Based on a new second-order neutron transport equation, self-adjoint angular flux (SAAF) equation, the spherical harmonics (PN) method for neutron transport equation on unstructured-meshes is derived. The spherical ha...Based on a new second-order neutron transport equation, self-adjoint angular flux (SAAF) equation, the spherical harmonics (PN) method for neutron transport equation on unstructured-meshes is derived. The spherical harmonics function is used to expand the angular flux. A set of differential equations about the spatial variable, which are coupled with each other, can be obtained. They are solved iteratively by using the finite element method on un- structured-meshes. A two-dimension transport calculation program is coded according to the model. The numerical results of some benchmark problems demonstrate that this method can give high precision results and avoid the ray effect very well.展开更多
We propose a new method to generate terahertz perfect vortex beam with integer-order and fractional-order. A new optical diffractive element composed of the phase combination of a spherical harmonic axicon and a spira...We propose a new method to generate terahertz perfect vortex beam with integer-order and fractional-order. A new optical diffractive element composed of the phase combination of a spherical harmonic axicon and a spiral phase plate is designed and called spiral spherical harmonic axicon. A terahertz Gaussian beam passes through the spiral spherical harmonic axicon to generate a terahertz vortex beam. When only the topological charge number carried by spiral spherical harmonic axicon increases, the ring radius of terahertz vortex beam increases slightly, so the beam is shaped into a terahertz quasi-perfect vortex beam. Importantly, the terahertz quasi-perfect vortex beam can carry not only integer-order topological charge number but also fractional-order topological charge number. This is the first time that vortex beam and quasi-perfect vortex beam with fractional-order have been successfully realized in terahertz domain and experiment.展开更多
Recently,the simplified spherical harmonics equations(SP)model has at tracted much att entionin modeling the light propagation in small tissue ggeometriesat visible and near-infrared wave-leng ths.In this paper,we rep...Recently,the simplified spherical harmonics equations(SP)model has at tracted much att entionin modeling the light propagation in small tissue ggeometriesat visible and near-infrared wave-leng ths.In this paper,we report an eficient numerical method for fluorescence moleeular tom-ography(FMT)that combines the advantage of SP model and adaptive hp finite elementmethod(hp-FEM).For purposes of comparison,hp-FEM and h-FEM are,respectively applied tothe reconstruction pro cess with diffusion approximation and SPs model.Simulation experiments on a 3D digital mouse atlas and physical experiments on a phantom are designed to evaluate thereconstruction methods in terms of the location and the reconstructed fluorescent yield.Theexperimental results demonstrate that hp-FEM with SPy model,yield more accurate results thanh-FEM with difusion approximation model does.The phantom experiments show the potentialand feasibility of the proposed approach in FMT applications.展开更多
The problem of spherical parametrization is that of mapping a genus-zero mesh onto a spherical surface. For a given mesh, different parametrizations can be obtained by different methods. And for a certain application,...The problem of spherical parametrization is that of mapping a genus-zero mesh onto a spherical surface. For a given mesh, different parametrizations can be obtained by different methods. And for a certain application, some parametrization results might behave better than others. In this paper, we will propose a method to parametrize a genus-zero mesh so that a surface fitting algorithm with PHT-splines can generate good result. Here the parametrization results are obtained by minimizing discrete har- monic energy subject to spherical constraints. Then some applications are given to illustrate the advantages of our results. Based on PHT-splines, parametric surfaces can be constructed efficiently and adaptively to fit genus-zero meshes after their spherical parametrization has been obtained.展开更多
As an emerging molecular imaging modality,cone-beam X-ray luminescence computed tomog-raphy(CB-XLCT)uses X-ray-excitable probes to produce near-infrared(NIR)luminescence and then reconst ructs three-dimensional(3D)dis...As an emerging molecular imaging modality,cone-beam X-ray luminescence computed tomog-raphy(CB-XLCT)uses X-ray-excitable probes to produce near-infrared(NIR)luminescence and then reconst ructs three-dimensional(3D)distribution of the probes from surface measurements.A proper photon-transportation model is critical to accuracy of XLCT.Here,we presented a systematic comparison between the common-used Monte Carlo model and simplified spherical harmonics(SPN).The performance of the two methods was evaluated over several main spec-trums using a known XLCT material.We designed both a global measurement based on the cosine similarity and a locally-averaged relative error,to quantitatively assess these methods.The results show that the SP_(3) could reach a good balance between the modeling accuracy and computational efficiency for all of the tested emission spectrums.Besides,the SP_(1)(which is equivalent to the difusion equation(DE))can be a reasonable alternative model for emission wavelength over 692nm.In vivo experiment further demonstrates the reconstruction perfor-mance of the SP:and DE.This study would provide a valuable guidance for modeling the photon-transportation in CB-XLCT.展开更多
To determine the Avogadro constant with a target relative uncertainty of 2 x 10-s, the uncertainty component of the silicon sphere's volume introduced by the spherical harmonics method, which is usually used in deter...To determine the Avogadro constant with a target relative uncertainty of 2 x 10-s, the uncertainty component of the silicon sphere's volume introduced by the spherical harmonics method, which is usually used in determining the sphere's volume, is reevaluated. By means of representing the shape of the silicon sphere by an ellipsoid with Gaussian white noise in its diameters, the uncertainty of the current mapping methods based on the spherical harmonics theory can be estimated theoretically. It is evidenced that the uncertainty component attributed to the current mapping method is underestimated. To eliminate this effect as much as possible, the number of mapping points should be increased to more than before. Moreover, a new mapping method is proposed to accomplish the equal-area mapping with large number points on the silicon sphere.展开更多
As early as in 1990, Professor Sun Yongsheng, suggested his students at Beijing Normal University to consider research problems on the unit sphere. Under his guidance and encouragement his students started the researc...As early as in 1990, Professor Sun Yongsheng, suggested his students at Beijing Normal University to consider research problems on the unit sphere. Under his guidance and encouragement his students started the research on spherical harmonic analysis and approximation. In this paper, we incompletely introduce the main achievements in this area obtained by our group and relative researchers during recent 5 years (2001-2005). The main topics are: convergence of Cesaro summability, a.e. and strong summability of Fourier-Laplace series; smoothness and K-functionals; Kolmogorov and linear widths.展开更多
The Robin problem for the Helmholtz equation in normal-polar shells is addressed by using a suitable spherical harmonic expansion technique. Attention is in particular focused on the wide class of domains whose bounda...The Robin problem for the Helmholtz equation in normal-polar shells is addressed by using a suitable spherical harmonic expansion technique. Attention is in particular focused on the wide class of domains whose boundaries are defined by a generalized version of the so-called “superformula” introduced by Gielis. A dedicated numerical procedure based on the computer algebra system Mathematica? is developed in order to validate the proposed methodology. In this way, highly accurate approximations of the solution, featuring properties similar to the classical ones, are obtained.展开更多
In order to study the temporal and spatial variation characteristics of the regional ionosphere and the modeling accuracy,the experiment is based on the spherical harmonic function model,using the GPS,Glonass,and Gali...In order to study the temporal and spatial variation characteristics of the regional ionosphere and the modeling accuracy,the experiment is based on the spherical harmonic function model,using the GPS,Glonass,and Galileo dual-frequency observation data from the 305th-334th day of the European CORS network in 2019 to establish a global ionospheric model.By analyzing and evaluating the accuracy of the global ionospheric puncture points,VTEC,and comparing code products,the test results showed that the GPS system has the most dense puncture electricity distribution,the Glonass system is the second,and the Galileo system is the weakest.The values of ionospheric VTEC calculated by GPS,Glonass and Galileo are slightly different,but in terms of trends,they are the same as those of ESA,JPL and UPC.GPS data has the highest accuracy in global ionospheric modeling.GPS,Glonass and Galileo have the same trend,but Glonass data is unstable and fluctuates greatly.展开更多
Most GPS positioning errors can be eliminated or removed by the differential technique or the modeling method,but the multipath effect is a special kind of system or gross error,so it is difficult to be simulated or e...Most GPS positioning errors can be eliminated or removed by the differential technique or the modeling method,but the multipath effect is a special kind of system or gross error,so it is difficult to be simulated or eliminated.In order to improve the accuracy of GPS positioning,the single-epoch pseudorange multipath effects at GPS station were calculated,and firstly modeled based on the spherical cap harmonic(SCH),which is the function of satellite longitude and latitude with the robust method.The accuracy of the kinematic point positioning technique was improved by correcting pseudorange observations with the multipath effect calculated by the SCH model,especially in the elevation direction.The spherical cap harmonic can be used to model the pseudorange multipath effect.展开更多
The microscopic characteristics of skeletal particles in rock and soil media have important effects on macroscopic mechanical properties. A mathematical procedure called spherical harmonic function analysis was here d...The microscopic characteristics of skeletal particles in rock and soil media have important effects on macroscopic mechanical properties. A mathematical procedure called spherical harmonic function analysis was here developed to characterize micromorphology of particles and determine the meso effects in a discrete manner. This method has strong mathematical properties with respect to orthogonality and rotating invariance. It was used here to characterize and reconstruct particle micromorphology in three-dimensional space. The applicability and accuracy of the method were assessed through comparison of basic geometric properties such as volume and surface area. The results show that the micromorphological characteristics of reproduced particles become more and more readily distinguishable as the reproduced order number of spherical harmonic function increases, and the error can be brought below 5% when the order number reaches 10. This level of precision is sharp enough to distinguish the characteristics of real particles. Reconstructed particles of the same size but different reconstructed orders were used to form cylindrical samples, and the stress-strain curves of these samples filled with different-order particles which have their mutual morphological features were compared using PFC3D. Results show that the higher the spherical harmonic order of reconstructed particles, the lower the initial compression modulus and the larger the strain at peak intensity. However, peak strength shows only a random relationship to spherical harmonic order. Microstructure reconstruction was here shown to be an efficient means of numerically simulating of multi-scale rock and soil media and studying the mechanical properties of soil samples.展开更多
We used CHAMP satellite vector data and the latest IGRF12 model to investigate the regional magnetic anomalies over China's Mainland. We assumed satellite points on the same surface (307.69 km) and constructed a...We used CHAMP satellite vector data and the latest IGRF12 model to investigate the regional magnetic anomalies over China's Mainland. We assumed satellite points on the same surface (307.69 km) and constructed a spherical cap harmonic model of the satellite magnetic anomalies for elements X, Y, Z, and F over Chinese mainland for 2010.0 (SCH2010) based on selected 498 points. We removed the external field by using the CM4 model. The pole of the spherical cap is 36N° and 104°E, and its half-angle is 30°. After checking and comparing the root mean square (RMS) error of AX, AY, and AZ and X, Y, and Z, we established the truncation level at Kmax = 9. The results suggest that the created China Geomagnetic Referenced Field at the satellite level (CGRF2010) is consistent with the CM4 model. We compared the SCH2010 with other models and found that the intensities and distributions are consistent. In view of the variation off at different altitudes, the SCH2010 model results obey the basics of the geomagnetic field. Moreover, the change rate of X, Y, and Z for SCH2010 and CM4 are consistent. The proposed model can successfully reproduce the geomagnetic data, as other data-fitting models, but the inherent sources of error have to be considered as well.展开更多
Based on the CHAMP Magsat data set, spherical cap harmonic analysis was used to model the magnetic fields over China continent. The data set used in the analysis includes the 15′×15′ gridded values of the CHAMP...Based on the CHAMP Magsat data set, spherical cap harmonic analysis was used to model the magnetic fields over China continent. The data set used in the analysis includes the 15′×15′ gridded values of the CHAMP anomaly fields (latitude φ=25°N to 50°N and longitude λ=78°E to 135°E). The pole of the cap is located at φ=35°N and λ=110°E with half-angle of 30°. The maximum index (K max) of the model is 30 and the total number of model coefficients is 961, which corresponds to the minimum wavelength at the earth's surface about 400 km. The root mean square (RMS) deviations between the calculated and observed values are ~ 4 nT for ΔX, ~ 3 nT for ΔY and ~ 3.5 nT for ΔZ, respectively. Results show that positive anomalies are found mainly at the Tarim basin with ~6- 8 nT, the Yangtze platform and North China platform with ~4 nT, and the Songliao basin with ~4-6 nT. In contrast, negative anomaly is mainly located in the Tibet orogenic belt with the amplitude ~ (-6)-(-8) nT. Upward continuation of magnetic anomalies was used to semi-quantitatively separate the magnetic anomalies in different depths of crust. The magnetic anomalies at the earth's surface are from -6 to 10 nT for upper crust, middle crust -27 to 42 nT and lower crust -12 to 18 nT, respectively. The strikes of the magnetic anomalies for the upper crust are consistent with those for the middle crust, but not for the lower crust. The high positive magnetic anomalies mainly result from the old continental nucleus and diastrophic block (e.g. middle Sichuan continental nucleus, middle Tarim basin continental nucleus, Junggar diastrophic block and Qaidam diastrophic block). The amplitudes of the magnetic anomalies of the old continental nucleus and diastrophic block are related to evolution of deep crust. These results improve our understanding of the crustal structure over China continent.展开更多
This paper deals with the order of magnitude of the partial sums of the spherical harmonic series and its convergence rate in Bessel potential spaces. The partial results obtained in the paper are the analogue of tho...This paper deals with the order of magnitude of the partial sums of the spherical harmonic series and its convergence rate in Bessel potential spaces. The partial results obtained in the paper are the analogue of those on the circle.展开更多
In this paper, applying the theory of complex-functional, not only the spaceharmonic functions in polynomial form. but aIso the spherical functions are obtained.
A new three dimensional imaging method for electroencephalogram(EEG) is suggested. It consists of the solution of an inward spherical harmonic continuation. The principle of the new method is introduced in Section II,...A new three dimensional imaging method for electroencephalogram(EEG) is suggested. It consists of the solution of an inward spherical harmonic continuation. The principle of the new method is introduced in Section II, then a few numerical simulation tests are shown and the feasibility of the new method is confirmed by the simulation results.展开更多
A fully discrete Jacobi-spherical harmonic spectral method is provided for the Navier-Stokes equations in a ball. Its stability and convergence are proved. Numerical results show efficiency of this approach. The propo...A fully discrete Jacobi-spherical harmonic spectral method is provided for the Navier-Stokes equations in a ball. Its stability and convergence are proved. Numerical results show efficiency of this approach. The proposed method is also applicable to other problems in spherical geometry.展开更多
The spherical approximation between two nested reproducing kernels Hilbert spaces generated from different smooth kernels is investigated. It is shown that the functions of a space can be approximated by that of the s...The spherical approximation between two nested reproducing kernels Hilbert spaces generated from different smooth kernels is investigated. It is shown that the functions of a space can be approximated by that of the subspace with better smoothness. Furthermore, the upper bound of approximation error is given.展开更多
Mie theory is a rigorous solution to scattering problems in spherical coordinate system. The first step in applying Mie theory is expansion of some arbitrary incident field in terms of spherical harmonics fields in te...Mie theory is a rigorous solution to scattering problems in spherical coordinate system. The first step in applying Mie theory is expansion of some arbitrary incident field in terms of spherical harmonics fields in terms of spherical which in turn requires evaluation of certain definite integrals whose integrands are products of Bessel functions, associated Legendre functions and periodic functions. Here we present analytical results for two specific integrals that are encountered in expansion of arbitrary fields in terms of summation of spherical waves. The analytical results are in terms of finite summations which include Lommel functions. A concise analytical expression is also derived for the special case of Lommel functions that arise, rendering expensive numerical integration or other iterative techniques unnecessary.展开更多
基金Supported by pre-research fund of State Key Laboratory (51479080201 JW0802)
文摘Based on a new second-order neutron transport equation, self-adjoint angular flux (SAAF) equation, the spherical harmonics (PN) method for neutron transport equation on unstructured-meshes is derived. The spherical harmonics function is used to expand the angular flux. A set of differential equations about the spatial variable, which are coupled with each other, can be obtained. They are solved iteratively by using the finite element method on un- structured-meshes. A two-dimension transport calculation program is coded according to the model. The numerical results of some benchmark problems demonstrate that this method can give high precision results and avoid the ray effect very well.
基金Project supported by the Fundamental Research Funds for the Central Universities,China (Grant No.2017KFYXJJ029)。
文摘We propose a new method to generate terahertz perfect vortex beam with integer-order and fractional-order. A new optical diffractive element composed of the phase combination of a spherical harmonic axicon and a spiral phase plate is designed and called spiral spherical harmonic axicon. A terahertz Gaussian beam passes through the spiral spherical harmonic axicon to generate a terahertz vortex beam. When only the topological charge number carried by spiral spherical harmonic axicon increases, the ring radius of terahertz vortex beam increases slightly, so the beam is shaped into a terahertz quasi-perfect vortex beam. Importantly, the terahertz quasi-perfect vortex beam can carry not only integer-order topological charge number but also fractional-order topological charge number. This is the first time that vortex beam and quasi-perfect vortex beam with fractional-order have been successfully realized in terahertz domain and experiment.
基金supported by the National Natural Science Foundation of China(Grant No.61372046)the Research Fund for the Doctoral Program of Higher Education of China(New Teachers)(Grant No.20116101120018)+6 种基金the China Postdoctoral Science Foundation Funded Project(Grant Nos.2011M501467 and 2012T50814)the Natural Science Basic Research Plan in Shaanxi Province of China(Grant No.2011JQ1006)the Fundamental Research Funds for the Central Universities(Grant No.GK201302007)Science and Technology Plan Program,in Shaanxi Province of China(Grant Nos.2012 KJXX-29 and 2013K12-20-12)the Science and Technology Plan Program in Xian of China(Grant No.CXY1348(2))the.GraduateInovation Project of Northwest University(Grant No.YZZ12093)the Seience and Technology Program of Educational Committee,of Shaanxi Province of China(Grant No.12JK0729).
文摘Recently,the simplified spherical harmonics equations(SP)model has at tracted much att entionin modeling the light propagation in small tissue ggeometriesat visible and near-infrared wave-leng ths.In this paper,we report an eficient numerical method for fluorescence moleeular tom-ography(FMT)that combines the advantage of SP model and adaptive hp finite elementmethod(hp-FEM).For purposes of comparison,hp-FEM and h-FEM are,respectively applied tothe reconstruction pro cess with diffusion approximation and SPs model.Simulation experiments on a 3D digital mouse atlas and physical experiments on a phantom are designed to evaluate thereconstruction methods in terms of the location and the reconstructed fluorescent yield.Theexperimental results demonstrate that hp-FEM with SPy model,yield more accurate results thanh-FEM with difusion approximation model does.The phantom experiments show the potentialand feasibility of the proposed approach in FMT applications.
基金Project supported by the Outstanding Youth Grant of Natural Science Foundation of China (No. 60225002), the National Basic Research Program (973) of China (No. 2004CB318000), the National Natural Science Foundation of China (Nos. 60533060 and 60473132)
文摘The problem of spherical parametrization is that of mapping a genus-zero mesh onto a spherical surface. For a given mesh, different parametrizations can be obtained by different methods. And for a certain application, some parametrization results might behave better than others. In this paper, we will propose a method to parametrize a genus-zero mesh so that a surface fitting algorithm with PHT-splines can generate good result. Here the parametrization results are obtained by minimizing discrete har- monic energy subject to spherical constraints. Then some applications are given to illustrate the advantages of our results. Based on PHT-splines, parametric surfaces can be constructed efficiently and adaptively to fit genus-zero meshes after their spherical parametrization has been obtained.
基金the School of Life Science and Technology of Xidian University for providing experimental data acquisition system.This work was supported by the National Natural Science Foundation of China under Grant(Nos.61372046,61401264,11571012,61601363,61640418,61572400)the Science and Technology Plan Program in Shaanxi Province of China under Grant(Nos.2013K12-20-12,2015KW-002)+2 种基金the Natural Science Research Plan Program in Shaanxi Province of China under Grant(No.2015JM6322)the Scienti¯c Research Founded by Shaanxi Provincial Education Department under Grant No.16JK1772the Scienti¯c Research Foundation of Northwest University under Grant Nos.338050018 and 338020012.
文摘As an emerging molecular imaging modality,cone-beam X-ray luminescence computed tomog-raphy(CB-XLCT)uses X-ray-excitable probes to produce near-infrared(NIR)luminescence and then reconst ructs three-dimensional(3D)distribution of the probes from surface measurements.A proper photon-transportation model is critical to accuracy of XLCT.Here,we presented a systematic comparison between the common-used Monte Carlo model and simplified spherical harmonics(SPN).The performance of the two methods was evaluated over several main spec-trums using a known XLCT material.We designed both a global measurement based on the cosine similarity and a locally-averaged relative error,to quantitatively assess these methods.The results show that the SP_(3) could reach a good balance between the modeling accuracy and computational efficiency for all of the tested emission spectrums.Besides,the SP_(1)(which is equivalent to the difusion equation(DE))can be a reasonable alternative model for emission wavelength over 692nm.In vivo experiment further demonstrates the reconstruction perfor-mance of the SP:and DE.This study would provide a valuable guidance for modeling the photon-transportation in CB-XLCT.
基金Project supported by the National Key Technology Research and Development Program of the Ministry of Science and Technology of China (Grant No.2006BAF06B06)Tsinghua University Initiative Scientific Research Program,China (Grant No.2009THZ06057)
文摘To determine the Avogadro constant with a target relative uncertainty of 2 x 10-s, the uncertainty component of the silicon sphere's volume introduced by the spherical harmonics method, which is usually used in determining the sphere's volume, is reevaluated. By means of representing the shape of the silicon sphere by an ellipsoid with Gaussian white noise in its diameters, the uncertainty of the current mapping methods based on the spherical harmonics theory can be estimated theoretically. It is evidenced that the uncertainty component attributed to the current mapping method is underestimated. To eliminate this effect as much as possible, the number of mapping points should be increased to more than before. Moreover, a new mapping method is proposed to accomplish the equal-area mapping with large number points on the silicon sphere.
基金Supported by the NSF of China under the Grant 10471010partially by the NSERC Canada under Grant G121211001
文摘As early as in 1990, Professor Sun Yongsheng, suggested his students at Beijing Normal University to consider research problems on the unit sphere. Under his guidance and encouragement his students started the research on spherical harmonic analysis and approximation. In this paper, we incompletely introduce the main achievements in this area obtained by our group and relative researchers during recent 5 years (2001-2005). The main topics are: convergence of Cesaro summability, a.e. and strong summability of Fourier-Laplace series; smoothness and K-functionals; Kolmogorov and linear widths.
文摘The Robin problem for the Helmholtz equation in normal-polar shells is addressed by using a suitable spherical harmonic expansion technique. Attention is in particular focused on the wide class of domains whose boundaries are defined by a generalized version of the so-called “superformula” introduced by Gielis. A dedicated numerical procedure based on the computer algebra system Mathematica? is developed in order to validate the proposed methodology. In this way, highly accurate approximations of the solution, featuring properties similar to the classical ones, are obtained.
基金Key Research and Development Program of Liaoning Province(2020JH2/10100044)National Natural Science Foundation of China(41904037)National Key Basic Research and Development Program(973 Program)(2016YFC0803102)。
文摘In order to study the temporal and spatial variation characteristics of the regional ionosphere and the modeling accuracy,the experiment is based on the spherical harmonic function model,using the GPS,Glonass,and Galileo dual-frequency observation data from the 305th-334th day of the European CORS network in 2019 to establish a global ionospheric model.By analyzing and evaluating the accuracy of the global ionospheric puncture points,VTEC,and comparing code products,the test results showed that the GPS system has the most dense puncture electricity distribution,the Glonass system is the second,and the Galileo system is the weakest.The values of ionospheric VTEC calculated by GPS,Glonass and Galileo are slightly different,but in terms of trends,they are the same as those of ESA,JPL and UPC.GPS data has the highest accuracy in global ionospheric modeling.GPS,Glonass and Galileo have the same trend,but Glonass data is unstable and fluctuates greatly.
基金Project (41374009) supported by the National Natural Science Foundation of ChinaProjects (TJES1101,TJES1203) supported by the Key Laboratory of Advanced Engineering Surveying of NASMG,China+1 种基金Project (ZR2013DM009) supported by the Shandong Natural Science Foundation of ChinaProject (201412001) supported by the Public Benefit Scientific Research Project of China
文摘Most GPS positioning errors can be eliminated or removed by the differential technique or the modeling method,but the multipath effect is a special kind of system or gross error,so it is difficult to be simulated or eliminated.In order to improve the accuracy of GPS positioning,the single-epoch pseudorange multipath effects at GPS station were calculated,and firstly modeled based on the spherical cap harmonic(SCH),which is the function of satellite longitude and latitude with the robust method.The accuracy of the kinematic point positioning technique was improved by correcting pseudorange observations with the multipath effect calculated by the SCH model,especially in the elevation direction.The spherical cap harmonic can be used to model the pseudorange multipath effect.
基金Project(2015CB057903)supported by the National Basic Research Program of ChinaProjects(51679071,51309089)supported by the National Natural Science Foundation of China+2 种基金Project(BK20130846)supported by the Natural Science Foundation of Jiangsu Province,ChinaProject(2013BAB06B00)supported by the National Key Technology R&D Program,ChinaProject(2015B06014)supported by the Fundamental Research Funds for the Central Universities,China
文摘The microscopic characteristics of skeletal particles in rock and soil media have important effects on macroscopic mechanical properties. A mathematical procedure called spherical harmonic function analysis was here developed to characterize micromorphology of particles and determine the meso effects in a discrete manner. This method has strong mathematical properties with respect to orthogonality and rotating invariance. It was used here to characterize and reconstruct particle micromorphology in three-dimensional space. The applicability and accuracy of the method were assessed through comparison of basic geometric properties such as volume and surface area. The results show that the micromorphological characteristics of reproduced particles become more and more readily distinguishable as the reproduced order number of spherical harmonic function increases, and the error can be brought below 5% when the order number reaches 10. This level of precision is sharp enough to distinguish the characteristics of real particles. Reconstructed particles of the same size but different reconstructed orders were used to form cylindrical samples, and the stress-strain curves of these samples filled with different-order particles which have their mutual morphological features were compared using PFC3D. Results show that the higher the spherical harmonic order of reconstructed particles, the lower the initial compression modulus and the larger the strain at peak intensity. However, peak strength shows only a random relationship to spherical harmonic order. Microstructure reconstruction was here shown to be an efficient means of numerically simulating of multi-scale rock and soil media and studying the mechanical properties of soil samples.
基金supported by the National Natural Science Foundation of China(No.41404053)Special Project for MeteoScientifi c Research in the Public Interest(No.GYHY201306073)+2 种基金the Natural Science Foundation of Jiangsu Province(No.BK20140994)the Natural Science Foundation of Higher Education Institutions of Jiangsu Province(No.14KJB170012)the Training Program of Innovation and Entrepreneurship for Undergraduates of NUIST(No.201510300178)
文摘We used CHAMP satellite vector data and the latest IGRF12 model to investigate the regional magnetic anomalies over China's Mainland. We assumed satellite points on the same surface (307.69 km) and constructed a spherical cap harmonic model of the satellite magnetic anomalies for elements X, Y, Z, and F over Chinese mainland for 2010.0 (SCH2010) based on selected 498 points. We removed the external field by using the CM4 model. The pole of the spherical cap is 36N° and 104°E, and its half-angle is 30°. After checking and comparing the root mean square (RMS) error of AX, AY, and AZ and X, Y, and Z, we established the truncation level at Kmax = 9. The results suggest that the created China Geomagnetic Referenced Field at the satellite level (CGRF2010) is consistent with the CM4 model. We compared the SCH2010 with other models and found that the intensities and distributions are consistent. In view of the variation off at different altitudes, the SCH2010 model results obey the basics of the geomagnetic field. Moreover, the change rate of X, Y, and Z for SCH2010 and CM4 are consistent. The proposed model can successfully reproduce the geomagnetic data, as other data-fitting models, but the inherent sources of error have to be considered as well.
基金ThispaperissupportedbytheChinese" 973"Program (No .2 0 0 3CD71 650 6)
文摘Based on the CHAMP Magsat data set, spherical cap harmonic analysis was used to model the magnetic fields over China continent. The data set used in the analysis includes the 15′×15′ gridded values of the CHAMP anomaly fields (latitude φ=25°N to 50°N and longitude λ=78°E to 135°E). The pole of the cap is located at φ=35°N and λ=110°E with half-angle of 30°. The maximum index (K max) of the model is 30 and the total number of model coefficients is 961, which corresponds to the minimum wavelength at the earth's surface about 400 km. The root mean square (RMS) deviations between the calculated and observed values are ~ 4 nT for ΔX, ~ 3 nT for ΔY and ~ 3.5 nT for ΔZ, respectively. Results show that positive anomalies are found mainly at the Tarim basin with ~6- 8 nT, the Yangtze platform and North China platform with ~4 nT, and the Songliao basin with ~4-6 nT. In contrast, negative anomaly is mainly located in the Tibet orogenic belt with the amplitude ~ (-6)-(-8) nT. Upward continuation of magnetic anomalies was used to semi-quantitatively separate the magnetic anomalies in different depths of crust. The magnetic anomalies at the earth's surface are from -6 to 10 nT for upper crust, middle crust -27 to 42 nT and lower crust -12 to 18 nT, respectively. The strikes of the magnetic anomalies for the upper crust are consistent with those for the middle crust, but not for the lower crust. The high positive magnetic anomalies mainly result from the old continental nucleus and diastrophic block (e.g. middle Sichuan continental nucleus, middle Tarim basin continental nucleus, Junggar diastrophic block and Qaidam diastrophic block). The amplitudes of the magnetic anomalies of the old continental nucleus and diastrophic block are related to evolution of deep crust. These results improve our understanding of the crustal structure over China continent.
文摘This paper deals with the order of magnitude of the partial sums of the spherical harmonic series and its convergence rate in Bessel potential spaces. The partial results obtained in the paper are the analogue of those on the circle.
文摘In this paper, applying the theory of complex-functional, not only the spaceharmonic functions in polynomial form. but aIso the spherical functions are obtained.
文摘A new three dimensional imaging method for electroencephalogram(EEG) is suggested. It consists of the solution of an inward spherical harmonic continuation. The principle of the new method is introduced in Section II, then a few numerical simulation tests are shown and the feasibility of the new method is confirmed by the simulation results.
基金Project supported by the National Natural Science Foundation of China(No.10771142)Science and Technology Commission of Shanghai Municipality(No.75105118)+2 种基金Shanghai Leading Academic Discipline Projects(Nos.T0401 and J50101)Fund for E-institutes of Universities in Shanghai(No.E03004)and Innovative Foundation of Shanghai University(No.A.10-0101-07-408)
文摘A fully discrete Jacobi-spherical harmonic spectral method is provided for the Navier-Stokes equations in a ball. Its stability and convergence are proved. Numerical results show efficiency of this approach. The proposed method is also applicable to other problems in spherical geometry.
基金the NSFC(60473034)the Science Foundation of Zhejiang Province(Y604003).
文摘The spherical approximation between two nested reproducing kernels Hilbert spaces generated from different smooth kernels is investigated. It is shown that the functions of a space can be approximated by that of the subspace with better smoothness. Furthermore, the upper bound of approximation error is given.
文摘Mie theory is a rigorous solution to scattering problems in spherical coordinate system. The first step in applying Mie theory is expansion of some arbitrary incident field in terms of spherical harmonics fields in terms of spherical which in turn requires evaluation of certain definite integrals whose integrands are products of Bessel functions, associated Legendre functions and periodic functions. Here we present analytical results for two specific integrals that are encountered in expansion of arbitrary fields in terms of summation of spherical waves. The analytical results are in terms of finite summations which include Lommel functions. A concise analytical expression is also derived for the special case of Lommel functions that arise, rendering expensive numerical integration or other iterative techniques unnecessary.