Based on a two-dimensional(2D)Co-MOF(Co_(2)(OH)_(2)BDC)with a self-contained organic interface and low conductivity,a composite epoxy coating(2D Co_(2)(OH)_(2)BDC-PAN/EP)was constructed by a two-step preparation.First...Based on a two-dimensional(2D)Co-MOF(Co_(2)(OH)_(2)BDC)with a self-contained organic interface and low conductivity,a composite epoxy coating(2D Co_(2)(OH)_(2)BDC-PAN/EP)was constructed by a two-step preparation.First,a polyacrylonitrile(PAN)nanofiber membrane was electrospuned on the surface of Q235 steel,followed by coating using the epoxy coating(EP)containing 2D Co_(2)(OH)_(2)BDC.The 2D Co_(2)(OH)_(2)BDC-PAN/EP composite epoxy coatings showed robust mechanical performance and excellent corrosion resistance capacity.展开更多
The high activity of metallic magnesium and alloys limits its potential in biomedical applications;in recent years,extensive efforts have been devoted to modulating this reactivity.In this work,we present Mg(OH)_(2) a...The high activity of metallic magnesium and alloys limits its potential in biomedical applications;in recent years,extensive efforts have been devoted to modulating this reactivity.In this work,we present Mg(OH)_(2) and TiO_(2)barrier coatings to reduce the degradation of magnesium alloy(Mg-Ca-Zn)surfaces.These coatings were deposited by the anodization method and the spin-coating technique,respectively.The anodized layer was coated with TiO_(2)generated from the hydrolysis of 3%weight of TTIP(Ti[OCH(CH_(3))_(2)]_(4),Titanium(IV)isopropoxide)in 2-Propanol deposited by the spin-coating method.Studying the degradation in Ringer’s solution by electrochemical impedance spectroscopy and OCP revealed a 98%reduction in pittings in uncoated samples after 14 days of immersion.The p H measurements revealed that the TiO_(2)coating reduced the alkalization of the physiological environment,keeping the pH at 6.0 values.In vitro studies of two types of bacteria(E.coli and S.aureus)exhibited zones of inhibition in the agar and activity bactericidal(kill time test).The mechanisms behind the improved degradation resistance and enhanced antibacterial activity are presented and discussed here.Surface modification with Mg(OH)_(2)/TiO_(2)coatings is a promising strategy to control the biodegradation of magnesium implants for bone regeneration.展开更多
Introducing inorganic nanomaterials into a polymer matrix greatly improves the anticorrosion performance of epoxy coatings(EP);however,poor compatibility between the materials can limit the improvement in properties.I...Introducing inorganic nanomaterials into a polymer matrix greatly improves the anticorrosion performance of epoxy coatings(EP);however,poor compatibility between the materials can limit the improvement in properties.In this work,based on the high interface compatibility of two-dimensional(2D)Co_(2)(OH)_(2)BDC(BDC=1,4-benzenedicarboxylate)in the epoxy coating that we reported in previous work,we fabricated a 2D Co_(2)(OH)_(2)BDC-halloysite nanotube(HNT)nanocomposite have a structure consisting of alternating of nanosheets and nanotube by in situ synthesis.The nanocomposite was characterized by Fourier transform infrared spectroscopy,X-ray diffraction,and scanning electron microscopy.The mechanical and anticorrosion performance of the 2D Co_(2)(OH)_(2)BDC-HNT/EP coating was evaluated by mechanical tests and electrochemical impedance spectroscopy spectra.Compared with a conventional unreinforced epoxy coating,the 2D Co_(2)(OH)_(2)BDC-HNT/EP coating had higher mechanical strength and toughness,and the low-frequency impedance modulus of 2D Co_(2)(OH)_(2)BDC-HNT/EP coating was increased by three orders of magnitude,demonstrating the high corrosion resistance of our reinforced coating.展开更多
For the purpose of the important high-temperature charge-discharge performances of spherical Ni(OH)2 used as positive materials for Ni-MH batteries, Yb(OH)3 and Er(OH)3 were used for surface coating of spherical Ni(OH...For the purpose of the important high-temperature charge-discharge performances of spherical Ni(OH)2 used as positive materials for Ni-MH batteries, Yb(OH)3 and Er(OH)3 were used for surface coating of spherical Ni(OH)2 to improve its high-temperature properties. The coated spherical Ni(OH)2 was prepared by chemically coprecipitation of Yb(OH)3 and Er(OH)3 on the surface of spherical Ni(OH)2, respectively. The products were characterized by X-ray diffraction(XRD) and scanning electron microscope(SEM). The X-ray analysis showed that the structure of the coated spherical Ni(OH)2 was still β-Ni(OH)2. The SEM studies revealed that coating layer uniformly covered the surface of spherical Ni(OH)2. The electrochemical studies revealed that coating of Yb(OH)3 and Er(OH)3 exhibited superior performance such as high discharge capacity, excellent charge-discharge properties at high-discharge rate at 65 ℃. The charge acceptance was above 85% at 1C rate at 65 ℃. The discharge capacity approached to 230 mAh·g-1 at 0.2C rate, which even reached 270 mAh·g-1 at 1C rate for both Yb(OH)3 and Er(OH)3 coated spherical Ni(OH)2, where the discharge capacity for uncoated one was only 250 mAh·g-1 . The cyclic voltammetry analysis of spherical Ni(OH)2 showed that the oxidation potential, the oxygen evolution potential, and the difference between them increased after the coating both at 25 and 65 ℃. It was shown that the Yb(OH)3 and Er(OH)3 coating is an effective way to improve the high-temperature performance of spherical Ni(OH)2 for Ni-MH batteries. The studies showed that Yb(OH)3 and Er(OH)3 coated spherical Ni(OH)2 would be a promising material of Ni-MH batteries for hybrid vehicle (HEVs), electric vehicles(EVs) and rapid charge devices due to excellent high rate charge-discharge performance.展开更多
The microstructures and growth process characteristics precipitation-crystallization method were investigated by SEM, TEM of spherical Ni(OH)2 particles synthesized by the aqueous and XRD, and their growth mechanism...The microstructures and growth process characteristics precipitation-crystallization method were investigated by SEM, TEM of spherical Ni(OH)2 particles synthesized by the aqueous and XRD, and their growth mechanism was discussed. With the reaction beginning and continuing, amorphous Ni(OH)2 nano-crystallites grow up to spherical micron-particles with radially arranged crystallites. The nucleation, crystallization and re-crystallization led by Ostwald ripening simultaneously take place through the whole growth processes. With the course from reversible aggregation to irreversible agglomeration, the Ni(OH)2 particles tend to grow according to the template growth model: the growth on the crystallite templates stretching in the radius directions is free and quick, while the growth rate for crystallites in other directions is confined due to lower monomers concentration and tends to dissolve So it is only the radially arranged crystallites that predominate in the particle and lead to characteristic microstructures.展开更多
The growth of a Ni(OH)2 coating on conductive carbon substrates is an efficient way to address issues related to their poor conductivity in electrochemical capacitor applications. However, the direct growth of nicke...The growth of a Ni(OH)2 coating on conductive carbon substrates is an efficient way to address issues related to their poor conductivity in electrochemical capacitor applications. However, the direct growth of nickel hydroxide coatings on a carbon substrate is challenging, because the surfaces of these systems are not compatible and a preoxidation treatment of the conductive carbon substrate is usually required. Herein, we present a facile preoxidation-free approach to fabricate a uniform Ni(OH)2 coating on carbon nanosheets (CNs) by an ion-exchange reaction to achieve the in situ transformation of a MgO/C composite to a Ni(OH)2/C one. The obtained Ni(OH)2/CNs hybrids possess nanosheet morphology, a large surface area (278 m2/g), and homogeneous elemental distributions. When employed as supercapacitors in a three-electrode configuration, the Ni(OH)JCNs hybrid achieves a large capacitance of 2,218 F/g at a current density of 1.0 A/g. Moreover, asymmetric supercapacitors fabricated with the Ni(OH)2/CNs hybrid exhibit superior supercapacitive performances, with a large capacity of 198 F/g, and high energy density of 56.7 Wh/kg at a power density of 4.0 kW/kg. They show excellent cycling stability with 93% capacity retention after 10,000 cycles, making the Ni(OH)2/CNs hybrid a promising candidate for practical applications in supercapacitor devices.展开更多
Spherical Ni(OH)2 particles were prepared by an aqueous solution precipitation route. The structure of spherical Ni(OH)2 was investigated by scanning electron microscopy and transmission electron microscopy and co...Spherical Ni(OH)2 particles were prepared by an aqueous solution precipitation route. The structure of spherical Ni(OH)2 was investigated by scanning electron microscopy and transmission electron microscopy and compared with that of traditional Ni(OH)2. The results show that the spherical nickel hydroxide consists of (Ni(OH)2) spheres with a reticulate structure of platelet-like, which is almost arranged radially and the crystalline grains intervene and connect with each other to form a three-dimensional net. The spherical Ni(OH)2 particle is full of pores, crannies between cleave planes. It is supposed that this structure is beneficial to the structural stability for the spherical particles during the charge/discharge processes and can improve the cycle life of the electrode; the pores and the crannies in spherical particles can shorten the proton diffusion distance and speed its velocity, which may result in that the local polarization is lowered. The electrochemical performances of the spherical Ni(OH)2 are improved by enhancing the conducting properties of the crystalline lattice due to its quick proton diffusion.展开更多
Exploring a novel strategy for large-scale production of battery-type Ni(OH)_(2)-based composites,with excellent capacitive performance,is still greatly challenging.Herein,we developed a facile and cost-effective stra...Exploring a novel strategy for large-scale production of battery-type Ni(OH)_(2)-based composites,with excellent capacitive performance,is still greatly challenging.Herein,we developed a facile and cost-effective strategy to in situ grow a layer of Ni(OH)_(2)/Ti_(3)C_(2)T_(x)composite on the nickel foam(NF)collector,where Ti_(3)C_(2)T_(x)is not only a conductive component,but also a catalyst that accelerates the oxidation of NF to Ni(OH)_(2).Detailed analysis reveals that the crystallinity,morphology,and electronic structure of the integrated electrode can be tuned via the electrochemical activation,which is beneficial for improving electrical conductivity and redox activity.As expected,the integrated electrode shows a specific capacity of 1.09 C cm^(-2)at 1 mA cm^(-2)after three custom activation cycles and maintains 92.4%of the initial capacity after 1500 cycles.Moreover,a hybrid supercapacitor composed of Ni(OH)_(2)/Ti_(3)C_(2)T_(x)/NF cathode and activated carbon anode provides an energy density of 0.1 mWh cm^(-2)at a power density of 0.97 mW cm^(-2),and excellent cycling stability with about 110%capacity retention rate after 5000 cycles.This work would afford an economical and convenient method to steer commercial Ni foam into advanced Ni(OH)_(2)-based composite materials as binder-free electrodes for hybrid supercapacitors.展开更多
通过电化学剥离协同制备了3D Ni(OH)_(2)/石墨烯复合电极薄膜材料,高品质石墨烯均匀地生长在三维Ni(OH)_(2)表面,电化学性能测试表明,在2 m A/cm^(2)电流密度条件下,该电极薄膜具有优异的比电容(266 m F/cm^(2)),经过1万次的连续充放电...通过电化学剥离协同制备了3D Ni(OH)_(2)/石墨烯复合电极薄膜材料,高品质石墨烯均匀地生长在三维Ni(OH)_(2)表面,电化学性能测试表明,在2 m A/cm^(2)电流密度条件下,该电极薄膜具有优异的比电容(266 m F/cm^(2)),经过1万次的连续充放电循环测试仍然保留94.1%的容量性能。该方法为大规模生产新型高性能电极薄膜材料提供了一个简单的制备策略。展开更多
文摘Based on a two-dimensional(2D)Co-MOF(Co_(2)(OH)_(2)BDC)with a self-contained organic interface and low conductivity,a composite epoxy coating(2D Co_(2)(OH)_(2)BDC-PAN/EP)was constructed by a two-step preparation.First,a polyacrylonitrile(PAN)nanofiber membrane was electrospuned on the surface of Q235 steel,followed by coating using the epoxy coating(EP)containing 2D Co_(2)(OH)_(2)BDC.The 2D Co_(2)(OH)_(2)BDC-PAN/EP composite epoxy coatings showed robust mechanical performance and excellent corrosion resistance capacity.
基金financed by the FOMIX-Yucatán 2008-108160,CONACYT LAB-2009-01-123913,292692,294643,188345,and 204822 projectsthe financial support received from CONACYT。
文摘The high activity of metallic magnesium and alloys limits its potential in biomedical applications;in recent years,extensive efforts have been devoted to modulating this reactivity.In this work,we present Mg(OH)_(2) and TiO_(2)barrier coatings to reduce the degradation of magnesium alloy(Mg-Ca-Zn)surfaces.These coatings were deposited by the anodization method and the spin-coating technique,respectively.The anodized layer was coated with TiO_(2)generated from the hydrolysis of 3%weight of TTIP(Ti[OCH(CH_(3))_(2)]_(4),Titanium(IV)isopropoxide)in 2-Propanol deposited by the spin-coating method.Studying the degradation in Ringer’s solution by electrochemical impedance spectroscopy and OCP revealed a 98%reduction in pittings in uncoated samples after 14 days of immersion.The p H measurements revealed that the TiO_(2)coating reduced the alkalization of the physiological environment,keeping the pH at 6.0 values.In vitro studies of two types of bacteria(E.coli and S.aureus)exhibited zones of inhibition in the agar and activity bactericidal(kill time test).The mechanisms behind the improved degradation resistance and enhanced antibacterial activity are presented and discussed here.Surface modification with Mg(OH)_(2)/TiO_(2)coatings is a promising strategy to control the biodegradation of magnesium implants for bone regeneration.
文摘Introducing inorganic nanomaterials into a polymer matrix greatly improves the anticorrosion performance of epoxy coatings(EP);however,poor compatibility between the materials can limit the improvement in properties.In this work,based on the high interface compatibility of two-dimensional(2D)Co_(2)(OH)_(2)BDC(BDC=1,4-benzenedicarboxylate)in the epoxy coating that we reported in previous work,we fabricated a 2D Co_(2)(OH)_(2)BDC-halloysite nanotube(HNT)nanocomposite have a structure consisting of alternating of nanosheets and nanotube by in situ synthesis.The nanocomposite was characterized by Fourier transform infrared spectroscopy,X-ray diffraction,and scanning electron microscopy.The mechanical and anticorrosion performance of the 2D Co_(2)(OH)_(2)BDC-HNT/EP coating was evaluated by mechanical tests and electrochemical impedance spectroscopy spectra.Compared with a conventional unreinforced epoxy coating,the 2D Co_(2)(OH)_(2)BDC-HNT/EP coating had higher mechanical strength and toughness,and the low-frequency impedance modulus of 2D Co_(2)(OH)_(2)BDC-HNT/EP coating was increased by three orders of magnitude,demonstrating the high corrosion resistance of our reinforced coating.
文摘For the purpose of the important high-temperature charge-discharge performances of spherical Ni(OH)2 used as positive materials for Ni-MH batteries, Yb(OH)3 and Er(OH)3 were used for surface coating of spherical Ni(OH)2 to improve its high-temperature properties. The coated spherical Ni(OH)2 was prepared by chemically coprecipitation of Yb(OH)3 and Er(OH)3 on the surface of spherical Ni(OH)2, respectively. The products were characterized by X-ray diffraction(XRD) and scanning electron microscope(SEM). The X-ray analysis showed that the structure of the coated spherical Ni(OH)2 was still β-Ni(OH)2. The SEM studies revealed that coating layer uniformly covered the surface of spherical Ni(OH)2. The electrochemical studies revealed that coating of Yb(OH)3 and Er(OH)3 exhibited superior performance such as high discharge capacity, excellent charge-discharge properties at high-discharge rate at 65 ℃. The charge acceptance was above 85% at 1C rate at 65 ℃. The discharge capacity approached to 230 mAh·g-1 at 0.2C rate, which even reached 270 mAh·g-1 at 1C rate for both Yb(OH)3 and Er(OH)3 coated spherical Ni(OH)2, where the discharge capacity for uncoated one was only 250 mAh·g-1 . The cyclic voltammetry analysis of spherical Ni(OH)2 showed that the oxidation potential, the oxygen evolution potential, and the difference between them increased after the coating both at 25 and 65 ℃. It was shown that the Yb(OH)3 and Er(OH)3 coating is an effective way to improve the high-temperature performance of spherical Ni(OH)2 for Ni-MH batteries. The studies showed that Yb(OH)3 and Er(OH)3 coated spherical Ni(OH)2 would be a promising material of Ni-MH batteries for hybrid vehicle (HEVs), electric vehicles(EVs) and rapid charge devices due to excellent high rate charge-discharge performance.
基金Project(50134020) supported by the National Natural Science Foundation of ChinaProject supported by Postdoctoral Fund of Central South University
文摘The microstructures and growth process characteristics precipitation-crystallization method were investigated by SEM, TEM of spherical Ni(OH)2 particles synthesized by the aqueous and XRD, and their growth mechanism was discussed. With the reaction beginning and continuing, amorphous Ni(OH)2 nano-crystallites grow up to spherical micron-particles with radially arranged crystallites. The nucleation, crystallization and re-crystallization led by Ostwald ripening simultaneously take place through the whole growth processes. With the course from reversible aggregation to irreversible agglomeration, the Ni(OH)2 particles tend to grow according to the template growth model: the growth on the crystallite templates stretching in the radius directions is free and quick, while the growth rate for crystallites in other directions is confined due to lower monomers concentration and tends to dissolve So it is only the radially arranged crystallites that predominate in the particle and lead to characteristic microstructures.
文摘The growth of a Ni(OH)2 coating on conductive carbon substrates is an efficient way to address issues related to their poor conductivity in electrochemical capacitor applications. However, the direct growth of nickel hydroxide coatings on a carbon substrate is challenging, because the surfaces of these systems are not compatible and a preoxidation treatment of the conductive carbon substrate is usually required. Herein, we present a facile preoxidation-free approach to fabricate a uniform Ni(OH)2 coating on carbon nanosheets (CNs) by an ion-exchange reaction to achieve the in situ transformation of a MgO/C composite to a Ni(OH)2/C one. The obtained Ni(OH)2/CNs hybrids possess nanosheet morphology, a large surface area (278 m2/g), and homogeneous elemental distributions. When employed as supercapacitors in a three-electrode configuration, the Ni(OH)JCNs hybrid achieves a large capacitance of 2,218 F/g at a current density of 1.0 A/g. Moreover, asymmetric supercapacitors fabricated with the Ni(OH)2/CNs hybrid exhibit superior supercapacitive performances, with a large capacity of 198 F/g, and high energy density of 56.7 Wh/kg at a power density of 4.0 kW/kg. They show excellent cycling stability with 93% capacity retention after 10,000 cycles, making the Ni(OH)2/CNs hybrid a promising candidate for practical applications in supercapacitor devices.
基金Project(50134020) supported by the National Natural Science Foundation of China
文摘Spherical Ni(OH)2 particles were prepared by an aqueous solution precipitation route. The structure of spherical Ni(OH)2 was investigated by scanning electron microscopy and transmission electron microscopy and compared with that of traditional Ni(OH)2. The results show that the spherical nickel hydroxide consists of (Ni(OH)2) spheres with a reticulate structure of platelet-like, which is almost arranged radially and the crystalline grains intervene and connect with each other to form a three-dimensional net. The spherical Ni(OH)2 particle is full of pores, crannies between cleave planes. It is supposed that this structure is beneficial to the structural stability for the spherical particles during the charge/discharge processes and can improve the cycle life of the electrode; the pores and the crannies in spherical particles can shorten the proton diffusion distance and speed its velocity, which may result in that the local polarization is lowered. The electrochemical performances of the spherical Ni(OH)2 are improved by enhancing the conducting properties of the crystalline lattice due to its quick proton diffusion.
基金supported by the NSF of China(Nos.21971143,21805165,22209098)the 111 Project(D20015)+1 种基金the major research and development project of Hubei Three Gorges Laboratory(2022-3)the Natural Science Foundation of Hubei Province(2022CFB326)
文摘Exploring a novel strategy for large-scale production of battery-type Ni(OH)_(2)-based composites,with excellent capacitive performance,is still greatly challenging.Herein,we developed a facile and cost-effective strategy to in situ grow a layer of Ni(OH)_(2)/Ti_(3)C_(2)T_(x)composite on the nickel foam(NF)collector,where Ti_(3)C_(2)T_(x)is not only a conductive component,but also a catalyst that accelerates the oxidation of NF to Ni(OH)_(2).Detailed analysis reveals that the crystallinity,morphology,and electronic structure of the integrated electrode can be tuned via the electrochemical activation,which is beneficial for improving electrical conductivity and redox activity.As expected,the integrated electrode shows a specific capacity of 1.09 C cm^(-2)at 1 mA cm^(-2)after three custom activation cycles and maintains 92.4%of the initial capacity after 1500 cycles.Moreover,a hybrid supercapacitor composed of Ni(OH)_(2)/Ti_(3)C_(2)T_(x)/NF cathode and activated carbon anode provides an energy density of 0.1 mWh cm^(-2)at a power density of 0.97 mW cm^(-2),and excellent cycling stability with about 110%capacity retention rate after 5000 cycles.This work would afford an economical and convenient method to steer commercial Ni foam into advanced Ni(OH)_(2)-based composite materials as binder-free electrodes for hybrid supercapacitors.
文摘通过电化学剥离协同制备了3D Ni(OH)_(2)/石墨烯复合电极薄膜材料,高品质石墨烯均匀地生长在三维Ni(OH)_(2)表面,电化学性能测试表明,在2 m A/cm^(2)电流密度条件下,该电极薄膜具有优异的比电容(266 m F/cm^(2)),经过1万次的连续充放电循环测试仍然保留94.1%的容量性能。该方法为大规模生产新型高性能电极薄膜材料提供了一个简单的制备策略。