity, may decline if USY is added into the FCC catalyst for maximizing the production of propylene. Increasing the C/O ratio is the most economical method for the increase of LPG yield than the increase of the temperature of the two model catalysts, because the loss of light oil is less in the former case. There is an inverse correlation between HTC (hydrogen transfer coefficient) and the yield of propylene, and restricting the hydrogen transfer reaction is the more important measure in increasing the yield of propylene of the ZSM-5 catalyst. The ethylene yield of ZSM-5/A1203 is higher, but the gaseous side products with low value are not enhanced when ZSM-5 catalyst is used. Moreover, for LPG and the end products, dry gas and coke, their ranges of reaction conditions to which their yields are dependent are different, and that of end products is more severe than that of LPG. So it is clear that maximizing LPG and propylene and restricting dry gas and coke can be both achieved via increasing the severity of reaction conditions among the range of reaction conditions which LPG yield is sensitive to.
文摘Driven by the increasing supply of heavy oils with deteriorating quality,a high nickel-resistant catalyst for catalytic cracking of inferior crude oils was developed by the Research Institute of Petroleum Processing(RIPP).Catalyst performance was evaluated in a laboratory fixed fluidized bed reactor.The test results showed that the high nickel resistance catalyst exhibited good bottoms crackability,good nickel resistance,and good adaptability to changes in operating parameters,which had no adverse effect on the product distribution,indicating to a most promising prospect for application of this catalyst in catalytic cracking of inferior crude oil.
文摘The cracking of polyolefins, especially polyethylene in the molten state was effectively catalyzed by the powdery spent FCC (Fluid Catalytic Cracking) catalyst which was dispersed in it. The activation energy of the catalytic cracking of polyethylene was about 74 kJ/mol. The cracked product was naphtha and middle distillate as the major product and gaseous hydrocarbon (C1-C4) as the minor product while little heavy oil was produced. The chemical compositions of the product were: aromatic hydrocarbons, isoparaffins and branched olefins, whereas that of the non-catalyzed products were: n-olefins and n-paraffins with minor amount of dienes with increasing the process time. Additionally, the product pattern shifted from naphtha rich product to kerosene and gas-oil rich product. However, any catalytic product showed low fluid point (〈 -10 ℃), while that of the non-catalyzed product was as high as 40 ℃. Catalyst could process, more than 100 times by weight of polyethylene with fairly small amount (- 30 wt%) of coke deposition. Spent catalyst gave higher hydrocarbons while fresh catalyst gave gaseous product as the major product. Other polyolefins such as polypropylene and polystyrene were tested on same catalyst to show that their reactivity is higher than that of polyethylene and gave the aliphatic products, alkyl benzenes and C6-C9 iso-paraffins as the major product. Product pattern of the cracked product suggested that the reaction proceeded via the primary reactions making paraffins and olefins which were followed by the isomerization, secondary cracking, aromatization and hydrogen transfer which based on the carbenium ion mechanism.
基金supported by the research fund of the National Natural Science Foundation of China (21306162)the National Basic Research Program "973" Project of China (2010CB226903)Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province (AE201309)
文摘In this work, Zr-M(M=Cu, Mn, Ce) type sulfur transfer agent was prepared by impregnation method. Under the condition similar to that in the regenerator of FCC units, the influence of different active metal components and their contents on sulfur transfer agent were investigated. Moreover, the crystalline structure of sulfur transfer agent was characterized by X-ray diffraction(XRD) and Fourier transforms infrared spectroscopy(FT-IR). The result showed that the Zr-Mn sulfur transfer agent could effectively reduce the SO2 content in FCC regenerator flue gas, featuring high SO2 adsorption capacity. The sulfur transfer agent was inactivated in 40—60 min during the test. In the course of reduction reaction, after several reaction cycles, the formation of SO2 ceased and only H2 S was detected as the reduction product.
文摘SINOPEC Research Institute of Petroleum Processing has developed a FCC catalyst to crack heavy oil feedstock to improve high-value products yield, and its commercial application has been conducted successfully in RFCCU at SINOPEC Jingmen Branch Company. This catalyst has revealed its excellent bottoms crackability and coke selectivity. Commercial application tests showed that the slurry yield decreased by 2.84%, and the coke make dropped by 0.64%, with the total yield of LPG, gasoline and diesel increased by 3.99%.