To address the problem of conventional approaches for mechanical property determination requiring destructive sampling, which may be unsuitable for in-service structures, the authors proposed a method for determining ...To address the problem of conventional approaches for mechanical property determination requiring destructive sampling, which may be unsuitable for in-service structures, the authors proposed a method for determining the quasi-static fracture toughness and impact absorbed energy of ductile metals from spherical indentation tests (SITs). The stress status and damage mechanism of SIT, mode I fracture, Charpy impact tests, and related tests were frst investigated through fnite element (FE) calculations and scanning electron microscopy (SEM) observations, respectively. It was found that the damage mechanism of SITs is diferent from that of mode I fractures, while mode I fractures and Charpy impact tests share the same damage mechanism. Considering the diference between SIT and mode I fractures, uniaxial tension and pure shear were introduced to correlate SIT with mode I fractures. Based on this, the widely used critical indentation energy (CIE) model for fracture toughness determination using SITs was modifed. The quasi-static fracture toughness determined from the modifed CIE model was used to evaluate the impact absorbed energy using the dynamic fracture toughness and energy for crack initiation. The efectiveness of the newly proposed method was verifed through experiments on four types of steels: Q345R, SA508-3, 18MnMoNbR, and S30408.展开更多
In this paper, asymptotic expansions of the distribution of the likelihood ratio statistic for testing sphericity in a crowth curve model have been derived in the null and nonnull cases when the alternatives are dose ...In this paper, asymptotic expansions of the distribution of the likelihood ratio statistic for testing sphericity in a crowth curve model have been derived in the null and nonnull cases when the alternatives are dose to the null hypothesis. These expansions are given in series form of beta distributions.展开更多
This article presents a statistic for testing the sphericity in a GMANOVA- MANOVA model with normal error. It is shown that the null distribution of this statistic is beta and its nonnull distribution is given in seri...This article presents a statistic for testing the sphericity in a GMANOVA- MANOVA model with normal error. It is shown that the null distribution of this statistic is beta and its nonnull distribution is given in series form of beta distributions.展开更多
The spherical indentation test has been successfully applied to inversely derive the tensile properties of small regions in a non-destructive way.Current inverse methods mainly rely on extensive iterative calculations...The spherical indentation test has been successfully applied to inversely derive the tensile properties of small regions in a non-destructive way.Current inverse methods mainly rely on extensive iterative calculations,which yield a considerable computational costs.In this paper,a database method is proposed to determine tensile flow properties from a single indentation force-depth curves to avoid iterative simulations.Firstly,a database that contain numerous indentation force-depth curves is established by inputting varied Ludwic material parameters into the indentation finite elements model.Secondly,for a given experimental indentation curve,a mean square error(MSE)is designated to evaluate the deviation between the experimental curve and each curve in the database.Finally,the true stresses at a series of plastic strain can be acquired by analyzing these deviations.To validate this new method,three different steels,i.e.A508,2.25Cr1 Mo and 316L are selected.Both simulated indentation curves and experimental indentation curves are used as inputs of the database to inversely acquire the flow properties.The result indicates that the pro-posed approach provides impressive accuracy when simulated indentation curves are used,but is less accurate when experimental curves are used.This new method can derive tensile properties in a much higher efficiency compared with traditional inverse method and are therefore more adaptive to engineering application.展开更多
An Eulerian flux-form advection scheme, called the Two-step Shape-Preserving Advection Scheme (TSPAS), was generalized and implemented on a spherical icosahedral hexagonal grid (also referred to as a geodesic grid...An Eulerian flux-form advection scheme, called the Two-step Shape-Preserving Advection Scheme (TSPAS), was generalized and implemented on a spherical icosahedral hexagonal grid (also referred to as a geodesic grid) to solve the transport equation. The C grid discretization was used for the spatial discretization. To implement TSPAS on an unstructured grid, the original finite-difference scheme was further generalized. The two-step integration utilizes a combination of two separate schemes (a low-order monotone scheme and a high-order scheme that typically cannot ensure monotonicity) to calculate the fluxes at the cell walls (one scheme corresponds to one cell wall). The choice between these two schemes for each edge depends on a pre-updated scalar value using slightly increased fluxes. After the determination of an appropriate scheme, the final integration at a target cell is achieved by summing the fluxes that are computed by the different schemes. The conservative and shape-preserving properties of the generalized scheme are demonstrated. Numerical experiments are conducted at several horizontal resolutions. TSPAS is compared with the Flux Corrected Transport (FCT) approach to demonstrate the differences between the two methods, and several transport tests are performed to examine the accuracy, efficiency and robustness of the two schemes.展开更多
The spherical plain bearing test bench is a necessary detecting equipment in the research process of self?lubricating spherical plain bearings. The varying environmental temperatures cause the thermal deformation of t...The spherical plain bearing test bench is a necessary detecting equipment in the research process of self?lubricating spherical plain bearings. The varying environmental temperatures cause the thermal deformation of the wear?depth detecting system of bearing test benches and then a ect the accuracy of the wear?depth detecting data. However, few researches about the spherical plain bearing test benches can be found with the implementation of the detect?ing error compensation. Based on the self?made modular spherical plain bearing test bench, two main causes of ther?mal errors, the friction heat of bearings and the environmental temperature variation, are analysed. The thermal errors caused by the friction heat of bearings are calculated, and the thermal deformation of the wear?depth detecting sys?tem caused by the varying environmental temperatures is detected. In view of the above results, the environmental temperature variation is the main cause of the two error factors. When the environmental temperatures rise is 10.3 °C, the thermal deformation is approximately 0.01 mm. In addition, the comprehensive compensating model of the thermal error of the wear?depth detecting system is built by multiple linear regression(MLR) and time series analysis. Compared with the detecting data of the thermal errors, the comprehensive compensating model has higher fitting precision, and the maximum residual is only 1 μm. A comprehensive compensating model of the thermal error of the wear?depth detecting system is proposed, which provides a theoretical basis for the improvement of the real?time wear?depth detecting precision of the spherical plain bearing test bench.展开更多
It is a research which could enter into contradiction with the current trend concerning the hip implants. It is known as sliding friction, which is characteristic of present artificial hip joints, is higher than in th...It is a research which could enter into contradiction with the current trend concerning the hip implants. It is known as sliding friction, which is characteristic of present artificial hip joints, is higher than in the case of rolling friction. The paper reports the studies of the functioning mode of a novel spherical bearing MoM (metal on metal) with rolling friction, with potential application for an artificial hip joint obtained by introducing a number of balls between the femoral head and the acetabular cup. After over 15 years of research upon the functional principle and constructive solution, a version that offered a coefficient of minimum friction in the hip joint came to light. This version was based on a constructive solution of motion with lower friction, "Omnitrack~ movement solutions", which has been modified and rebuilt to be used as a joint of a total hip prosthesis--MOMJ. The joint was built entirely in stainless steel, SS316L medical grade. Tests have been carried out on the experimental laboratory devices that showed very low values of the coefficient of friction (μ = 0.0225). For validation, the prosthesis had to be put through tests for 500,000 cycles, in terms of physiological motion and dynamic loading, according to ISO 14242-3. Testing was conducted on a multiaxial dynamics machine, MTS Bionix, equipped with system for hip implant testing. The testing results of this total hip prosthesis with rolling friction have been successful in signing up for a friction moment of 0.525 kNmm which means a coefficient of friction la = 0.0143, for a joint with femoral head diameter 28 mm.展开更多
Spherical nickel hydroxide is used as the active material of the positive electrode in alkaline recharged batteries,it determines the most important properties of the battery. Spherical nickel hydroxide made in China ...Spherical nickel hydroxide is used as the active material of the positive electrode in alkaline recharged batteries,it determines the most important properties of the battery. Spherical nickel hydroxide made in China meets less than half of total demand of the Chinese batteries industry. Most of the spherical nickel hydroxide used for high performance MH/Ni batteries is imported because the Chinese one cannot reach the requirements of "fine crystal grain, high density and high-activity". In this thesis, the spherical nickel hydroxide with fine crystal grain high-density and high-activity was prepared with complexation-precipitation method. The effects of the preparation conditions on the electrochemical activity of the products were investigated by means of orthogonal test, comprehensive range analysis on all the used factors. And theirs levels showed that the optimum process parameters of preparation the fine crystal grain high-density and high- activity spherical nickel hydroxide is specified as reaction temperature 60℃, pH value 11.0, stronger stirring intensity, the mole ratio of ammonia and nickel 0.3,desiccation temperature 100℃. Furthermore, the relative influence degree of those technology factors is stirring intensity>pH value>reaction temperature>desiccation temperature>mole ratio of ammonia and nickel. The spherical nickel hydroxide made at those optimum process parameters is characterized as with high bulk density(1.78 g/cm^3), larger specific surface(11.9 m^2/g), higher discharged specific capacity (281 mAh/g), and fine crystal grain (15.8 nm). The full width of half maximum intensity(FWHM) of XRD patterns of samples in (101) lines can reach as high as 0.983°. All of these merits make it completely meet the requirements of spherical nickel hydroxide used for high performance MH/Ni batteries.展开更多
基金Supported by National Natural Science Foundation of China(Grant No.52275154)National Key Research and Development Project of China(Grant No.2016YFF0203005).
文摘To address the problem of conventional approaches for mechanical property determination requiring destructive sampling, which may be unsuitable for in-service structures, the authors proposed a method for determining the quasi-static fracture toughness and impact absorbed energy of ductile metals from spherical indentation tests (SITs). The stress status and damage mechanism of SIT, mode I fracture, Charpy impact tests, and related tests were frst investigated through fnite element (FE) calculations and scanning electron microscopy (SEM) observations, respectively. It was found that the damage mechanism of SITs is diferent from that of mode I fractures, while mode I fractures and Charpy impact tests share the same damage mechanism. Considering the diference between SIT and mode I fractures, uniaxial tension and pure shear were introduced to correlate SIT with mode I fractures. Based on this, the widely used critical indentation energy (CIE) model for fracture toughness determination using SITs was modifed. The quasi-static fracture toughness determined from the modifed CIE model was used to evaluate the impact absorbed energy using the dynamic fracture toughness and energy for crack initiation. The efectiveness of the newly proposed method was verifed through experiments on four types of steels: Q345R, SA508-3, 18MnMoNbR, and S30408.
文摘In this paper, asymptotic expansions of the distribution of the likelihood ratio statistic for testing sphericity in a crowth curve model have been derived in the null and nonnull cases when the alternatives are dose to the null hypothesis. These expansions are given in series form of beta distributions.
基金the National Natural Science Foundation of China (10761010, 10771185)the Mathematics Tianyuan Youth Foundation of China
文摘This article presents a statistic for testing the sphericity in a GMANOVA- MANOVA model with normal error. It is shown that the null distribution of this statistic is beta and its nonnull distribution is given in series form of beta distributions.
基金Supported by China Postdoctoral Science Foundation(Grant No.2019M661406).
文摘The spherical indentation test has been successfully applied to inversely derive the tensile properties of small regions in a non-destructive way.Current inverse methods mainly rely on extensive iterative calculations,which yield a considerable computational costs.In this paper,a database method is proposed to determine tensile flow properties from a single indentation force-depth curves to avoid iterative simulations.Firstly,a database that contain numerous indentation force-depth curves is established by inputting varied Ludwic material parameters into the indentation finite elements model.Secondly,for a given experimental indentation curve,a mean square error(MSE)is designated to evaluate the deviation between the experimental curve and each curve in the database.Finally,the true stresses at a series of plastic strain can be acquired by analyzing these deviations.To validate this new method,three different steels,i.e.A508,2.25Cr1 Mo and 316L are selected.Both simulated indentation curves and experimental indentation curves are used as inputs of the database to inversely acquire the flow properties.The result indicates that the pro-posed approach provides impressive accuracy when simulated indentation curves are used,but is less accurate when experimental curves are used.This new method can derive tensile properties in a much higher efficiency compared with traditional inverse method and are therefore more adaptive to engineering application.
基金supported by the National Natural Science Foundation of China(Grant No.41505066)the Basic Scientific Research and Operation Foundation of Chinese Academy Meteorological Sciences(Grant Nos.2015Z002,2015Y005)the National Research and Development Key Program:Global Change and Mitigation Strategies(No.2016YFA0602101)
文摘An Eulerian flux-form advection scheme, called the Two-step Shape-Preserving Advection Scheme (TSPAS), was generalized and implemented on a spherical icosahedral hexagonal grid (also referred to as a geodesic grid) to solve the transport equation. The C grid discretization was used for the spatial discretization. To implement TSPAS on an unstructured grid, the original finite-difference scheme was further generalized. The two-step integration utilizes a combination of two separate schemes (a low-order monotone scheme and a high-order scheme that typically cannot ensure monotonicity) to calculate the fluxes at the cell walls (one scheme corresponds to one cell wall). The choice between these two schemes for each edge depends on a pre-updated scalar value using slightly increased fluxes. After the determination of an appropriate scheme, the final integration at a target cell is achieved by summing the fluxes that are computed by the different schemes. The conservative and shape-preserving properties of the generalized scheme are demonstrated. Numerical experiments are conducted at several horizontal resolutions. TSPAS is compared with the Flux Corrected Transport (FCT) approach to demonstrate the differences between the two methods, and several transport tests are performed to examine the accuracy, efficiency and robustness of the two schemes.
基金Supported by National Natural Science Foundation of China(Grant No.51405422)Hebei Provincial Natural Science Foundation of China(Grant No.E2015203113)Technological Innovation Fund of Aviation Industry of China(Grant No.2014E00468R)
文摘The spherical plain bearing test bench is a necessary detecting equipment in the research process of self?lubricating spherical plain bearings. The varying environmental temperatures cause the thermal deformation of the wear?depth detecting system of bearing test benches and then a ect the accuracy of the wear?depth detecting data. However, few researches about the spherical plain bearing test benches can be found with the implementation of the detect?ing error compensation. Based on the self?made modular spherical plain bearing test bench, two main causes of ther?mal errors, the friction heat of bearings and the environmental temperature variation, are analysed. The thermal errors caused by the friction heat of bearings are calculated, and the thermal deformation of the wear?depth detecting sys?tem caused by the varying environmental temperatures is detected. In view of the above results, the environmental temperature variation is the main cause of the two error factors. When the environmental temperatures rise is 10.3 °C, the thermal deformation is approximately 0.01 mm. In addition, the comprehensive compensating model of the thermal error of the wear?depth detecting system is built by multiple linear regression(MLR) and time series analysis. Compared with the detecting data of the thermal errors, the comprehensive compensating model has higher fitting precision, and the maximum residual is only 1 μm. A comprehensive compensating model of the thermal error of the wear?depth detecting system is proposed, which provides a theoretical basis for the improvement of the real?time wear?depth detecting precision of the spherical plain bearing test bench.
文摘It is a research which could enter into contradiction with the current trend concerning the hip implants. It is known as sliding friction, which is characteristic of present artificial hip joints, is higher than in the case of rolling friction. The paper reports the studies of the functioning mode of a novel spherical bearing MoM (metal on metal) with rolling friction, with potential application for an artificial hip joint obtained by introducing a number of balls between the femoral head and the acetabular cup. After over 15 years of research upon the functional principle and constructive solution, a version that offered a coefficient of minimum friction in the hip joint came to light. This version was based on a constructive solution of motion with lower friction, "Omnitrack~ movement solutions", which has been modified and rebuilt to be used as a joint of a total hip prosthesis--MOMJ. The joint was built entirely in stainless steel, SS316L medical grade. Tests have been carried out on the experimental laboratory devices that showed very low values of the coefficient of friction (μ = 0.0225). For validation, the prosthesis had to be put through tests for 500,000 cycles, in terms of physiological motion and dynamic loading, according to ISO 14242-3. Testing was conducted on a multiaxial dynamics machine, MTS Bionix, equipped with system for hip implant testing. The testing results of this total hip prosthesis with rolling friction have been successful in signing up for a friction moment of 0.525 kNmm which means a coefficient of friction la = 0.0143, for a joint with femoral head diameter 28 mm.
文摘Spherical nickel hydroxide is used as the active material of the positive electrode in alkaline recharged batteries,it determines the most important properties of the battery. Spherical nickel hydroxide made in China meets less than half of total demand of the Chinese batteries industry. Most of the spherical nickel hydroxide used for high performance MH/Ni batteries is imported because the Chinese one cannot reach the requirements of "fine crystal grain, high density and high-activity". In this thesis, the spherical nickel hydroxide with fine crystal grain high-density and high-activity was prepared with complexation-precipitation method. The effects of the preparation conditions on the electrochemical activity of the products were investigated by means of orthogonal test, comprehensive range analysis on all the used factors. And theirs levels showed that the optimum process parameters of preparation the fine crystal grain high-density and high- activity spherical nickel hydroxide is specified as reaction temperature 60℃, pH value 11.0, stronger stirring intensity, the mole ratio of ammonia and nickel 0.3,desiccation temperature 100℃. Furthermore, the relative influence degree of those technology factors is stirring intensity>pH value>reaction temperature>desiccation temperature>mole ratio of ammonia and nickel. The spherical nickel hydroxide made at those optimum process parameters is characterized as with high bulk density(1.78 g/cm^3), larger specific surface(11.9 m^2/g), higher discharged specific capacity (281 mAh/g), and fine crystal grain (15.8 nm). The full width of half maximum intensity(FWHM) of XRD patterns of samples in (101) lines can reach as high as 0.983°. All of these merits make it completely meet the requirements of spherical nickel hydroxide used for high performance MH/Ni batteries.