Collisions between objects are a relatively common phenomenon in nature.Analyses of collision processes can greatly contribute to solving problems such as impact-rub faults and particle impacts.The coefficient of rest...Collisions between objects are a relatively common phenomenon in nature.Analyses of collision processes can greatly contribute to solving problems such as impact-rub faults and particle impacts.The coefficient of restitution is a critical parameter in the analysis of collision processes.Many experiments have shown that the coefficient of restitution is closely related to the plate thickness,and the smaller the plate thickness,the more inaccurate the coefficient of restitution predicted by the existing model,which seriously affects the process of collision analysis.To remedy this shortcoming,this paper proposes a plate thickness influence factor with the ratio of sphere diameter to plate thickness as the variable.The plate thickness influence factor can optimize the coefficient of restitution model to effectively predict the coefficient of restitution of impacting elastoplastic spheres with finite plate thickness.Finally,the validity of the new model is verified using a large amount of experimental data.展开更多
Electrochemical CO_(2) reduction to produce value-added chemicals and fuels is one of the research hotspots in the field of energy conversion.The development of efficient catalysts with high conductivity and readily a...Electrochemical CO_(2) reduction to produce value-added chemicals and fuels is one of the research hotspots in the field of energy conversion.The development of efficient catalysts with high conductivity and readily accessible active sites for CO_(2) electroreduction remains challenging yet indispensable.In this work,a reliable poly(ethyleneimine)(PEI)-assisted strategy is developed to prepare a hollow carbon nanocomposite comprising a single-site Ni-modified carbon shell and confined Ni nanoparticles(NPs)(denoted as Ni@NHCS),where PEI not only functions as a mediator to induce the highly dispersed growth of Ni NPs within hollow carbon spheres,but also as a nitrogen precursor to construct highly active atomically-dispersed Ni-Nx sites.Benefiting from the unique structural properties of Ni@NHCS,the aggregation and exposure of Ni NPs can be effectively prevented,while the accessibility of abundant catalytically active Ni-Nx sites can be ensured.As a result,Ni@NHCS exhibits a high CO partial current density of 26.9 mA cm^(-2) and a Faradaic efficiency of 93.0% at-1.0 V vs.RHE,outperforming those of its PEI-free analog.Apart from the excellent activity and selectivity,the shell confinement effect of the hollow carbon sphere endows this catalyst with long-term stability.The findings here are anticipated to help understand the structure-activity relationship in Ni-based carbon catalyst systems for electrocatalytic CO_(2) reduction.Furthermore,the PEI-assisted synthetic concept is potentially applicable to the preparation of high-performance metal-based nanoconfined materials tailored for diverse energy conversion applications and beyond.展开更多
Incorporating a selenium(Se)positive electrode into aluminum(Al)-ion batteries is an effective strategy for improving the overall battery performance.However,the cycling stability of Se positive electrodes has challen...Incorporating a selenium(Se)positive electrode into aluminum(Al)-ion batteries is an effective strategy for improving the overall battery performance.However,the cycling stability of Se positive electrodes has challenges due to the dissolution of intermediate reaction products.In this work,we aim to harness the advantages of Se while reducing its limitations by preparing a core-shell mesoporous carbon hollow sphere with a titanium nitride(C@TiN)host to load 63.9wt%Se as the positive electrode material for Al-Se batteries.Using the physical and chemical confinement offered by the hollow mesoporous carbon and TiN,the obtained core-shell mesoporous carbon hollow spheres coated with Se(Se@C@TiN)display superior utilization of the active material and remarkable cycling stability.As a result,Al-Se batteries equipped with the as-prepared Se@C@TiN composite positive electrodes show an initial discharge specific capacity of 377 mAh·g^(-1)at a current density of 1000 mA·g^(-1)while maintaining a discharge specific capacity of 86.0 mAh·g^(-1)over 200 cycles.This improved cycling performance is ascribed to the high electrical conductivity of the core-shell mesoporous carbon hollow spheres and the unique three-dimensional hierarchical architecture of Se@C@TiN.展开更多
The strong metal-support interaction inducing combined effect plays a crucial role in the catalysis reaction. Herein, we revealed that the combined advantages of MoSe_(2), Ru, and hollow carbon spheres in the form of ...The strong metal-support interaction inducing combined effect plays a crucial role in the catalysis reaction. Herein, we revealed that the combined advantages of MoSe_(2), Ru, and hollow carbon spheres in the form of Ru nanoparticles(NPs) anchored on a two-dimensionally ordered MoSe_(2) nanosheet-embedded mesoporous hollow carbon spheres surface(Ru/MoSe_(2)@MHCS) for the largely boosted hydrogen evolution reaction(HER) performance. The combined advantages from the conductive support, oxyphilic MoSe_(2), and Ru active sites imparted a strong synergistic effect and charge redistribution in the Ru periphery which induced high catalytic activity, stability, and kinetics for HER. Specifically, the obtained Ru/MoSe_(2)@MHCS required a small overpotential of 25.5 and 38.4 mV to drive the kinetic current density of 10 mA cm^(-2)both in acid and alkaline media, respectively, which was comparable to that of the Pt/C catalyst. Experimental and theoretical results demonstrated that the charge transfer from MoSe_(2) to Ru NPs enriched the electronic density of Ru sites and thus facilitated hydrogen adsorption and water dissociation. The current work showed the significant interfacial engineering in Ru-based catalysts development and catalysis promotion effect understanding via the metal-support interaction.展开更多
Rechargeable magnesium batteries(RMBs),as one of the most promising candidates for efficient energy storage devices with high energy,power density and high safety,have attracted increasing attention.However,searching ...Rechargeable magnesium batteries(RMBs),as one of the most promising candidates for efficient energy storage devices with high energy,power density and high safety,have attracted increasing attention.However,searching for suitable cathode materials with fast diffusion kinetics and exploring their magnesium storage mechanisms remains a great challenge.Cu S submicron spheres,made by a facile low-temperature synthesis strategy,were applied as the high-performance cathode for RMBs in this work,which can deliver a high specific capacity of 396mAh g^(-1)at 20 mA g^(-1) and a remarkable rate capacity of 250 m Ah g^(-1)at 1000 mA g^(-1).The excellent rate performance can be assigned to the nano needle-like particles on the surface of Cu S submicron spheres,which can facilitate the diffusion kinetics of Mg^(2+).Further storage mechanism investigations illustrate that the Cu S cathodes experience a two-step conversion reaction controlled by diffusion during the electrochemical reaction process.This work could make a contribution to the study of the enhancement of diffusion kinetics of Mg2+and the reaction mechanism of RMBs.展开更多
Iron is commonly used as a structural and shielding material in nuclear devices. The accuracy of its nuclear data is critical for the design of nuclear devices. The evaluation data of ^(56)Fe isotopes in the latest ve...Iron is commonly used as a structural and shielding material in nuclear devices. The accuracy of its nuclear data is critical for the design of nuclear devices. The evaluation data of ^(56)Fe isotopes in the latest version of the CENDL-3.2 library from China was significantly updated. This new data must be tested before it can be used. To test the reliability of this data and assess the shielding effect, a shielding benchmark experiment was conducted with natural Fe spherical samples using a pulsed deuterium–tritium neutron source at the China Institute of Atomic Energy(CIAE). The leakage neutron spectra from the natural spherical iron samples with different thicknesses(4.5, 7.5, and 12 cm) were measured between 0.8 and 16 MeV after interacting with 14 MeV neutrons using the time-of-flight method. The simulation results were obtained by Monte Carlo simulations by employing the Fe data from the CENDL-3.2, ENDF/B-VIII.0, and JEDNL-5.0 libraries. The measured and simulated leakage neutron spectra and penetration rates were compared, demonstrating that the CENDL-3.2 library performs sufficiently overall. The simulation results of the other two libraries were underestimated for scattering at the continuum energy level.展开更多
This paper studies two isometric problems between unit spheres of Banach spaces.In the first part,we introduce and study the Figiel type problem of isometric embeddings between unit spheres.However,the classical Figie...This paper studies two isometric problems between unit spheres of Banach spaces.In the first part,we introduce and study the Figiel type problem of isometric embeddings between unit spheres.However,the classical Figiel theorem on the whole space cannot be trivially generalized to this case,and this is pointed out by a counterexample.After establishing this,we find a natural necessary condition required by the existence of the Figiel operator.Furthermore,we prove that when X is a space with the T-property,this condition is also sufficient for an isometric embedding T:S_(X)→S_(Y) to admit the Figiel operator.This answers the Figiel type problem on unit spheres for a large class of spaces.In the second part,we consider the extension of bijectiveε-isometries between unit spheres of two Banach spaces.It is shown that every bijectiveε-isometry between unit spheres of a local GL-space and another Banach space can be extended to be a bijective 5ε-isometry between the corresponding unit balls.In particular,whenε=0,this recovers the MUP for local GL-spaces obtained in[40].展开更多
To develop and utilize marine resources in the deep sea, the higher requirements for floating structures, which are operated in marine environment for a long term, have been put forward. Reasonable structure type and ...To develop and utilize marine resources in the deep sea, the higher requirements for floating structures, which are operated in marine environment for a long term, have been put forward. Reasonable structure type and accurate force analysis are favorable guarantees to improve the survival performance and working performance of the floating structures. Floating spheres fastened by mooring cable were widely used in floating structures. In this paper, the wave forces of the floating sphere are efficiently and accurately calculated by solving the geometric relationship between the non-submerged floating sphere and wave surface. Combined with the hydrodynamic calculation of mooring cables based on the lumped mass method, the coupled motion model of multi-floating spheres fastened by multi-mooring cable was established under wave action. Furthermore, according to the floating structures fastened by mooring cable in the actual ocean engineering, the topological method of multi-mooring cables fastening the multifloating spheres was expounded from simple to complex. Finally, the modeling method and preliminarily hydrodynamic characteristics of the fastened floating structures, including the mooring system of renewable energy devices, ocean buoy, and coral nursery, were presented and analyzed in detail. The obtained results showed that the method for calculating the wave force on the floating sphere developed in this paper can accurately describe the motion process of the floating mooring sphere and the force on the mooring cable. Also, the topological method of multiple buoys and multiple mooring cables could efficiently establish various numerical hydrodynamic models of fastened buoys in ocean engineering.展开更多
Failure of irregular rock samples may provide implications in the rapid estimation of rock strength,which is imperative in rock engineering practice.In this work,analytical,experimental and numerical investigations we...Failure of irregular rock samples may provide implications in the rapid estimation of rock strength,which is imperative in rock engineering practice.In this work,analytical,experimental and numerical investigations were carried out to study the mechanical properties and failure characteristics of rock spheres under paired point loads.Analytical solutions indicted that with the increase in sample size(contact angle)and decrease in Poisson’s ratio,the uneven tensile stress in theta direction decreased.Then laboratory experiments were carried out to investigate the load characteristics and failure mode of spherical marble samples with different sizes subjected to a pair of diametral point loads.The discrete element method(DEM)was adopted to study the failure process of rock spheres.The effect of the sphere diameter on the point load contact angle was examined in terms of peak load,crushed zone distribution and energy dissipation.Experimental and numerical results showed that the samples primarily fail in tension,with crushed zones formed at both loading points.With increase in the sample size,the contact angle,crushed area and total work increase.As the specimen diameter increases from 30 mm to 50 mm,the peak load on the specimen increases from 3.6 kN to 8.8 kN,and the percentage of crushed zone(ratio of crushing zone to sample radius,d/r)increased from 0.191 to 0.262.The results of the study have implications for understanding the failure of irregular rock specimens under point loading conditions and their size effects.展开更多
Different-sized hollow SiO2 spheres of 249–1348 nm in diameter were successfully prepared by using Na2SiO3 as the precursor and using polystyrene and polystyrene-methyl acrylic acid latexes as the templates. The diam...Different-sized hollow SiO2 spheres of 249–1348 nm in diameter were successfully prepared by using Na2SiO3 as the precursor and using polystyrene and polystyrene-methyl acrylic acid latexes as the templates. The diameter and shell thickness of the hollow SiO2 spheres increase with increasing the latex template diameter at a given mass ratio of SiO2 to latex template. The diameter and shell thickness of the hollow SiO2 spheres also increase with increasing the mass ratios of SiO2 to latex template. The presence of carboxylic acid groups on the surfaces of polystyrene-methyl acrylic acid latex templates favors the formation of dense and uniform SiO2 shells. The hollow SiO2 sphere is constructed by mesoporous shell with large specific surface area. When glyphosate is used as a release model chemical, glyphosate release rate is tuned by varying the shell thickness.展开更多
To obtain a kind of convenient oral dosage form of protein, which can be fully absorbed and is efficient and safe, the thymosin-loaded PLA(polylactic acid) microspheres are prepared by the emulsification- solvent ev...To obtain a kind of convenient oral dosage form of protein, which can be fully absorbed and is efficient and safe, the thymosin-loaded PLA(polylactic acid) microspheres are prepared by the emulsification- solvent evaporation method and the orthogonal design is used to optimize the technology of preparation. The form of the medicament microspheres of thymosin are proved by differential thermal analysis (DTA). The drug content is determined by the Lowry method, and the package ratio of medicament microspheres of thymosin and drug release in vitro are calculated. The results show that the average diameter and encapsulation efficiency of the product prepared according to the optimized formulation are 13. 8 μm and 80. 7%, respectively. The in vitro release behavior within 12 h can be described by the Higuchi equation with T1/2 = 295 rain. There are no significant changes in size distribution and residual drug contents after being stored at 25℃ and 40 ℃ for 90 d, respectively. Due to the fact that its thymosin content and package ratio meet the requirement, and its releasing half life is long, the thymosin-loaded PLA microsohere has a favorable application future.展开更多
Monoclinic BiVO4 hollow nanospheres were successfully prepared via template-free method using citric acid (C6H8O7) as chelating agent and characterized by X-ray diffraction patterns, transmission electron microscope...Monoclinic BiVO4 hollow nanospheres were successfully prepared via template-free method using citric acid (C6H8O7) as chelating agent and characterized by X-ray diffraction patterns, transmission electron microscope, UV-Vis DRS, and TG-DTA technique. C6H8O7 played an important role in the formation of hollow spheres. Morphology observations revealed that when appropriate amount of C6H8O7 was introduced, the cavity with the diameter of 40 nm was obtained in BiVO4 nanospheres. UV-Vis diffuse reflectance spectra indicated that the samples had absorption in both UV and visible light region. The photocatalytic activities were evaluated by the degradation of methylene blue under Xe lamp irradiation. Hollow spheres endow BiVO4 samples with greatly improved photocatalytic activity. A possible formation mechanism of hollow spheres was proposed.展开更多
The NATO agreement STANAG 4569 defines the protection levels for the occupants of logistic and light armored vehicle.The Allied Engineering Publication,AEP-55,Volume 2 document outlines the test conditions for underbe...The NATO agreement STANAG 4569 defines the protection levels for the occupants of logistic and light armored vehicle.The Allied Engineering Publication,AEP-55,Volume 2 document outlines the test conditions for underbelly improvised explosive device(IEDs),which must be buried in water-saturated sandy gravel.The use of sandy gravel has some drawbacks,for instance reproducibility,time consumption,and cost.This paper focuses on the investigation of four alternatives to sandy gravel,which could produce similar specific and cumulative impulses:a concrete pot filled with water,a concrete pot filled with quartz sand,a steel pot without filling and a concrete pot filled with glass spheres(diameter 200μm—300μm)and different water contents.The impulses are measured with a ring technology developed at the Fraunhofer EMI.A numerical soil model based on the work of Marrs,2014 and Fi serov a,2006 and considering the soil moisture was used to simulate the experiments with glass spheres at different water contents,showing much better agreement with the experiments than the classical Laine&Sandvik model,even for high saturation levels.These results can be used to create new test conditions at original scale that are more cost-effective,more reproducible and simpler to manage in comparison to the current tests carried out with STANAG sandy gravel.展开更多
This is a survey of local and global classification results concerning Dupin hypersurfaces in S^(n)(or R^(n))that have been obtained in the context of Lie sphere geometry.The emphasis is on results that relate Dupin h...This is a survey of local and global classification results concerning Dupin hypersurfaces in S^(n)(or R^(n))that have been obtained in the context of Lie sphere geometry.The emphasis is on results that relate Dupin hypersurfaces to isoparametric hypersurfaces in spheres.Along with these classification results,many important concepts from Lie sphere geometry,such as curvature spheres,Lie curvatures,and Legendre lifts of submanifolds of S^(n)(or R^(n)),are described in detail.The paper also contains several important constructions of Dupin hypersurfaces with certain special properties.展开更多
This study aims to discuss anisotropic solutions that are spherically symmetric in the quintessence field,which describe compact stellar objects in the modified Rastall teleparallel theory of gravity.To achieve this g...This study aims to discuss anisotropic solutions that are spherically symmetric in the quintessence field,which describe compact stellar objects in the modified Rastall teleparallel theory of gravity.To achieve this goal,the Krori and Barua arrangement for spherically symmetric components of the line element is incorporated.We explore the field equations by selecting appropriate off-diagonal tetrad fields.Born-Infeld function of torsion f(T)=β√λT+1-1 and power law form h(T)=δTn are used.The Born-Infeld gravity was the first modified teleparallel gravity to discuss inflation.We use the linear equation of state pr=ξρto separate the quintessence density.After obtaining the field equations,we investigate different physical parameters that demonstrate the stability and physical acceptability of the stellar models.We use observational data,such as the mass and radius of the compact star candidates PSRJ 1416-2230,Cen X-3,&4U 1820-30,to ensure the physical plausibility of our findings.展开更多
Aqueous organic redox flow batteries(RFBs)exhibit favorable characteristics,such as tunability,multielectron transfer capability,and stability of the redox active molecules utilized as anolytes and catholytes,making t...Aqueous organic redox flow batteries(RFBs)exhibit favorable characteristics,such as tunability,multielectron transfer capability,and stability of the redox active molecules utilized as anolytes and catholytes,making them very viable contenders for large-scale grid storage applications.Considerable attention has been paid on the development of efficient redox-active molecules and their performance optimization through chemical substitutions at various places on the backbone as part of the pursuit for high-performance RFBs.Despite the fact that electrodes are vital to optimal performance,they have not garnered significant attention.Limited research has been conducted on the effects of electrode modifications to improve the performance of RFBs.The primary emphasis has been given on the impact of electrode engineering to augment the efficiency of aqueous organic RFBs.An overview of electron transfer at the electrode-electrolyte interface is provided.The implications of electrode modification on the performance of redox flow batteries,with a particular focus on the anodic and cathodic half-cells separately,are then discussed.In each section,significant discrepancies surrounding the effects of electrode engineering are thoroughly examined and discussed.Finally,we have presented a comprehensive assessment along with our perspectives on the future trajectory.展开更多
The spatial pattern of trees is an important fea-ture of forests,and different spatial patterns of trees exhibit different ecological stability.Research has confirmed that natural forests with random patterns have hig...The spatial pattern of trees is an important fea-ture of forests,and different spatial patterns of trees exhibit different ecological stability.Research has confirmed that natural forests with random patterns have higher biodiversity and stronger resistance to unstable factors such as pests and diseases.Even if they are disturbed or destroyed by unsta-ble factors such as pests and diseases,they can still recover and rescue themselves;while artificial forests with uniform and clustered patterns have lower biodiversity and are sus-ceptible to unstable factors such as pests and diseases.And once pests and diseases occur,it’s more difficult for them to recover.In order to promote the healthy and stable develop-ment of the forestry industry and protect the diversity of the biological environment,it is necessary to protect the random pattern of natural forests from being destroyed in the process of forest management,while effectively trans-forming the spatial pattern of artificial forests into a random pattern.Therefore,in order to ensure the convenient and accurate determination of the type of forest spatial pattern,research on methods for determining forest spatial pattern has become particularly important.Based on the theory of uniformity,this study proposes definitions and related theo-ries of included exclusive sphere,included exclusive body,included random pattern,and included uniformity.Under the guidance of the definition of inclusion uniformity and related theories,and by using mathematical method,it is proved that the uniformity of inclusion(CL)is asymptotically subject to the Eq.18,Therefore,the relationship between the included uniformity(CL)and the number of trees in the sample plot was established,and the corresponding relationship formula was obtained,and then the determination of the spatial pat-tern type of trees was completed by using the corresponding relationship formula.Through rigorous reasoning and case verification,the determination method of forest spatial pat-tern is effective.展开更多
基金Supported by Joint Fund of the Ministry of Education of China (Grant No.8091B022203)Youth Talent Support Project (Grant No.2022-JCJQ-QT-059)。
文摘Collisions between objects are a relatively common phenomenon in nature.Analyses of collision processes can greatly contribute to solving problems such as impact-rub faults and particle impacts.The coefficient of restitution is a critical parameter in the analysis of collision processes.Many experiments have shown that the coefficient of restitution is closely related to the plate thickness,and the smaller the plate thickness,the more inaccurate the coefficient of restitution predicted by the existing model,which seriously affects the process of collision analysis.To remedy this shortcoming,this paper proposes a plate thickness influence factor with the ratio of sphere diameter to plate thickness as the variable.The plate thickness influence factor can optimize the coefficient of restitution model to effectively predict the coefficient of restitution of impacting elastoplastic spheres with finite plate thickness.Finally,the validity of the new model is verified using a large amount of experimental data.
文摘Electrochemical CO_(2) reduction to produce value-added chemicals and fuels is one of the research hotspots in the field of energy conversion.The development of efficient catalysts with high conductivity and readily accessible active sites for CO_(2) electroreduction remains challenging yet indispensable.In this work,a reliable poly(ethyleneimine)(PEI)-assisted strategy is developed to prepare a hollow carbon nanocomposite comprising a single-site Ni-modified carbon shell and confined Ni nanoparticles(NPs)(denoted as Ni@NHCS),where PEI not only functions as a mediator to induce the highly dispersed growth of Ni NPs within hollow carbon spheres,but also as a nitrogen precursor to construct highly active atomically-dispersed Ni-Nx sites.Benefiting from the unique structural properties of Ni@NHCS,the aggregation and exposure of Ni NPs can be effectively prevented,while the accessibility of abundant catalytically active Ni-Nx sites can be ensured.As a result,Ni@NHCS exhibits a high CO partial current density of 26.9 mA cm^(-2) and a Faradaic efficiency of 93.0% at-1.0 V vs.RHE,outperforming those of its PEI-free analog.Apart from the excellent activity and selectivity,the shell confinement effect of the hollow carbon sphere endows this catalyst with long-term stability.The findings here are anticipated to help understand the structure-activity relationship in Ni-based carbon catalyst systems for electrocatalytic CO_(2) reduction.Furthermore,the PEI-assisted synthetic concept is potentially applicable to the preparation of high-performance metal-based nanoconfined materials tailored for diverse energy conversion applications and beyond.
基金supported by the National Natural Science Foundation of China(No.52374350)China Postdoctoral Science Foundation(Nos.2020M680347 and 2021T140051)the Fundamental Research Funds for the Central Universities(No.FRF-TP-20-045A1)。
文摘Incorporating a selenium(Se)positive electrode into aluminum(Al)-ion batteries is an effective strategy for improving the overall battery performance.However,the cycling stability of Se positive electrodes has challenges due to the dissolution of intermediate reaction products.In this work,we aim to harness the advantages of Se while reducing its limitations by preparing a core-shell mesoporous carbon hollow sphere with a titanium nitride(C@TiN)host to load 63.9wt%Se as the positive electrode material for Al-Se batteries.Using the physical and chemical confinement offered by the hollow mesoporous carbon and TiN,the obtained core-shell mesoporous carbon hollow spheres coated with Se(Se@C@TiN)display superior utilization of the active material and remarkable cycling stability.As a result,Al-Se batteries equipped with the as-prepared Se@C@TiN composite positive electrodes show an initial discharge specific capacity of 377 mAh·g^(-1)at a current density of 1000 mA·g^(-1)while maintaining a discharge specific capacity of 86.0 mAh·g^(-1)over 200 cycles.This improved cycling performance is ascribed to the high electrical conductivity of the core-shell mesoporous carbon hollow spheres and the unique three-dimensional hierarchical architecture of Se@C@TiN.
基金supported by the National Natural Science Foundation of China (21972124, 22272148)the Priority Academic Program Development of Jiangsu Higher Education Institution。
文摘The strong metal-support interaction inducing combined effect plays a crucial role in the catalysis reaction. Herein, we revealed that the combined advantages of MoSe_(2), Ru, and hollow carbon spheres in the form of Ru nanoparticles(NPs) anchored on a two-dimensionally ordered MoSe_(2) nanosheet-embedded mesoporous hollow carbon spheres surface(Ru/MoSe_(2)@MHCS) for the largely boosted hydrogen evolution reaction(HER) performance. The combined advantages from the conductive support, oxyphilic MoSe_(2), and Ru active sites imparted a strong synergistic effect and charge redistribution in the Ru periphery which induced high catalytic activity, stability, and kinetics for HER. Specifically, the obtained Ru/MoSe_(2)@MHCS required a small overpotential of 25.5 and 38.4 mV to drive the kinetic current density of 10 mA cm^(-2)both in acid and alkaline media, respectively, which was comparable to that of the Pt/C catalyst. Experimental and theoretical results demonstrated that the charge transfer from MoSe_(2) to Ru NPs enriched the electronic density of Ru sites and thus facilitated hydrogen adsorption and water dissociation. The current work showed the significant interfacial engineering in Ru-based catalysts development and catalysis promotion effect understanding via the metal-support interaction.
基金the support from the Fundamental Research Funds for the Central Universities of Chongqing University(No.2020CDCGCL005)。
文摘Rechargeable magnesium batteries(RMBs),as one of the most promising candidates for efficient energy storage devices with high energy,power density and high safety,have attracted increasing attention.However,searching for suitable cathode materials with fast diffusion kinetics and exploring their magnesium storage mechanisms remains a great challenge.Cu S submicron spheres,made by a facile low-temperature synthesis strategy,were applied as the high-performance cathode for RMBs in this work,which can deliver a high specific capacity of 396mAh g^(-1)at 20 mA g^(-1) and a remarkable rate capacity of 250 m Ah g^(-1)at 1000 mA g^(-1).The excellent rate performance can be assigned to the nano needle-like particles on the surface of Cu S submicron spheres,which can facilitate the diffusion kinetics of Mg^(2+).Further storage mechanism investigations illustrate that the Cu S cathodes experience a two-step conversion reaction controlled by diffusion during the electrochemical reaction process.This work could make a contribution to the study of the enhancement of diffusion kinetics of Mg2+and the reaction mechanism of RMBs.
基金supported by the National Natural Science Foundation of China (No. 11775311)。
文摘Iron is commonly used as a structural and shielding material in nuclear devices. The accuracy of its nuclear data is critical for the design of nuclear devices. The evaluation data of ^(56)Fe isotopes in the latest version of the CENDL-3.2 library from China was significantly updated. This new data must be tested before it can be used. To test the reliability of this data and assess the shielding effect, a shielding benchmark experiment was conducted with natural Fe spherical samples using a pulsed deuterium–tritium neutron source at the China Institute of Atomic Energy(CIAE). The leakage neutron spectra from the natural spherical iron samples with different thicknesses(4.5, 7.5, and 12 cm) were measured between 0.8 and 16 MeV after interacting with 14 MeV neutrons using the time-of-flight method. The simulation results were obtained by Monte Carlo simulations by employing the Fe data from the CENDL-3.2, ENDF/B-VIII.0, and JEDNL-5.0 libraries. The measured and simulated leakage neutron spectra and penetration rates were compared, demonstrating that the CENDL-3.2 library performs sufficiently overall. The simulation results of the other two libraries were underestimated for scattering at the continuum energy level.
基金the National Nature Science Foundation of China(11671214,11971348,12071230)the Hundred Young Academia Leaders Program of Nankai University(63223027,ZB22000105)+1 种基金the Undergraduate Education and Teaching Project of Nankai University(NKJG2022053)the National College Students’Innovation and Entrepreneurship Training Program of Nankai University(202210055048)。
文摘This paper studies two isometric problems between unit spheres of Banach spaces.In the first part,we introduce and study the Figiel type problem of isometric embeddings between unit spheres.However,the classical Figiel theorem on the whole space cannot be trivially generalized to this case,and this is pointed out by a counterexample.After establishing this,we find a natural necessary condition required by the existence of the Figiel operator.Furthermore,we prove that when X is a space with the T-property,this condition is also sufficient for an isometric embedding T:S_(X)→S_(Y) to admit the Figiel operator.This answers the Figiel type problem on unit spheres for a large class of spaces.In the second part,we consider the extension of bijectiveε-isometries between unit spheres of two Banach spaces.It is shown that every bijectiveε-isometry between unit spheres of a local GL-space and another Banach space can be extended to be a bijective 5ε-isometry between the corresponding unit balls.In particular,whenε=0,this recovers the MUP for local GL-spaces obtained in[40].
基金financially supported by the National Natural Science Foundation of China (Grant No.52101330)the Basic Scientific Research Foundation of Zhejiang Provincial Universities (Grant No.2022J004)。
文摘To develop and utilize marine resources in the deep sea, the higher requirements for floating structures, which are operated in marine environment for a long term, have been put forward. Reasonable structure type and accurate force analysis are favorable guarantees to improve the survival performance and working performance of the floating structures. Floating spheres fastened by mooring cable were widely used in floating structures. In this paper, the wave forces of the floating sphere are efficiently and accurately calculated by solving the geometric relationship between the non-submerged floating sphere and wave surface. Combined with the hydrodynamic calculation of mooring cables based on the lumped mass method, the coupled motion model of multi-floating spheres fastened by multi-mooring cable was established under wave action. Furthermore, according to the floating structures fastened by mooring cable in the actual ocean engineering, the topological method of multi-mooring cables fastening the multifloating spheres was expounded from simple to complex. Finally, the modeling method and preliminarily hydrodynamic characteristics of the fastened floating structures, including the mooring system of renewable energy devices, ocean buoy, and coral nursery, were presented and analyzed in detail. The obtained results showed that the method for calculating the wave force on the floating sphere developed in this paper can accurately describe the motion process of the floating mooring sphere and the force on the mooring cable. Also, the topological method of multiple buoys and multiple mooring cables could efficiently establish various numerical hydrodynamic models of fastened buoys in ocean engineering.
文摘Failure of irregular rock samples may provide implications in the rapid estimation of rock strength,which is imperative in rock engineering practice.In this work,analytical,experimental and numerical investigations were carried out to study the mechanical properties and failure characteristics of rock spheres under paired point loads.Analytical solutions indicted that with the increase in sample size(contact angle)and decrease in Poisson’s ratio,the uneven tensile stress in theta direction decreased.Then laboratory experiments were carried out to investigate the load characteristics and failure mode of spherical marble samples with different sizes subjected to a pair of diametral point loads.The discrete element method(DEM)was adopted to study the failure process of rock spheres.The effect of the sphere diameter on the point load contact angle was examined in terms of peak load,crushed zone distribution and energy dissipation.Experimental and numerical results showed that the samples primarily fail in tension,with crushed zones formed at both loading points.With increase in the sample size,the contact angle,crushed area and total work increase.As the specimen diameter increases from 30 mm to 50 mm,the peak load on the specimen increases from 3.6 kN to 8.8 kN,and the percentage of crushed zone(ratio of crushing zone to sample radius,d/r)increased from 0.191 to 0.262.The results of the study have implications for understanding the failure of irregular rock specimens under point loading conditions and their size effects.
基金Projects (11KJB530002, CX10B-259Z) supported by Research Funds from Jiangsu Provincial Department of Education, ChinaProject (10zxfk35) supported by Sichuan Province Nonmetallic Composites and Functional Materials Key Laboratory Project, China
文摘Different-sized hollow SiO2 spheres of 249–1348 nm in diameter were successfully prepared by using Na2SiO3 as the precursor and using polystyrene and polystyrene-methyl acrylic acid latexes as the templates. The diameter and shell thickness of the hollow SiO2 spheres increase with increasing the latex template diameter at a given mass ratio of SiO2 to latex template. The diameter and shell thickness of the hollow SiO2 spheres also increase with increasing the mass ratios of SiO2 to latex template. The presence of carboxylic acid groups on the surfaces of polystyrene-methyl acrylic acid latex templates favors the formation of dense and uniform SiO2 shells. The hollow SiO2 sphere is constructed by mesoporous shell with large specific surface area. When glyphosate is used as a release model chemical, glyphosate release rate is tuned by varying the shell thickness.
文摘To obtain a kind of convenient oral dosage form of protein, which can be fully absorbed and is efficient and safe, the thymosin-loaded PLA(polylactic acid) microspheres are prepared by the emulsification- solvent evaporation method and the orthogonal design is used to optimize the technology of preparation. The form of the medicament microspheres of thymosin are proved by differential thermal analysis (DTA). The drug content is determined by the Lowry method, and the package ratio of medicament microspheres of thymosin and drug release in vitro are calculated. The results show that the average diameter and encapsulation efficiency of the product prepared according to the optimized formulation are 13. 8 μm and 80. 7%, respectively. The in vitro release behavior within 12 h can be described by the Higuchi equation with T1/2 = 295 rain. There are no significant changes in size distribution and residual drug contents after being stored at 25℃ and 40 ℃ for 90 d, respectively. Due to the fact that its thymosin content and package ratio meet the requirement, and its releasing half life is long, the thymosin-loaded PLA microsohere has a favorable application future.
文摘Monoclinic BiVO4 hollow nanospheres were successfully prepared via template-free method using citric acid (C6H8O7) as chelating agent and characterized by X-ray diffraction patterns, transmission electron microscope, UV-Vis DRS, and TG-DTA technique. C6H8O7 played an important role in the formation of hollow spheres. Morphology observations revealed that when appropriate amount of C6H8O7 was introduced, the cavity with the diameter of 40 nm was obtained in BiVO4 nanospheres. UV-Vis diffuse reflectance spectra indicated that the samples had absorption in both UV and visible light region. The photocatalytic activities were evaluated by the degradation of methylene blue under Xe lamp irradiation. Hollow spheres endow BiVO4 samples with greatly improved photocatalytic activity. A possible formation mechanism of hollow spheres was proposed.
基金Bundeswehr Technical Center for Weapons and Ammunition WTD-91 GF-440 in Meppen,Germany for funding this work。
文摘The NATO agreement STANAG 4569 defines the protection levels for the occupants of logistic and light armored vehicle.The Allied Engineering Publication,AEP-55,Volume 2 document outlines the test conditions for underbelly improvised explosive device(IEDs),which must be buried in water-saturated sandy gravel.The use of sandy gravel has some drawbacks,for instance reproducibility,time consumption,and cost.This paper focuses on the investigation of four alternatives to sandy gravel,which could produce similar specific and cumulative impulses:a concrete pot filled with water,a concrete pot filled with quartz sand,a steel pot without filling and a concrete pot filled with glass spheres(diameter 200μm—300μm)and different water contents.The impulses are measured with a ring technology developed at the Fraunhofer EMI.A numerical soil model based on the work of Marrs,2014 and Fi serov a,2006 and considering the soil moisture was used to simulate the experiments with glass spheres at different water contents,showing much better agreement with the experiments than the classical Laine&Sandvik model,even for high saturation levels.These results can be used to create new test conditions at original scale that are more cost-effective,more reproducible and simpler to manage in comparison to the current tests carried out with STANAG sandy gravel.
文摘This is a survey of local and global classification results concerning Dupin hypersurfaces in S^(n)(or R^(n))that have been obtained in the context of Lie sphere geometry.The emphasis is on results that relate Dupin hypersurfaces to isoparametric hypersurfaces in spheres.Along with these classification results,many important concepts from Lie sphere geometry,such as curvature spheres,Lie curvatures,and Legendre lifts of submanifolds of S^(n)(or R^(n)),are described in detail.The paper also contains several important constructions of Dupin hypersurfaces with certain special properties.
基金funded by the National Natural Science Foundation of China (Grant No. 11975145)
文摘This study aims to discuss anisotropic solutions that are spherically symmetric in the quintessence field,which describe compact stellar objects in the modified Rastall teleparallel theory of gravity.To achieve this goal,the Krori and Barua arrangement for spherically symmetric components of the line element is incorporated.We explore the field equations by selecting appropriate off-diagonal tetrad fields.Born-Infeld function of torsion f(T)=β√λT+1-1 and power law form h(T)=δTn are used.The Born-Infeld gravity was the first modified teleparallel gravity to discuss inflation.We use the linear equation of state pr=ξρto separate the quintessence density.After obtaining the field equations,we investigate different physical parameters that demonstrate the stability and physical acceptability of the stellar models.We use observational data,such as the mass and radius of the compact star candidates PSRJ 1416-2230,Cen X-3,&4U 1820-30,to ensure the physical plausibility of our findings.
基金the financial support received from Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management(IRC-HTCM)at King Fahd University of Petroleum and Minerals(KFUPM),specifically under project#INHE2213。
文摘Aqueous organic redox flow batteries(RFBs)exhibit favorable characteristics,such as tunability,multielectron transfer capability,and stability of the redox active molecules utilized as anolytes and catholytes,making them very viable contenders for large-scale grid storage applications.Considerable attention has been paid on the development of efficient redox-active molecules and their performance optimization through chemical substitutions at various places on the backbone as part of the pursuit for high-performance RFBs.Despite the fact that electrodes are vital to optimal performance,they have not garnered significant attention.Limited research has been conducted on the effects of electrode modifications to improve the performance of RFBs.The primary emphasis has been given on the impact of electrode engineering to augment the efficiency of aqueous organic RFBs.An overview of electron transfer at the electrode-electrolyte interface is provided.The implications of electrode modification on the performance of redox flow batteries,with a particular focus on the anodic and cathodic half-cells separately,are then discussed.In each section,significant discrepancies surrounding the effects of electrode engineering are thoroughly examined and discussed.Finally,we have presented a comprehensive assessment along with our perspectives on the future trajectory.
基金funded in part by Research on Intelligent Control System of Variable Fertilization of Deep Application Liquid Fertilizer(GXKS2022GKY003)Research on Vehicle Ranging System Based on Object Detection and Monocular Vision(2022KY0854).
文摘The spatial pattern of trees is an important fea-ture of forests,and different spatial patterns of trees exhibit different ecological stability.Research has confirmed that natural forests with random patterns have higher biodiversity and stronger resistance to unstable factors such as pests and diseases.Even if they are disturbed or destroyed by unsta-ble factors such as pests and diseases,they can still recover and rescue themselves;while artificial forests with uniform and clustered patterns have lower biodiversity and are sus-ceptible to unstable factors such as pests and diseases.And once pests and diseases occur,it’s more difficult for them to recover.In order to promote the healthy and stable develop-ment of the forestry industry and protect the diversity of the biological environment,it is necessary to protect the random pattern of natural forests from being destroyed in the process of forest management,while effectively trans-forming the spatial pattern of artificial forests into a random pattern.Therefore,in order to ensure the convenient and accurate determination of the type of forest spatial pattern,research on methods for determining forest spatial pattern has become particularly important.Based on the theory of uniformity,this study proposes definitions and related theo-ries of included exclusive sphere,included exclusive body,included random pattern,and included uniformity.Under the guidance of the definition of inclusion uniformity and related theories,and by using mathematical method,it is proved that the uniformity of inclusion(CL)is asymptotically subject to the Eq.18,Therefore,the relationship between the included uniformity(CL)and the number of trees in the sample plot was established,and the corresponding relationship formula was obtained,and then the determination of the spatial pat-tern type of trees was completed by using the corresponding relationship formula.Through rigorous reasoning and case verification,the determination method of forest spatial pat-tern is effective.