Located along the southern part of the West Qinling orogenic belt,the Yangshan gold deposit is one of the largest in China.The major gold ores of Yangshan are disseminated in metasedimentary host rocks with minor nati...Located along the southern part of the West Qinling orogenic belt,the Yangshan gold deposit is one of the largest in China.The major gold ores of Yangshan are disseminated in metasedimentary host rocks with minor native gold amounts in stibnite-gold quartz veins.Pyrite and arsenopyrite are the major Au-bearing minerals.Hydrothermal muscovite from gold-bearing quartz veins was dated using the in situ Rb-Sr method to determine the formation age of the Yangshan gold deposit.The Rb-Sr isochron date of the muscovite yielded 210.1±5.6 Ma(MSWD=1.2).This date is near the lower end of the period of the mineralized granitic dykes(210.49-213.10 Ma).Two stages of gold enriching process are recognized in the gold-bearing pyrite:the first is incorporated with the Co,Cu,As,Ni enrichment;and the second is accompanied by Bi,Co,Ni,Pb,Cu,Sb concentration.The in-situ sulfur isotopic values of pyrites show a restrictedΔ34s range of-1.43‰to 2.86‰with a mean value of 0.43‰.Trace-element mapping and in-situ sulfur isotopic analysis of pyrite suggest that the sulfur deposits are likely derived from a magmatic source and likely assimilated by sulfur from the sedimentary bedrock.Thus,magmatism plays a critical role in the formation of the Yangshan gold deposit.展开更多
On the basis of detailed geological studies of the Wulong gold deposit, three metallogenic stages can be identified. With quartz fluid inclusions as an object of study, the authors investigated phase characteristics, ...On the basis of detailed geological studies of the Wulong gold deposit, three metallogenic stages can be identified. With quartz fluid inclusions as an object of study, the authors investigated phase characteristics, compositional variations, temperature and pressure changes, fluid evolution, Pb isotope tracing and Rb-Sr isotopic dating of fluid inclusions entrapped in the above three metallogenic stages. The results show that Na+ is decreased obviously with metallogenic evolution, while K+ and other cations and gas compositions (H2, CO, CH4 and CO2) are increased slightly, and that the temperature and salinity vary in a pulsating manner along with the metallogenic evolution. Inverse calculation of hydrogen and oxygen isotopes indicate that at the first metallogenic stage the fluids were magmatic water, at the second stage they were dominated by magmatic water with a minor amount of meteoric water involved, and at the third stage, i.e., the final stage of metallogenesis, the fluids were composed completely of meteoric water. Its Pb isotopic composition implicates that the ore lead has some affinities with the lead in the Sanguliu granite, but the linear array of the ore-lead isotopic data reflects a mixing source of two end members. It can be deduced that the ore-forming materials and magma were both derived mainly from the same magma source region at depths. The Rb-Sr isotopic ages of the fluid inclusions are 112.2±3.2 Ma, indicating that the Wulong gold deposit was formed during the Yanshanian period.展开更多
This study reports the sphalerite Rb-Sr age and LA-MC-ICP-MS in situ sulfur isotope analysis results of the Daliangzi Lead-Zinc Deposit in the Sichuan-Yunnan-Guizhou (SYG) triangle. Sphalerite Rb-Sr dating yields a ...This study reports the sphalerite Rb-Sr age and LA-MC-ICP-MS in situ sulfur isotope analysis results of the Daliangzi Lead-Zinc Deposit in the Sichuan-Yunnan-Guizhou (SYG) triangle. Sphalerite Rb-Sr dating yields a Mississippian age of 345.2±3.6 Ma (MSWD=I.4), which is older than the published Late Triassic mineralization ages (230-200 Ma) of some other deposits. This indicates that at least two stages of lead-zinc mineralization have occurred in the SYG lead-zinc triangle. The first stage occurred in the Mississippian under an extensional environment, while the second stage occurred in the Late Triassic under a compressional environment. In situ sulfur isotope analysis of sphalerite growth zoning presents relatively large δ^34S values of 11.3‰-15.2‰ with small variations. The large δ^34S values indicate a reduced sulfur source of thermochemical reduction of seawater sulfates. Abundant organic matter in the black fracture zone possibly supplied reductants for thermochemical sulfate reduction (TSR) at the mineralization site. The small variation of δ^34S values suggests a slow and stable TSR process that could prevent the sudden supersaturation of sphalerite in the fluid and the resulting of fast participation. This is consistent with the well-crystallized characteristic of the sphalerite of the Daliangzi Deposit.展开更多
The Baiyinnuo’er deposit in northern China is located in the south section of the Great Xing’an Range,and it is the largest skarn Zn–Pb deposit in the region.Skarn and Zn–Pb orebodies mainly occur between the diff...The Baiyinnuo’er deposit in northern China is located in the south section of the Great Xing’an Range,and it is the largest skarn Zn–Pb deposit in the region.Skarn and Zn–Pb orebodies mainly occur between the different units of the Permian Huanggangliang Formation,or within the contact zone between the intrusive rocks and the marble.Although Baiyinnuo’er has been well investigated previously,the timing of the Zn–Pb mineralization is still controversial,largely due to the lack of appropriate ore or alteration minerals that could be directly used for isotopic dating.In this study,we report the results of Rb–Sr isotopic analysis for sphalerite and pyrite samples from the Baiyinnuo’er orebodies,which yielded two isochron ages of 137.4±3.4 and 140.0±7.8 Ma,respectively,constraining the Zn–Pb mineralization time of the deposit as the Early Cretaceous.The data are also consistent with the age of the granitoids in the mining area,indicating a potential genetic relationship between the Early Cretaceous magmatism and mineralization.Many other intrusion-related hydrothermal deposits(including the two typical skarns,Huanggang and Haobugao)in the southern Great Xing’an Range also share similar mineralization ages(i.e.,140–130 Ma).Together,these data suggest an Early Cretaceous mineralization event in this region,and this largescale mineralization could be related to the regional tectonic regime transition from compression to extension as a result of the rollback of the subducted Paleo-Pacific plate.The initial87 Sr/86 Sr ratios of the sphalerite and pyrite samples are 0.70569 and 0.70616,respectively,implying that the ore-forming material could have a significant contribution from the mantle components.The current study shows that sulfide Rb–Sr dating could be used in deciphering the timing of skarn deposit formation.展开更多
Rb -Sr isotopic isochron dating of the volcanic rock samples from the Upper Cretaceous Half Three Point Formation on the King George Island is 71. 33±0. 3 Ma. Correlative study of εND(T)-147Sm/144Nd, 143Nd/144Nd...Rb -Sr isotopic isochron dating of the volcanic rock samples from the Upper Cretaceous Half Three Point Formation on the King George Island is 71. 33±0. 3 Ma. Correlative study of εND(T)-147Sm/144Nd, 143Nd/144Nd-87Sr/86Sr, 87Sr/86Sr-Sr and 87Sr/86Sr-K2O/(K2O+Na2O) indicated that the volcanic rocks were chiefly derived from the depleted mantle source and generally were not mixed crust materials. Of the samples 6 were given the mean Sm -Nd model age (TDM) of 443. 3±20. 6 Ma possibly indicating the age of chemical variation event in the magma source of the study area. Features of the trace elements indicated that the rocks from the Half Three Point Formation are of typical calc-alkaline volcanic suite and similar to those from the Tertiary volcanic rocks of the Fildes Peninsula, being the same products of the island-arc volcanic activity.展开更多
Dating of lead-zinc deposits is of critical importance for better understanding of ore genesis, but has long been a big challenge due to the lack of suitable minerals that can be unequivocally linked to the ore genesi...Dating of lead-zinc deposits is of critical importance for better understanding of ore genesis, but has long been a big challenge due to the lack of suitable minerals that can be unequivocally linked to the ore genesis and that can be used for tradition radiometric methods. This kind of deposits have simple mineralogy dominated by galena and sphalerite commonly associated with calcite and other gangue minerals. Both galena and sphalerite have low and high variable Re concentrations and thus Re-Os dating of these minerals have been less promising. In addition, the recovery of Re is extremely low for galena when conventional method was applied, lending additional difficulty in precisely dating galena. In this study, we investigate the recovery of Re using different media for anion exchange separation and reporte a revised preparation method for Re-Os dating of galena and sphalerite. By using the new protocol, two reliable Re-Os isochron ages of galena and sphalerite from the Fule(20.4±3.2 Ma) and Laochang(308±25 Ma) Pb-Zn deposits in Yunnan Province, SW China, are achieved.展开更多
There are two generations of white micas in retrograded coesite-bearing eclogite from the Yangkou area near Qingdao, eastern China. The secondary phengite developed along the folliations in eclogite is the majority of...There are two generations of white micas in retrograded coesite-bearing eclogite from the Yangkou area near Qingdao, eastern China. The secondary phengite developed along the folliations in eclogite is the majority of the white micas. Nd and Sr isotopic disequilibriums between garnet and retrograded omphacite as well as secondary phengite have been observed. Consequently, the Rb-Sr ages ((193±4) Ma-(195±4) Ma) given by the tie lines of the secondary phengite + garnet or whole rock may predate the formation time of the phengite. The Rb-Sr age of (183±4) Ma given by the secondary phengite + retrograde omphacite is much closer to the formation time of the phengite indicating the retrograde age of eclogite instead of a cooling age of eclogite at 500℃.展开更多
The southwestern Fujian depression belt(SFDB)is an economically important Mesozoic Fe metallogenic belt in South China and is renowned for its Makeng-type Fe deposits,in which stratified skarn Fe orebodies generally o...The southwestern Fujian depression belt(SFDB)is an economically important Mesozoic Fe metallogenic belt in South China and is renowned for its Makeng-type Fe deposits,in which stratified skarn Fe orebodies generally occur in or near the contact zone between late Paleozoic carbonate sequences and Mesozoic granites.However,the genesis and geodynamic setting of these deposits remain unclear because the characteristics of the widely distributed Pb–Zn–Cu and Mo orebodies in these deposits and the temporal,spatial,and genetic relationships between magmatism and mineralization are poorly defined.The Dapai Fe polymetallic deposit in the SFDB is a typical example of Makeng-type Fe deposits but also has regional significance,whereby the stratified skarn Fe orebodies have overprinted the stratabound Pb–Zn–Cu mineralization followed by final fissure-filling by vein-disseminated Mo mineralization.A detailed geological investigation suggests that episodic magmatic–hydrothermal events were involved in the formation process of the Dapai Fe polymetallic deposit.Pyrite and sphalerite from the Pb–Zn–Cu orebodies yield an Rb–Sr isochron age of 175.5±3.3 Ma,which is regarded as the timing of Pb–Zn–Cu mineralization.Zircon grains from Fe-mineralized granodiorite porphyry and Mo-mineralized monzogranite yield weighted-mean 206Pb/238U ages of 146.3±0.9 Ma and 131.7±0.4 Ma,interpreted as the timings of Fe and Mo mineralization,respectively.Six zircons from granodiorite also yield a 206Pb/238U model age cluster of184 Ma,which coincides reasonably with the timing of Pb–Zn–Cu mineralization and implies the existence of an unidentified ore-related intrusion in the Dapai deposit.Five further zircons from the porphyritic granodiorite yield an age cluster of-150 Ma,consistent with the timing of Fe mineralization.Galena,pyrite,and sphalerite from the Dapai and Makeng deposits have similar S–Pb isotopic compositions and suggest a magmatic source.Combining our results with published isotopic data for the SFDB,we suggest that the Pb–Zn–Cu mineralization in this area was derived from crustal magmas that mixed with mantle-derived magma prior to emplacement.The d56Fe and d57Fe values of magnetite from Dapai and Makeng are both slightly lower than those of the orerelated granites,suggesting that Fe in the initial fluid in both deposits was derived mainly from coeval granitic rocks.The Fe isotopic variation between intrusions and skarn Fe orebodies is interpreted as resulting from mass fractionation that occurred during fluid exsolution from melt.Contents of Re in molybdenite from published data for the SFDB indicate crust–mantle mixed sources of Mo and Re.The Makeng-type Fe polymetallic deposits formed as a result of three magmatic–hydrothermal episodes,generating Pb–Zn–Cu mineralization at 185–160 Ma,Fe–Mo mineralization at 150–140 Ma,and Mo–Fe mineralization at 135–130 Ma.The different metal associations formed during multiple stages of magmatism caused by ongoing subduction and rollback and/or retreat of the paleo-Pacific Plate.展开更多
The crust in northern Xinjiang intensely moved about during the Middle Hercynian, which formed a large area of granitoid. In the south of Alataw Mountain, granitic bodies such as Kongwusayi, Wulasitan, Zuluhong, Kazib...The crust in northern Xinjiang intensely moved about during the Middle Hercynian, which formed a large area of granitoid. In the south of Alataw Mountain, granitic bodies such as Kongwusayi, Wulasitan, Zuluhong, Kazibieke and Chaganhundi are distributed along the Bole W-Sn mineralization belt from east to west, of which the Zuluhong, Kazibieke and Chaganhundi granitic bodies in the west sector are directly related to W-Sn mineralizations of quartz vein type, greisen type and chlorite type in this area.展开更多
基金financially supported by China Geological Survey Project(Grant No.DD20220971)。
文摘Located along the southern part of the West Qinling orogenic belt,the Yangshan gold deposit is one of the largest in China.The major gold ores of Yangshan are disseminated in metasedimentary host rocks with minor native gold amounts in stibnite-gold quartz veins.Pyrite and arsenopyrite are the major Au-bearing minerals.Hydrothermal muscovite from gold-bearing quartz veins was dated using the in situ Rb-Sr method to determine the formation age of the Yangshan gold deposit.The Rb-Sr isochron date of the muscovite yielded 210.1±5.6 Ma(MSWD=1.2).This date is near the lower end of the period of the mineralized granitic dykes(210.49-213.10 Ma).Two stages of gold enriching process are recognized in the gold-bearing pyrite:the first is incorporated with the Co,Cu,As,Ni enrichment;and the second is accompanied by Bi,Co,Ni,Pb,Cu,Sb concentration.The in-situ sulfur isotopic values of pyrites show a restrictedΔ34s range of-1.43‰to 2.86‰with a mean value of 0.43‰.Trace-element mapping and in-situ sulfur isotopic analysis of pyrite suggest that the sulfur deposits are likely derived from a magmatic source and likely assimilated by sulfur from the sedimentary bedrock.Thus,magmatism plays a critical role in the formation of the Yangshan gold deposit.
基金This research project was supported by the Outstanding Young Scientists Foundation(Grant No 49625304)the Ministry of Sciences and Technology of China(Grant No 95-pre-39).
文摘On the basis of detailed geological studies of the Wulong gold deposit, three metallogenic stages can be identified. With quartz fluid inclusions as an object of study, the authors investigated phase characteristics, compositional variations, temperature and pressure changes, fluid evolution, Pb isotope tracing and Rb-Sr isotopic dating of fluid inclusions entrapped in the above three metallogenic stages. The results show that Na+ is decreased obviously with metallogenic evolution, while K+ and other cations and gas compositions (H2, CO, CH4 and CO2) are increased slightly, and that the temperature and salinity vary in a pulsating manner along with the metallogenic evolution. Inverse calculation of hydrogen and oxygen isotopes indicate that at the first metallogenic stage the fluids were magmatic water, at the second stage they were dominated by magmatic water with a minor amount of meteoric water involved, and at the third stage, i.e., the final stage of metallogenesis, the fluids were composed completely of meteoric water. Its Pb isotopic composition implicates that the ore lead has some affinities with the lead in the Sanguliu granite, but the linear array of the ore-lead isotopic data reflects a mixing source of two end members. It can be deduced that the ore-forming materials and magma were both derived mainly from the same magma source region at depths. The Rb-Sr isotopic ages of the fluid inclusions are 112.2±3.2 Ma, indicating that the Wulong gold deposit was formed during the Yanshanian period.
基金financially supported by the China Geological Survey (No. 12120114019701)the Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan)
文摘This study reports the sphalerite Rb-Sr age and LA-MC-ICP-MS in situ sulfur isotope analysis results of the Daliangzi Lead-Zinc Deposit in the Sichuan-Yunnan-Guizhou (SYG) triangle. Sphalerite Rb-Sr dating yields a Mississippian age of 345.2±3.6 Ma (MSWD=I.4), which is older than the published Late Triassic mineralization ages (230-200 Ma) of some other deposits. This indicates that at least two stages of lead-zinc mineralization have occurred in the SYG lead-zinc triangle. The first stage occurred in the Mississippian under an extensional environment, while the second stage occurred in the Late Triassic under a compressional environment. In situ sulfur isotope analysis of sphalerite growth zoning presents relatively large δ^34S values of 11.3‰-15.2‰ with small variations. The large δ^34S values indicate a reduced sulfur source of thermochemical reduction of seawater sulfates. Abundant organic matter in the black fracture zone possibly supplied reductants for thermochemical sulfate reduction (TSR) at the mineralization site. The small variation of δ^34S values suggests a slow and stable TSR process that could prevent the sudden supersaturation of sphalerite in the fluid and the resulting of fast participation. This is consistent with the well-crystallized characteristic of the sphalerite of the Daliangzi Deposit.
基金the National Natural Science Foundation of China(41602083)the 111 Project of the Ministry of Science and Technology(BP0719021)the Fundamental Research Funds for the Central Universities(2652019045)。
文摘The Baiyinnuo’er deposit in northern China is located in the south section of the Great Xing’an Range,and it is the largest skarn Zn–Pb deposit in the region.Skarn and Zn–Pb orebodies mainly occur between the different units of the Permian Huanggangliang Formation,or within the contact zone between the intrusive rocks and the marble.Although Baiyinnuo’er has been well investigated previously,the timing of the Zn–Pb mineralization is still controversial,largely due to the lack of appropriate ore or alteration minerals that could be directly used for isotopic dating.In this study,we report the results of Rb–Sr isotopic analysis for sphalerite and pyrite samples from the Baiyinnuo’er orebodies,which yielded two isochron ages of 137.4±3.4 and 140.0±7.8 Ma,respectively,constraining the Zn–Pb mineralization time of the deposit as the Early Cretaceous.The data are also consistent with the age of the granitoids in the mining area,indicating a potential genetic relationship between the Early Cretaceous magmatism and mineralization.Many other intrusion-related hydrothermal deposits(including the two typical skarns,Huanggang and Haobugao)in the southern Great Xing’an Range also share similar mineralization ages(i.e.,140–130 Ma).Together,these data suggest an Early Cretaceous mineralization event in this region,and this largescale mineralization could be related to the regional tectonic regime transition from compression to extension as a result of the rollback of the subducted Paleo-Pacific plate.The initial87 Sr/86 Sr ratios of the sphalerite and pyrite samples are 0.70569 and 0.70616,respectively,implying that the ore-forming material could have a significant contribution from the mantle components.The current study shows that sulfide Rb–Sr dating could be used in deciphering the timing of skarn deposit formation.
基金The project supported by the State Antarctic Committeethe National Natural Science Foundation of China
文摘Rb -Sr isotopic isochron dating of the volcanic rock samples from the Upper Cretaceous Half Three Point Formation on the King George Island is 71. 33±0. 3 Ma. Correlative study of εND(T)-147Sm/144Nd, 143Nd/144Nd-87Sr/86Sr, 87Sr/86Sr-Sr and 87Sr/86Sr-K2O/(K2O+Na2O) indicated that the volcanic rocks were chiefly derived from the depleted mantle source and generally were not mixed crust materials. Of the samples 6 were given the mean Sm -Nd model age (TDM) of 443. 3±20. 6 Ma possibly indicating the age of chemical variation event in the magma source of the study area. Features of the trace elements indicated that the rocks from the Half Three Point Formation are of typical calc-alkaline volcanic suite and similar to those from the Tertiary volcanic rocks of the Fildes Peninsula, being the same products of the island-arc volcanic activity.
基金supported by the 12th Five-Year Plan Projects of State Key Laboratory of Ore Deposit Geochemistry, Chinese Academy of Sciences (Nos. SKLODG-ZY125-09, SKLODG-ZY125-02)the National Natural Science Foundation of China (Nos. 41373064, 41102053 and 41163001)the Science and Technology Plan Project of Yunnan Province (No. 2009CD029)
文摘Dating of lead-zinc deposits is of critical importance for better understanding of ore genesis, but has long been a big challenge due to the lack of suitable minerals that can be unequivocally linked to the ore genesis and that can be used for tradition radiometric methods. This kind of deposits have simple mineralogy dominated by galena and sphalerite commonly associated with calcite and other gangue minerals. Both galena and sphalerite have low and high variable Re concentrations and thus Re-Os dating of these minerals have been less promising. In addition, the recovery of Re is extremely low for galena when conventional method was applied, lending additional difficulty in precisely dating galena. In this study, we investigate the recovery of Re using different media for anion exchange separation and reporte a revised preparation method for Re-Os dating of galena and sphalerite. By using the new protocol, two reliable Re-Os isochron ages of galena and sphalerite from the Fule(20.4±3.2 Ma) and Laochang(308±25 Ma) Pb-Zn deposits in Yunnan Province, SW China, are achieved.
基金This work was supported by the State Key Basic Research Development Program (Grant No. G1999075503) and the National Natural Science Foundation of China (Grant No. 49794042).
文摘There are two generations of white micas in retrograded coesite-bearing eclogite from the Yangkou area near Qingdao, eastern China. The secondary phengite developed along the folliations in eclogite is the majority of the white micas. Nd and Sr isotopic disequilibriums between garnet and retrograded omphacite as well as secondary phengite have been observed. Consequently, the Rb-Sr ages ((193±4) Ma-(195±4) Ma) given by the tie lines of the secondary phengite + garnet or whole rock may predate the formation time of the phengite. The Rb-Sr age of (183±4) Ma given by the secondary phengite + retrograde omphacite is much closer to the formation time of the phengite indicating the retrograde age of eclogite instead of a cooling age of eclogite at 500℃.
基金funded by the projects of China Geological Survey(Grant Nos.12120113089600,1212011085472,and 12120114028701)。
文摘The southwestern Fujian depression belt(SFDB)is an economically important Mesozoic Fe metallogenic belt in South China and is renowned for its Makeng-type Fe deposits,in which stratified skarn Fe orebodies generally occur in or near the contact zone between late Paleozoic carbonate sequences and Mesozoic granites.However,the genesis and geodynamic setting of these deposits remain unclear because the characteristics of the widely distributed Pb–Zn–Cu and Mo orebodies in these deposits and the temporal,spatial,and genetic relationships between magmatism and mineralization are poorly defined.The Dapai Fe polymetallic deposit in the SFDB is a typical example of Makeng-type Fe deposits but also has regional significance,whereby the stratified skarn Fe orebodies have overprinted the stratabound Pb–Zn–Cu mineralization followed by final fissure-filling by vein-disseminated Mo mineralization.A detailed geological investigation suggests that episodic magmatic–hydrothermal events were involved in the formation process of the Dapai Fe polymetallic deposit.Pyrite and sphalerite from the Pb–Zn–Cu orebodies yield an Rb–Sr isochron age of 175.5±3.3 Ma,which is regarded as the timing of Pb–Zn–Cu mineralization.Zircon grains from Fe-mineralized granodiorite porphyry and Mo-mineralized monzogranite yield weighted-mean 206Pb/238U ages of 146.3±0.9 Ma and 131.7±0.4 Ma,interpreted as the timings of Fe and Mo mineralization,respectively.Six zircons from granodiorite also yield a 206Pb/238U model age cluster of184 Ma,which coincides reasonably with the timing of Pb–Zn–Cu mineralization and implies the existence of an unidentified ore-related intrusion in the Dapai deposit.Five further zircons from the porphyritic granodiorite yield an age cluster of-150 Ma,consistent with the timing of Fe mineralization.Galena,pyrite,and sphalerite from the Dapai and Makeng deposits have similar S–Pb isotopic compositions and suggest a magmatic source.Combining our results with published isotopic data for the SFDB,we suggest that the Pb–Zn–Cu mineralization in this area was derived from crustal magmas that mixed with mantle-derived magma prior to emplacement.The d56Fe and d57Fe values of magnetite from Dapai and Makeng are both slightly lower than those of the orerelated granites,suggesting that Fe in the initial fluid in both deposits was derived mainly from coeval granitic rocks.The Fe isotopic variation between intrusions and skarn Fe orebodies is interpreted as resulting from mass fractionation that occurred during fluid exsolution from melt.Contents of Re in molybdenite from published data for the SFDB indicate crust–mantle mixed sources of Mo and Re.The Makeng-type Fe polymetallic deposits formed as a result of three magmatic–hydrothermal episodes,generating Pb–Zn–Cu mineralization at 185–160 Ma,Fe–Mo mineralization at 150–140 Ma,and Mo–Fe mineralization at 135–130 Ma.The different metal associations formed during multiple stages of magmatism caused by ongoing subduction and rollback and/or retreat of the paleo-Pacific Plate.
基金Project supported by Youth Science Foundation of the University of Science and Technology of China
文摘The crust in northern Xinjiang intensely moved about during the Middle Hercynian, which formed a large area of granitoid. In the south of Alataw Mountain, granitic bodies such as Kongwusayi, Wulasitan, Zuluhong, Kazibieke and Chaganhundi are distributed along the Bole W-Sn mineralization belt from east to west, of which the Zuluhong, Kazibieke and Chaganhundi granitic bodies in the west sector are directly related to W-Sn mineralizations of quartz vein type, greisen type and chlorite type in this area.