As an emerging molecular imaging modality,cone-beam X-ray luminescence computed tomog-raphy(CB-XLCT)uses X-ray-excitable probes to produce near-infrared(NIR)luminescence and then reconst ructs three-dimensional(3D)dis...As an emerging molecular imaging modality,cone-beam X-ray luminescence computed tomog-raphy(CB-XLCT)uses X-ray-excitable probes to produce near-infrared(NIR)luminescence and then reconst ructs three-dimensional(3D)distribution of the probes from surface measurements.A proper photon-transportation model is critical to accuracy of XLCT.Here,we presented a systematic comparison between the common-used Monte Carlo model and simplified spherical harmonics(SPN).The performance of the two methods was evaluated over several main spec-trums using a known XLCT material.We designed both a global measurement based on the cosine similarity and a locally-averaged relative error,to quantitatively assess these methods.The results show that the SP_(3) could reach a good balance between the modeling accuracy and computational efficiency for all of the tested emission spectrums.Besides,the SP_(1)(which is equivalent to the difusion equation(DE))can be a reasonable alternative model for emission wavelength over 692nm.In vivo experiment further demonstrates the reconstruction perfor-mance of the SP:and DE.This study would provide a valuable guidance for modeling the photon-transportation in CB-XLCT.展开更多
A solution to the linear Boltzmann equation satisfies an energy bound,which reflects a natural fact:The energy of particles in a finite volume is bounded in time by the energy of particles initially occupying the volu...A solution to the linear Boltzmann equation satisfies an energy bound,which reflects a natural fact:The energy of particles in a finite volume is bounded in time by the energy of particles initially occupying the volume augmented by the energy transported into the volume by particles entering the volume over time.In this paper,we present boundary conditions(BCs)for the spherical harmonic(P_(N))approximation,which ensure that this fundamental energy bound is satisfied by the P_(N) approximation.Our BCs are compatible with the characteristic waves of P_(N) equations and determine the incoming waves uniquely.Both,energy bound and compatibility,are shown on abstract formulations of P_(N) equations and BCs to isolate the necessary structures and properties.The BCs are derived from a Marshak type formulation of BC and base on a non-classical even/odd-classification of spherical harmonic functions and a stabilization step,which is similar to the truncation of the series expansion in the P_(N) method.We show that summation by parts(SBP)finite differences on staggered grids in space and the method of simultaneous approximation terms(SAT)allows to maintain the energy bound also on the semi-discrete level.展开更多
基金the School of Life Science and Technology of Xidian University for providing experimental data acquisition system.This work was supported by the National Natural Science Foundation of China under Grant(Nos.61372046,61401264,11571012,61601363,61640418,61572400)the Science and Technology Plan Program in Shaanxi Province of China under Grant(Nos.2013K12-20-12,2015KW-002)+2 种基金the Natural Science Research Plan Program in Shaanxi Province of China under Grant(No.2015JM6322)the Scienti¯c Research Founded by Shaanxi Provincial Education Department under Grant No.16JK1772the Scienti¯c Research Foundation of Northwest University under Grant Nos.338050018 and 338020012.
文摘As an emerging molecular imaging modality,cone-beam X-ray luminescence computed tomog-raphy(CB-XLCT)uses X-ray-excitable probes to produce near-infrared(NIR)luminescence and then reconst ructs three-dimensional(3D)distribution of the probes from surface measurements.A proper photon-transportation model is critical to accuracy of XLCT.Here,we presented a systematic comparison between the common-used Monte Carlo model and simplified spherical harmonics(SPN).The performance of the two methods was evaluated over several main spec-trums using a known XLCT material.We designed both a global measurement based on the cosine similarity and a locally-averaged relative error,to quantitatively assess these methods.The results show that the SP_(3) could reach a good balance between the modeling accuracy and computational efficiency for all of the tested emission spectrums.Besides,the SP_(1)(which is equivalent to the difusion equation(DE))can be a reasonable alternative model for emission wavelength over 692nm.In vivo experiment further demonstrates the reconstruction perfor-mance of the SP:and DE.This study would provide a valuable guidance for modeling the photon-transportation in CB-XLCT.
基金The authors acknowledge funding of the German Research Foundation(DFG)under grant TO 414/4-1.
文摘A solution to the linear Boltzmann equation satisfies an energy bound,which reflects a natural fact:The energy of particles in a finite volume is bounded in time by the energy of particles initially occupying the volume augmented by the energy transported into the volume by particles entering the volume over time.In this paper,we present boundary conditions(BCs)for the spherical harmonic(P_(N))approximation,which ensure that this fundamental energy bound is satisfied by the P_(N) approximation.Our BCs are compatible with the characteristic waves of P_(N) equations and determine the incoming waves uniquely.Both,energy bound and compatibility,are shown on abstract formulations of P_(N) equations and BCs to isolate the necessary structures and properties.The BCs are derived from a Marshak type formulation of BC and base on a non-classical even/odd-classification of spherical harmonic functions and a stabilization step,which is similar to the truncation of the series expansion in the P_(N) method.We show that summation by parts(SBP)finite differences on staggered grids in space and the method of simultaneous approximation terms(SAT)allows to maintain the energy bound also on the semi-discrete level.