Radial functions have become a useful tool in numerical mathematics. On the sphere they have to be identified with the zonal functions. We investigate zonal polynomials with mass concentration at the pole, in the sens...Radial functions have become a useful tool in numerical mathematics. On the sphere they have to be identified with the zonal functions. We investigate zonal polynomials with mass concentration at the pole, in the sense of their L1-norm is attaining the minimum value. Such polynomials satisfy a complicated system of nonlinear e-quations (algebraic if the space dimension is odd, only) and also a singular differential equation of third order. The exact order of decay of the minimum value with respect to the polynomial degree is determined. By our results we can prove that some nodal systems on the sphere, which are defined by a minimum-property, are providing fundamental matrices which are diagonal-dominant or bounded with respect to the ∞-norm, at least, as the polynomial degree tends to infinity.展开更多
The spherical approximation between two nested reproducing kernels Hilbert spaces generated from different smooth kernels is investigated. It is shown that the functions of a space can be approximated by that of the s...The spherical approximation between two nested reproducing kernels Hilbert spaces generated from different smooth kernels is investigated. It is shown that the functions of a space can be approximated by that of the subspace with better smoothness. Furthermore, the upper bound of approximation error is given.展开更多
The rotational invariants constructed by the products of three spherical harmonic polynomials are expressed generally as homogeneous polynomials with respect to the three coordinate vectors in the compact form, where ...The rotational invariants constructed by the products of three spherical harmonic polynomials are expressed generally as homogeneous polynomials with respect to the three coordinate vectors in the compact form, where the coefficients are calculated explicitly in this paper.展开更多
文摘Radial functions have become a useful tool in numerical mathematics. On the sphere they have to be identified with the zonal functions. We investigate zonal polynomials with mass concentration at the pole, in the sense of their L1-norm is attaining the minimum value. Such polynomials satisfy a complicated system of nonlinear e-quations (algebraic if the space dimension is odd, only) and also a singular differential equation of third order. The exact order of decay of the minimum value with respect to the polynomial degree is determined. By our results we can prove that some nodal systems on the sphere, which are defined by a minimum-property, are providing fundamental matrices which are diagonal-dominant or bounded with respect to the ∞-norm, at least, as the polynomial degree tends to infinity.
基金the NSFC(60473034)the Science Foundation of Zhejiang Province(Y604003).
文摘The spherical approximation between two nested reproducing kernels Hilbert spaces generated from different smooth kernels is investigated. It is shown that the functions of a space can be approximated by that of the subspace with better smoothness. Furthermore, the upper bound of approximation error is given.
基金Supported by National Natural Science Foundation of China(11174099,11075014)NSERC of Canada
文摘The rotational invariants constructed by the products of three spherical harmonic polynomials are expressed generally as homogeneous polynomials with respect to the three coordinate vectors in the compact form, where the coefficients are calculated explicitly in this paper.