A micro-modeling method (MM) for the quantitative prediction of the shrinkage cavity formation in SGiron castings is proposed. The mathematical models describing the volume changes during the solidification ofspheroid...A micro-modeling method (MM) for the quantitative prediction of the shrinkage cavity formation in SGiron castings is proposed. The mathematical models describing the volume changes during the solidification ofspheroidal graphite cast iron are established based on the models of solidification kinetics. The shrinkage cavityformation of T-shaped SG iron castings is calculated with MM method. The calculated results are compared with theexperimental results. It is shown that the predicted size, shape and distribution of shrinkage cavity by MM methodare in good agreement with the measured results.展开更多
The shrinkage and chilling tendency of spheroidal graphite (abbreviated SG) cast iron is much greater than that of the flake graphite cast iron in spite of its higher amount of C and Si contents. Why? The main reason ...The shrinkage and chilling tendency of spheroidal graphite (abbreviated SG) cast iron is much greater than that of the flake graphite cast iron in spite of its higher amount of C and Si contents. Why? The main reason should be the difference in their graphitization during the eutectic solidification. In this paper, we discuss the difference in the solidification mechanism of both cast irons for solving these problems using unidirectional solidification and the cooling curves of the spheroidal graphite cast iron. The eutectic solidification rate of the SG cast iron is controlled by the diffusion of carbon through the austenite shell, and the final thickness is 1.4 times the radius of the SG, therefore, the reduction of the SG size, namely, the increase in the number, is the main solution of these problems.展开更多
This paper reviews the original work of the authors published recently,describing the influence of B on the matrix of the Cuadded spheroidal graphite cast iron.The effect of Cu has been corrected as a ferrite formatio...This paper reviews the original work of the authors published recently,describing the influence of B on the matrix of the Cuadded spheroidal graphite cast iron.The effect of Cu has been corrected as a ferrite formation promoter in the matrix of the grey cast iron by the usage of high-purity material.Also,this paper focuses on the ferrite formation and the observation of the Cu distribution in the B-added and B-free Cu-containing spheroidal graphite cast iron.The Cu film on the spheroidal graphite can be successfully observed in the B-free sample using a special etching method.However,in the B-added sample,no Cu film could be found,while the secondary graphite was formed on the surface of the spheroidal graphite.The interaction between B and Cu is stressed as a peculiar phenomenon by the employment of a contrast experiment of B and Mn.The heat treatment could make Cu precipitate more significantly in the eutectic cells and in the matrix in the form of large Cu particles because of the limited solubility of Cu.展开更多
The effects of metallurgical and processing parameters on the formation of shrinkage cavities and porosities in spheroidal graphite cast iron have been studied, considering the parameters of carbon equivalent, inocula...The effects of metallurgical and processing parameters on the formation of shrinkage cavities and porosities in spheroidal graphite cast iron have been studied, considering the parameters of carbon equivalent, inoculation, casting modulus, mold type (green or dry) and pouring temperature within specific ranges of these variables. Based on the orthogonal experiments, the metallurgical and processing parameters of the minimum casting shrinkage and the maximum casting shrinkage were obtained, and the effects of metallurgical and processing parameters on the formation of shrinkage cavities and porosities in spheroids graphite cast iron castings were discussed. Finally, two regression equations relating these variables to the formation of shrinkage porosity were derived based upon the orthogonal experiments conducted.展开更多
Six thin sections of spheroidal graphites in cast iron have been investigated by TEM and SEM.The spheroidal graphites consist of two or three layers and have nuclei which are composed of Ce_2O_2S and Ce_2O_3. Cerium i...Six thin sections of spheroidal graphites in cast iron have been investigated by TEM and SEM.The spheroidal graphites consist of two or three layers and have nuclei which are composed of Ce_2O_2S and Ce_2O_3. Cerium is existed ont only in nuclei,but also in central layer and middle layer of graphite.展开更多
A multiphase cellular automaton model was developed to simulate microstructure evolution of near eutectic spheroidal graphite cast iron(SGI) during its solidification process, and both dendritic austenite and spheroid...A multiphase cellular automaton model was developed to simulate microstructure evolution of near eutectic spheroidal graphite cast iron(SGI) during its solidification process, and both dendritic austenite and spheroidal graphite growth models were adopted. To deduce the mesh anisotropy of cellular automaton method, the composition averaging and geometrical parameter were introduced to simulate the spheroidal graphite growth. Solute balance method and decentered square algorithms were employed to simulate austenite dendrites growth with different crystallographic orientations. The simulated results indicate that the graphite nodule grows in a spherical morphology when the surrounding environment of a single graphite nodule is same. However, for two adjacent graphite nodules, the environment is different. The higher the carbon concentration, the faster the growth of graphite. By comparison with experimental results, it is found that the microstructure evolution of near eutectic spheroidal graphite cast iron during solidification process can be reproduced quantitatively by numerical simulation with this model.展开更多
Spheroidal graphite cast iron GGG 40 was thermo-mechanically tested using thermo-mechanical simulator Gleeble-3500. Three deformation steps were successively applied on test-specimen at temperatures namely;900°...Spheroidal graphite cast iron GGG 40 was thermo-mechanically tested using thermo-mechanical simulator Gleeble-3500. Three deformation steps were successively applied on test-specimen at temperatures namely;900°C, 850°C and 750°C within the austenitic zone, at the same strain rate of 0.1 s-1. No cracks were observed, up to 50% deformation, after successive deformation steps. Stress-strain relationship obtained is correlated with previous work on SGCI with a different carbon equivalent. It was found that by decreasing the deformation temperature;for the same CE, young’s modulus, yield strength and strain hardening exponent increase. Microstructure of the deformed zone, for a specimen quenched after the final deformation step, reveals fine elongated ferrite and pearlite, as well as elongated graphite. While microstructure of the non-deformed zone subjected to the same treatment, includes coarser ferrite and pearlite with graphite spheres embedded in the matrix.展开更多
This study aims to clarify the influence of external notch on impact characteristics of high toughness ductile cast irons prepared by austempering heat treatment. We produced ductile cast irons samples with various ma...This study aims to clarify the influence of external notch on impact characteristics of high toughness ductile cast irons prepared by austempering heat treatment. We produced ductile cast irons samples with various matrix microstructure tested by Charpy impact within five kinds of external notches whose stress concentration factors (α), with values taken from 1.0 (Un-notched) to 4.8. In addition, to clarify the initiation process of impact characteristics, we observed the evolution of microstructure surface during bending tests with a slow loading speed for the un-notched and the notched impact samples. The results showed that the impact fracture energy decreases strongly in the range of α from 1 to 2.3 but decreases slightly for α larger than 3. Moreover, the impact value of samples with austempered microstructure is sensitive to the external notch shape. The impact transition temperature increases with increasing the stress concentration factor. The fracture energy is decreasing with the external notch from the impact test since the crack initiation energy is directly affected by this later. This work contributes to get a better understanding in the basic theories of external notch effect on impact characteristics of austempered spheroidal graphite cast irons (ADI).展开更多
The thirteen mother alloys,C%+1/3Si%=4.45%,differing in their Si,Ce,Sb and Sn contents,were prepared.Seventy grams of these alloys was remelted in a high purity alumina crucible at 1,450oC under an Ar atmosphere,and t...The thirteen mother alloys,C%+1/3Si%=4.45%,differing in their Si,Ce,Sb and Sn contents,were prepared.Seventy grams of these alloys was remelted in a high purity alumina crucible at 1,450oC under an Ar atmosphere,and then cooled at 30 K/min for obtaining their cooling curves.Their graphite morphologies were observed using an optical microscope and an SEM.Their three-dimensional graphite shapes were observed by the SEM using the samples whose matrices were etched off with an acid-aqua solution,to confirm the chunky graphite.For discussing the influence of the Si and Ce contents on the chunky graphite formation,two experiments were carried out.In the first one,the Si contents were changed from 0 to 4% in the 0.15%Ce alloys,and for the second one,the 3.5%Si and 4%Si samples that differed in the Ce contents of 0.1 and 0.2% were used.In the third experiment,the influence of Sb and Sn on the chunky graphite formation was investigated by using the 4%Si and 0.1%Ce samples.The results showed that with the increase of the Si content,the volume fraction of the chunky graphite increases,while the volume fraction of the ledeburite decreases,and the chunky graphite volume fraction in the 0.2%Ce samples is higher than that of the 0.1%Ce samples.The effect of the Sb and Sn additions on the prevention of chunky graphite formation cannot be confirmed due to their high Si contents.Therefore,further studies will be needed in this field.展开更多
Wear behavior and mechanism of spheroidal graphite cast iron were studied on a pin on-disk elevated tem- perature wear tester. The phase and morphology of worn surfaces were examined by X ray diffraction and scanning ...Wear behavior and mechanism of spheroidal graphite cast iron were studied on a pin on-disk elevated tem- perature wear tester. The phase and morphology of worn surfaces were examined by X ray diffraction and scanning electron microscopy. Results show that with an increase of load, wear rate of spheroidal graphite cast iron gradually increases under low loads, rapidly increases or potentially increases under high loads; wear rate increases with in- creasing ambient temperature. At 25 200 ℃, adhesive wear prevails; oxidative wear and adhesive wear coexist at 400 ℃. As load surpasses 150 N at 400 ℃, extrusive wear appears. The elevated-temperature wear of spheroidal graphite cast iron is a physical and chemical process including the following reactions: xFe+y/2O2-FexOy , 2C+ O2- 2CO and Fex Oy +yCO-xFe+yCO2. Hence, at 400 ℃, the amount of graphite and tribo oxides are substan- tially reduced because of reductive function of graphite. It can be suggested that wear reduced effect of graphite and tribo-oxides is impaired.展开更多
文摘A micro-modeling method (MM) for the quantitative prediction of the shrinkage cavity formation in SGiron castings is proposed. The mathematical models describing the volume changes during the solidification ofspheroidal graphite cast iron are established based on the models of solidification kinetics. The shrinkage cavityformation of T-shaped SG iron castings is calculated with MM method. The calculated results are compared with theexperimental results. It is shown that the predicted size, shape and distribution of shrinkage cavity by MM methodare in good agreement with the measured results.
文摘The shrinkage and chilling tendency of spheroidal graphite (abbreviated SG) cast iron is much greater than that of the flake graphite cast iron in spite of its higher amount of C and Si contents. Why? The main reason should be the difference in their graphitization during the eutectic solidification. In this paper, we discuss the difference in the solidification mechanism of both cast irons for solving these problems using unidirectional solidification and the cooling curves of the spheroidal graphite cast iron. The eutectic solidification rate of the SG cast iron is controlled by the diffusion of carbon through the austenite shell, and the final thickness is 1.4 times the radius of the SG, therefore, the reduction of the SG size, namely, the increase in the number, is the main solution of these problems.
文摘This paper reviews the original work of the authors published recently,describing the influence of B on the matrix of the Cuadded spheroidal graphite cast iron.The effect of Cu has been corrected as a ferrite formation promoter in the matrix of the grey cast iron by the usage of high-purity material.Also,this paper focuses on the ferrite formation and the observation of the Cu distribution in the B-added and B-free Cu-containing spheroidal graphite cast iron.The Cu film on the spheroidal graphite can be successfully observed in the B-free sample using a special etching method.However,in the B-added sample,no Cu film could be found,while the secondary graphite was formed on the surface of the spheroidal graphite.The interaction between B and Cu is stressed as a peculiar phenomenon by the employment of a contrast experiment of B and Mn.The heat treatment could make Cu precipitate more significantly in the eutectic cells and in the matrix in the form of large Cu particles because of the limited solubility of Cu.
基金The paper was financially supported by the National Natural Science Foundation of China(Grant No.59235102).
文摘The effects of metallurgical and processing parameters on the formation of shrinkage cavities and porosities in spheroidal graphite cast iron have been studied, considering the parameters of carbon equivalent, inoculation, casting modulus, mold type (green or dry) and pouring temperature within specific ranges of these variables. Based on the orthogonal experiments, the metallurgical and processing parameters of the minimum casting shrinkage and the maximum casting shrinkage were obtained, and the effects of metallurgical and processing parameters on the formation of shrinkage cavities and porosities in spheroids graphite cast iron castings were discussed. Finally, two regression equations relating these variables to the formation of shrinkage porosity were derived based upon the orthogonal experiments conducted.
文摘Six thin sections of spheroidal graphites in cast iron have been investigated by TEM and SEM.The spheroidal graphites consist of two or three layers and have nuclei which are composed of Ce_2O_2S and Ce_2O_3. Cerium is existed ont only in nuclei,but also in central layer and middle layer of graphite.
基金supported by the National Natural Science Foundation of China(51601107)
文摘A multiphase cellular automaton model was developed to simulate microstructure evolution of near eutectic spheroidal graphite cast iron(SGI) during its solidification process, and both dendritic austenite and spheroidal graphite growth models were adopted. To deduce the mesh anisotropy of cellular automaton method, the composition averaging and geometrical parameter were introduced to simulate the spheroidal graphite growth. Solute balance method and decentered square algorithms were employed to simulate austenite dendrites growth with different crystallographic orientations. The simulated results indicate that the graphite nodule grows in a spherical morphology when the surrounding environment of a single graphite nodule is same. However, for two adjacent graphite nodules, the environment is different. The higher the carbon concentration, the faster the growth of graphite. By comparison with experimental results, it is found that the microstructure evolution of near eutectic spheroidal graphite cast iron during solidification process can be reproduced quantitatively by numerical simulation with this model.
文摘Spheroidal graphite cast iron GGG 40 was thermo-mechanically tested using thermo-mechanical simulator Gleeble-3500. Three deformation steps were successively applied on test-specimen at temperatures namely;900°C, 850°C and 750°C within the austenitic zone, at the same strain rate of 0.1 s-1. No cracks were observed, up to 50% deformation, after successive deformation steps. Stress-strain relationship obtained is correlated with previous work on SGCI with a different carbon equivalent. It was found that by decreasing the deformation temperature;for the same CE, young’s modulus, yield strength and strain hardening exponent increase. Microstructure of the deformed zone, for a specimen quenched after the final deformation step, reveals fine elongated ferrite and pearlite, as well as elongated graphite. While microstructure of the non-deformed zone subjected to the same treatment, includes coarser ferrite and pearlite with graphite spheres embedded in the matrix.
文摘This study aims to clarify the influence of external notch on impact characteristics of high toughness ductile cast irons prepared by austempering heat treatment. We produced ductile cast irons samples with various matrix microstructure tested by Charpy impact within five kinds of external notches whose stress concentration factors (α), with values taken from 1.0 (Un-notched) to 4.8. In addition, to clarify the initiation process of impact characteristics, we observed the evolution of microstructure surface during bending tests with a slow loading speed for the un-notched and the notched impact samples. The results showed that the impact fracture energy decreases strongly in the range of α from 1 to 2.3 but decreases slightly for α larger than 3. Moreover, the impact value of samples with austempered microstructure is sensitive to the external notch shape. The impact transition temperature increases with increasing the stress concentration factor. The fracture energy is decreasing with the external notch from the impact test since the crack initiation energy is directly affected by this later. This work contributes to get a better understanding in the basic theories of external notch effect on impact characteristics of austempered spheroidal graphite cast irons (ADI).
文摘The thirteen mother alloys,C%+1/3Si%=4.45%,differing in their Si,Ce,Sb and Sn contents,were prepared.Seventy grams of these alloys was remelted in a high purity alumina crucible at 1,450oC under an Ar atmosphere,and then cooled at 30 K/min for obtaining their cooling curves.Their graphite morphologies were observed using an optical microscope and an SEM.Their three-dimensional graphite shapes were observed by the SEM using the samples whose matrices were etched off with an acid-aqua solution,to confirm the chunky graphite.For discussing the influence of the Si and Ce contents on the chunky graphite formation,two experiments were carried out.In the first one,the Si contents were changed from 0 to 4% in the 0.15%Ce alloys,and for the second one,the 3.5%Si and 4%Si samples that differed in the Ce contents of 0.1 and 0.2% were used.In the third experiment,the influence of Sb and Sn on the chunky graphite formation was investigated by using the 4%Si and 0.1%Ce samples.The results showed that with the increase of the Si content,the volume fraction of the chunky graphite increases,while the volume fraction of the ledeburite decreases,and the chunky graphite volume fraction in the 0.2%Ce samples is higher than that of the 0.1%Ce samples.The effect of the Sb and Sn additions on the prevention of chunky graphite formation cannot be confirmed due to their high Si contents.Therefore,further studies will be needed in this field.
基金Item Sponsored by National Natural Science Foundation of China(51071078)Research Fund of Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province of China(AE201035)Natural Science Foundation of Jiangsu Province of China(BK2012250)
文摘Wear behavior and mechanism of spheroidal graphite cast iron were studied on a pin on-disk elevated tem- perature wear tester. The phase and morphology of worn surfaces were examined by X ray diffraction and scanning electron microscopy. Results show that with an increase of load, wear rate of spheroidal graphite cast iron gradually increases under low loads, rapidly increases or potentially increases under high loads; wear rate increases with in- creasing ambient temperature. At 25 200 ℃, adhesive wear prevails; oxidative wear and adhesive wear coexist at 400 ℃. As load surpasses 150 N at 400 ℃, extrusive wear appears. The elevated-temperature wear of spheroidal graphite cast iron is a physical and chemical process including the following reactions: xFe+y/2O2-FexOy , 2C+ O2- 2CO and Fex Oy +yCO-xFe+yCO2. Hence, at 400 ℃, the amount of graphite and tribo oxides are substan- tially reduced because of reductive function of graphite. It can be suggested that wear reduced effect of graphite and tribo-oxides is impaired.