Balanced sphingolipid signaling is important for the maintenance of homeostasis. Sphingolipids were demonstrated to function as structural components, second messengers, and regulators of cell growth and survival in n...Balanced sphingolipid signaling is important for the maintenance of homeostasis. Sphingolipids were demonstrated to function as structural components, second messengers, and regulators of cell growth and survival in normal and disease-affected tissues. Particularly, sphingosine kinase 1 (SphK1) and its product sphingosine-1-phosphate (S1P) operate as mediators and facilitators of proliferation-linked signaling. Unlimited proliferation (selfrenewal) within the regulated environment is a hallmark of progenitor/stem cells that was recently associated with the S1P signaling network in vasculature, nervous,muscular, and immune systems. S1P was shown to regulate progenitor-related characteristics in normal and cancerstemcells(CSCs) viaG-protein coupled receptorsS1Pn(n=1 to 5). The SphK/S1P axis is crucially involved in the regulation of embryonic development of vasculature and the nervous system, hematopoietic stem cell migration, regeneration of skeletal muscle, and development of multiple sclerosis. The ratio of the S1P receptor expression, localization, and specific S1P receptoractivated downstream effectors influenced the rate of selfrenewal and should be further explored as regeneration related targets. Considering malignant transformation,it is essential to control the level of self-renewal capacity.Proliferation of the progenitor cell should be synchronized with differentiation to provide healthy lifelong function of blood, immune systems, and replacement of damaged ordead cells. The differentiation-related role of SphK/S1P remains poorly assessed. A few pioneering investigations exploredpharmacologicaltoolsthattargetsphingolipid signaling and can potentially confine and direct self-renewal towards normal differentiation. Further investigation is required to test the role of the SphK/S1P axis in regulation of self-renewal and differentiation.展开更多
Sphingosine 1-phosphate(S1P),as a sphingolipid metabolite,has become a key substance in regulating various physiological processes,involved in differentiation,proliferation,migration,morphogenesis,cytoskeleton formati...Sphingosine 1-phosphate(S1P),as a sphingolipid metabolite,has become a key substance in regulating various physiological processes,involved in differentiation,proliferation,migration,morphogenesis,cytoskeleton formation,adhesion,apoptosis,etc.process.Sphingosine 1-phosphate can not only activate the S1P-S1PR signaling pathway by binding to the corresponding receptors on the cell membrane,but also play a role in the cell.In recent years,studies have found that there is a certain relationship between its level changes and the occurrence and development of central nervous system diseases.This article reviews the latest knowledge of sphingosine-1-phosphate in the occurrence and treatment of nervous system diseases,and further clarifies its molecular mechanism in the treatment and development of central nervous system diseases.展开更多
Objective:Cardiac remodeling is a common pathological change in various cardiovascular diseases and can ultimately result in heart failure.Thus,there is an urgent need for more effective strategies to aid in cardiac p...Objective:Cardiac remodeling is a common pathological change in various cardiovascular diseases and can ultimately result in heart failure.Thus,there is an urgent need for more effective strategies to aid in cardiac protection.Our previous work found that sphingosine-1-phosphate(S1P)could ameliorate cardiac hypertrophy.In this study,we aimed to investigate whether S1P could prevent cardiac fibrosis and the associated mechanisms in cardiac remodeling.Methods:Eight-week-old male C57BL/6 mice were randomly divided into a sham,transverse aortic constriction(TAC)or a TAC+S1P treatment group.Results:We found that S1P treatment improved cardiac function in TAC mice and that the cardiac fibrosis ratio in the TAC+S1P group was significantly lower and was accompanied by a decrease inα-smooth muscle actin(α-SMA)and collagen type I(COL I)expression compared with the TAC group.We also found that one of the key S1P enzymes,sphingosine kinase 2(SphK2),which was mainly distributed in cytoblasts,was downregulated in the cardiac remodeling case and recovered after S1P treatment in vivo and in vitro.In addition,our in vitro results showed that S1P treatment activated extracellular regulated protein kinases(ERK)phosphorylation mainly through the S1P receptor 2(S1PR2)and spurred p-ERK transposition from the cytoplasm to cytoblast in H9c2 cells exposed to phenylephrine.Conclusion:These findings suggest that SphK2 and the S1PR2/ERK pathway may participate in the anti-remodeling effect of S1P on the heart.This work therefore uncovers a novel potential therapy for the prevention of cardiac remodeling.展开更多
The importance of sphingosine kinase(SphK)and sphingosine-1-phosphate(S1P)in inflammation has been extensively demonstrated.As an intracellular second messenger,S1P plays an important role in calcium signaling and mob...The importance of sphingosine kinase(SphK)and sphingosine-1-phosphate(S1P)in inflammation has been extensively demonstrated.As an intracellular second messenger,S1P plays an important role in calcium signaling and mobilization,and cell proliferation and survival.Activation of various plasma membrane receptors,such as the formyl methionyl leucyl phenylalanine receptor,C5a receptor,and tumor necrosis factor α receptor,leads to a rapid increase in intracellular S1P level via SphK stimulation.SphK and S1P are implicated in various chronic autoimmune conditions such as rheumatoid arthritis, primary Sjgren's syndrome,and inflammatory bowel disease.Recent studies have demonstrated the important role of SphK and S1P in the development of arthritis by regulating the pro-inflammatory responses.These novel pathways represent exciting potential therapeutic targets.展开更多
Recent Background: Development of obesity involves promotion of preadipocyte differrentiation. This study investigated the role that sphingosine kinases (SPHK) and ceramide-derived sphingosine 1-phosphate (S1P) play i...Recent Background: Development of obesity involves promotion of preadipocyte differrentiation. This study investigated the role that sphingosine kinases (SPHK) and ceramide-derived sphingosine 1-phosphate (S1P) play in adipocyte terminal differentiation. Materials and Methods: The mouse 3T3-L1 cell line was used as a model for adipogenesis. Cells were harvested at specific time points after initation of differentiation, and SPHK activity was measured. 3T3-L1 cells were treated with S1P and expression of early adipogenesis transcription markers was measured by real time PCR. The expression of S1P-receptors (S1PRs) during differentiation was measured. Results: SPHK activity is induced when 3T3-L1 cells are treated with insulin, dexamethasone, and isobutylmethylxanthine to induce differentiation. SPHK1 is active in preadipocytes and early in the differentiation process. Both SPHK1 and SPHK2 isozymes contribute to activity in differentiated adipocytes. Inhibition of SPHK1 attenuates adipocyte differentiation;however, extracellular S1P does not rescue the effect of SPHK1 inhibition on adipogenesis. Although treatment of preadipocytes with S1P induced message expression of the early adipogenesis transcription factor CC AAT/ binding proteinalpha, continued treatment did not fully support the development of differentiated adipocytes. Sphingosine 1-phosphate receptors (S1PRs) are expressed in preadipocytes and message expression declines markedly during adipocyte differentiation. Conclusion: These results demonstrate that the contribution of SPHK and S1P to adipogenesis is mediated primarily through biphasic activation of SPHK1 and 2 with extracellular S1P and S1PRs playing little role during preadipocyte differentiation.展开更多
Sphingolipids are ubiquitous components of cell membranes. Their metabolites ceramide, sphingosine, and sphingosine-1-phosphate (S1P) have important physiological functions, including regulation of cell growth and sur...Sphingolipids are ubiquitous components of cell membranes. Their metabolites ceramide, sphingosine, and sphingosine-1-phosphate (S1P) have important physiological functions, including regulation of cell growth and survival. S1P is generated by phosphorylation of sphingosine catalyzed by sphingosine kinase-1 (SPHK1). The purpose of this study is to explore the roles of S1P, S1P receptors, and sphingosine kinases in malignant musculoskeletal tumors. Twenty-one tumor samples (7 liposarcomas, 3 chondrosarcomas, 6 osteosarcomas, 5 MFH) obtained at open biopsy, and four human MFH cell lines (Nara H, Nara F, TNMY1, GBS-1) were used. We examined the mRNA expression of S1P receptors by RT-PCR, and the expression levels of SPHK by Real-time PCR. We used 4 MFH cell lines to analyze SPHK1 proteins by Western blotting. SPHK1 siRNA was transfected into MFH cell lines by lipofection method. Cell proliferation (control and transfected with siRNA) was assayed using WST-8 (Cell Counting Kit-8) assay. All high grade malignant tumors expressed S1P1, S1P2, S1P3 receptors, whereas the expression of S1P1 receptor was detected in 50% of low-grade malignant tumors, S1P2 receptor in 30%, and S1P3 in 50%. No statistically significant difference was found in the expression level of SPHK1 between high-grade and low-grade malignant tumors by Real-time PCR. By results of Western blotting, proteins of SPHK1 were expressed in all MFH cell lines. In MFH cell lines, transfection with SPHK1 siRNA oligonucleotides resulted in approximately 50 to 80% suppression of SPHK1 mRNA expression as determined by real-time PCR. Down-regulation of SPHK1 with small interfering RNA significantly reduced SPHK1 protein levels by Western blotting. Knock down of SPHK1 expression significantly decreased cell proliferation of all MFH cells. These results suggest that the expression of S1P receptors may play an important role for cell proliferation and may correlate with histologic grade in malignant bone and soft tissue tumors, and that SPHK1 may be one of essential molecules for cell proliferation in MFH cell lines.展开更多
The sphingosine kinases, SK1 and SK2, produce the potent signaling lipid sphingosine-1-phosphate (S1P). These enzymes have garnered increasing interest for their roles in tumorigenesis, inflammation, vascular diseases...The sphingosine kinases, SK1 and SK2, produce the potent signaling lipid sphingosine-1-phosphate (S1P). These enzymes have garnered increasing interest for their roles in tumorigenesis, inflammation, vascular diseases, and immunity, as well as other functions. The sphingosine kinases are considered signaling enzymes by producing S1P, and their activity is acutely regulated by a variety of agonists. However, these enzymes are also key players in the control of sphingolipid metabolism. A variety of sphingolipids, such as sphingosine and the ceramides, are potent signaling molecules in their own right. The role of sphingosine kinases in regulating sphingolipid metabolism is potentially a critical aspect of their signaling function. A central aspect of signaling lipids is that their hydrophobic nature constrains them to membranes. Most enzymes of sphingolipid metabolism, including the enzymes that degrade S1P, are membrane enzymes. Therefore the localization of the sphingosine kinases and S1P is likely to be important in S1P signaling. Sphingosine kinase localization affects sphingolipid signaling in several ways. Translocation of SK1 to theplasma membrane promotes extracellular secretion of S1P. SK1 and SK2 localization to specific sites appears to direct S1P to intracellular protein effectors. SK localization also determines the access of these enzymes to their substrates. This may be an important mechanism for the regulation of ceramide biosynthesis by diverting dihydrosphingosine, a precursor in the ceramide biosynthetic pathway, from the de novo production of ceramide.展开更多
AIM: To examine the expression of SphK1, an oncogenic kinase that produces sphingosine 1-phosphate (S1P), and its correlation with the expression of LPAR2, a major lysophosphatidic acid (LPA) receptor overexpressed in...AIM: To examine the expression of SphK1, an oncogenic kinase that produces sphingosine 1-phosphate (S1P), and its correlation with the expression of LPAR2, a major lysophosphatidic acid (LPA) receptor overexpressed in various cancers, in human colorectal cancer.METHODS: Real-time reverse-transcription polymerase chain reaction was used to measure the mRNA expression of SphK1, LPAR2, and the three major S1P receptors in 27 colorectal cancer samples and corresponding normal tissue samples. We also examined the correlation between the expression of SphK1 and LPAR2.RESULTS: Colorectal cancer tissue in 22 of 27 patients had higher levels of SphK1 mRNA than in normal tissue. In two-thirds of the samples, SphK1 mRNA expression was more than two-fold higher than in normal tissue. Consistent with previous reports, LPAR2 mRNA expression in 20 of 27 colorectal cancer tissue samples was higher compared to normal tissue samples. Expression profiles of all three major S1P receptors, S1PR1, S1PR2, and S1PR3, varied without any trend, with no significant difference in expression between cancer and normal tissues. A highly significant positive correlation was found between SphK1 and LPAR2 expression [Pearson’s correlation coefficient (r) = 0.784 and P < 0.01]. The mRNA levels of SphK1 and LPAR2 did not correlate with TNM stage.CONCLUSION: Our findings suggest that S1P and LPA may play important roles in the development of colorectal cancer via the upregulation of SphK1 and LPAR2, both of which could serve as new therapeutic targets in the treatment of colorectal cancer.展开更多
Sphingosine 1-phosphate (S1P) is a bioactive sphingolipid with a variety of biological activities.It is generated from the conversion of ceramide to sphingosine by ceramidase and the subsequent conversion of sphingosi...Sphingosine 1-phosphate (S1P) is a bioactive sphingolipid with a variety of biological activities.It is generated from the conversion of ceramide to sphingosine by ceramidase and the subsequent conversion of sphingosine to S1P,which is catalyzed by sphingosine kinases.Through increasing its intracellular levels by sphingolipid metabolism and binding to its cell surface receptors,S1P regulates several physiological and pathological processes,including cell proliferation,migration,angiogenesis and autophagy.These processes are responsible for tumor growth,metastasis and invasion and promote tumor survival.Since ceramide and S1P have distinct functions in regulating in cell fate decision,the balance between the ceramide/sphingosine/S1P rheostat becomes a potent therapeutic target for cancer cells.Herein,we summarize our current understanding of S1P signaling on tumorigenesis and its potential as a target for cancer therapy.展开更多
Objective To elucidate the renoprotective effect of resveratrol(RSV)on sphingosine kinase 1(SphK1)signaling pathway and expression of its downstream molecules including activator protein 1(AP-1)and transformation grow...Objective To elucidate the renoprotective effect of resveratrol(RSV)on sphingosine kinase 1(SphK1)signaling pathway and expression of its downstream molecules including activator protein 1(AP-1)and transformation growth factor-β1(TGF-β1)in lipopolysaccharide(LPS)-induced glomerular mesangial cells(GMCs).Methods The rat GMCs line(HBZY-1)were cultured and randomly divided into 5 groups,including control,LPS(100 ng/mL),and 5,10,20µmol/L RSV-treated groups.In addition,SphK1 inhibitor(SK-II)was used as positive control.GMCs were pretreated with RSV for 2 h and treated with LPS for another 24 h.GMCs proliferation was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide(MTT)assay.The proteins expression of SphK1,p-c-Jun and TGF-β1 in GMCs were detected by Western blot,and DNA-binding activity of AP-1 was performed by electrophoretic mobility shift assay(EMSA).The binding activity between RSV and SphK1 protein was detected by AutoDock Vina and visualized by Discovery Studio 2016.Results LPS could obviously stimulate GMCs proliferation,elevate SphK1,p-c-Jun and TGF-β1 expression levels and increase the DNA-binding activity of AP-1(P<0.05 or P<0.01),whereas these effects were significantly blocked by RSV pretreatment.It was also suggested that the effect of RSV was similar to SK-II(P>0.05).Moreover,RSV exhibited good binding affinity towards SphK1,with docking scores of−8.1 kcal/moL and formed hydrogen bonds with ASP-178 and LEU-268 in SphK1.Conclusion RSV inhibited LPS-induced GMCs proliferation and TGF-β1 expression,which may be independent of its hypoglycemic effect on preventing the development of mesangial cell fibrosis and closely related to the direct inhibition of SphK1 pathway.展开更多
The liver is the central organ involved in lipid metabolism and the gastrointestinal(GI)tract is responsible for nutrient absorption and partitioning.Obesity,dyslipidemia and metabolic disorders are of increasing publ...The liver is the central organ involved in lipid metabolism and the gastrointestinal(GI)tract is responsible for nutrient absorption and partitioning.Obesity,dyslipidemia and metabolic disorders are of increasing public health concern worldwide,and novel therapeutics that target both the liver and the GI tract(gut-liver axis)are much needed.In addition to aiding fat digestion,bile acids act as important signaling molecules that regulate lipid,glucose and energy metabolism via activating nuclear receptor,G protein-coupled receptors(GPCRs),Takeda G protein receptor 5(TGR5)and sphingosine-1-phosphate receptor 2(S1PR2).Sphingosine-1-phosphate(S1P)is synthesized by two sphingosine kinase isoforms and is a potent signaling molecule that plays a critical role in various diseases such as fatty liver,in-flammatory bowel disease(IBD)and colorectal cancer.In this review,we will focus on recent findings related to the role of S1P-mediated signaling pathways in the gut-liver axis.展开更多
AIM: To identify kinases involved in phenotype regulation of vascular endothelial cells(VECs): Proproliferative G-protein signaling 5(RGS5)^(high)(typeⅠ) vs anti-proliferative RGS5^(low)(typeⅡ) VECs.METHODS: Proteom...AIM: To identify kinases involved in phenotype regulation of vascular endothelial cells(VECs): Proproliferative G-protein signaling 5(RGS5)^(high)(typeⅠ) vs anti-proliferative RGS5^(low)(typeⅡ) VECs.METHODS: Proteomic kinase assays were performed to identify the crucial kinase involved in the phenotype regulation of human VECs using typeⅠ VECs, which promotes the proliferation of human vascular smooth muscle cells(VSMCs), and typeⅡ VECs, which suppress the proliferation of human VSMCs. The assays were performed using multiple pairs of typeⅠ and typeⅡ VECs to obtain the least number of candidates. The involvement of the candidate kinases was verified by evaluating the effects of their specific inhibitors on the phenotype regulation of human VECs as well as the expression levels of regulator of RGS5, which is the causative gene for the "typeⅡ to typeⅠ" phenotype conversion of human VECs. RESULTS: p38α mitogen-activated protein kinase(p38α MAPK) was the only kinase that showed distinctive activities between typeⅠ and typeⅡ VECs: p38α MAPK activities were low and high in type-Ⅰand typeⅡ VECs, respectively. We found that an enforced expression of RGS5 indeed lowered p38α MAPK activitiesin typeⅡ VECs. Furthermore, treatments with a p38α MAPK inhibitor nullified the anti-proliferative potential in typeⅡ VECs. Interestingly, MAPK inhibitor treatments enhanced the induction of RGS5 gene. Thus, there is a vicious cycle between "RGS5 induction" and "p38α MAPK inhibition", which can explain the unidirectional process in the stress-induced "typeⅡ to typeⅠ" conversions of human VECs. To understand the upstream signaling of RGS5, which is known as an inhibitory molecule against the G protein-coupled receptor(GPCR)-mediated signaling, we examined the effects of RGS5 overexpression on the signaling events from sphingosine-1-phosphate(S1P) to N-cadherin, because S1 P receptors belong to the GPCR family gene and N-cadherin, one of their downstream effectors, is reportedly involved in the regulation of VEC-VSMC interactions. We found that RGS5 specifically bound with S1P1. Moreover, N-cadherin localization at intercellular junctions in typeⅡ VECs was abolished by "RGS5 overexpression" and "p38α MAPK inhibition".CONCLUSION: p38α MAPK plays crucial roles in "type-Ⅰ vs type-Ⅱ" phenotype regulations of human VECs at the downstream of RGS5.展开更多
文摘Balanced sphingolipid signaling is important for the maintenance of homeostasis. Sphingolipids were demonstrated to function as structural components, second messengers, and regulators of cell growth and survival in normal and disease-affected tissues. Particularly, sphingosine kinase 1 (SphK1) and its product sphingosine-1-phosphate (S1P) operate as mediators and facilitators of proliferation-linked signaling. Unlimited proliferation (selfrenewal) within the regulated environment is a hallmark of progenitor/stem cells that was recently associated with the S1P signaling network in vasculature, nervous,muscular, and immune systems. S1P was shown to regulate progenitor-related characteristics in normal and cancerstemcells(CSCs) viaG-protein coupled receptorsS1Pn(n=1 to 5). The SphK/S1P axis is crucially involved in the regulation of embryonic development of vasculature and the nervous system, hematopoietic stem cell migration, regeneration of skeletal muscle, and development of multiple sclerosis. The ratio of the S1P receptor expression, localization, and specific S1P receptoractivated downstream effectors influenced the rate of selfrenewal and should be further explored as regeneration related targets. Considering malignant transformation,it is essential to control the level of self-renewal capacity.Proliferation of the progenitor cell should be synchronized with differentiation to provide healthy lifelong function of blood, immune systems, and replacement of damaged ordead cells. The differentiation-related role of SphK/S1P remains poorly assessed. A few pioneering investigations exploredpharmacologicaltoolsthattargetsphingolipid signaling and can potentially confine and direct self-renewal towards normal differentiation. Further investigation is required to test the role of the SphK/S1P axis in regulation of self-renewal and differentiation.
基金National Natural Science Foundation of China(No.82260270)Hainan Clinical Medical Center(No.2021)Innovation Team for Epilepsy Research at Hainan Medical College(No.2022)。
文摘Sphingosine 1-phosphate(S1P),as a sphingolipid metabolite,has become a key substance in regulating various physiological processes,involved in differentiation,proliferation,migration,morphogenesis,cytoskeleton formation,adhesion,apoptosis,etc.process.Sphingosine 1-phosphate can not only activate the S1P-S1PR signaling pathway by binding to the corresponding receptors on the cell membrane,but also play a role in the cell.In recent years,studies have found that there is a certain relationship between its level changes and the occurrence and development of central nervous system diseases.This article reviews the latest knowledge of sphingosine-1-phosphate in the occurrence and treatment of nervous system diseases,and further clarifies its molecular mechanism in the treatment and development of central nervous system diseases.
基金supported by the National Natural Science Foundation of China(No.81873505).
文摘Objective:Cardiac remodeling is a common pathological change in various cardiovascular diseases and can ultimately result in heart failure.Thus,there is an urgent need for more effective strategies to aid in cardiac protection.Our previous work found that sphingosine-1-phosphate(S1P)could ameliorate cardiac hypertrophy.In this study,we aimed to investigate whether S1P could prevent cardiac fibrosis and the associated mechanisms in cardiac remodeling.Methods:Eight-week-old male C57BL/6 mice were randomly divided into a sham,transverse aortic constriction(TAC)or a TAC+S1P treatment group.Results:We found that S1P treatment improved cardiac function in TAC mice and that the cardiac fibrosis ratio in the TAC+S1P group was significantly lower and was accompanied by a decrease inα-smooth muscle actin(α-SMA)and collagen type I(COL I)expression compared with the TAC group.We also found that one of the key S1P enzymes,sphingosine kinase 2(SphK2),which was mainly distributed in cytoblasts,was downregulated in the cardiac remodeling case and recovered after S1P treatment in vivo and in vitro.In addition,our in vitro results showed that S1P treatment activated extracellular regulated protein kinases(ERK)phosphorylation mainly through the S1P receptor 2(S1PR2)and spurred p-ERK transposition from the cytoplasm to cytoblast in H9c2 cells exposed to phenylephrine.Conclusion:These findings suggest that SphK2 and the S1PR2/ERK pathway may participate in the anti-remodeling effect of S1P on the heart.This work therefore uncovers a novel potential therapy for the prevention of cardiac remodeling.
文摘The importance of sphingosine kinase(SphK)and sphingosine-1-phosphate(S1P)in inflammation has been extensively demonstrated.As an intracellular second messenger,S1P plays an important role in calcium signaling and mobilization,and cell proliferation and survival.Activation of various plasma membrane receptors,such as the formyl methionyl leucyl phenylalanine receptor,C5a receptor,and tumor necrosis factor α receptor,leads to a rapid increase in intracellular S1P level via SphK stimulation.SphK and S1P are implicated in various chronic autoimmune conditions such as rheumatoid arthritis, primary Sjgren's syndrome,and inflammatory bowel disease.Recent studies have demonstrated the important role of SphK and S1P in the development of arthritis by regulating the pro-inflammatory responses.These novel pathways represent exciting potential therapeutic targets.
文摘Recent Background: Development of obesity involves promotion of preadipocyte differrentiation. This study investigated the role that sphingosine kinases (SPHK) and ceramide-derived sphingosine 1-phosphate (S1P) play in adipocyte terminal differentiation. Materials and Methods: The mouse 3T3-L1 cell line was used as a model for adipogenesis. Cells were harvested at specific time points after initation of differentiation, and SPHK activity was measured. 3T3-L1 cells were treated with S1P and expression of early adipogenesis transcription markers was measured by real time PCR. The expression of S1P-receptors (S1PRs) during differentiation was measured. Results: SPHK activity is induced when 3T3-L1 cells are treated with insulin, dexamethasone, and isobutylmethylxanthine to induce differentiation. SPHK1 is active in preadipocytes and early in the differentiation process. Both SPHK1 and SPHK2 isozymes contribute to activity in differentiated adipocytes. Inhibition of SPHK1 attenuates adipocyte differentiation;however, extracellular S1P does not rescue the effect of SPHK1 inhibition on adipogenesis. Although treatment of preadipocytes with S1P induced message expression of the early adipogenesis transcription factor CC AAT/ binding proteinalpha, continued treatment did not fully support the development of differentiated adipocytes. Sphingosine 1-phosphate receptors (S1PRs) are expressed in preadipocytes and message expression declines markedly during adipocyte differentiation. Conclusion: These results demonstrate that the contribution of SPHK and S1P to adipogenesis is mediated primarily through biphasic activation of SPHK1 and 2 with extracellular S1P and S1PRs playing little role during preadipocyte differentiation.
文摘Sphingolipids are ubiquitous components of cell membranes. Their metabolites ceramide, sphingosine, and sphingosine-1-phosphate (S1P) have important physiological functions, including regulation of cell growth and survival. S1P is generated by phosphorylation of sphingosine catalyzed by sphingosine kinase-1 (SPHK1). The purpose of this study is to explore the roles of S1P, S1P receptors, and sphingosine kinases in malignant musculoskeletal tumors. Twenty-one tumor samples (7 liposarcomas, 3 chondrosarcomas, 6 osteosarcomas, 5 MFH) obtained at open biopsy, and four human MFH cell lines (Nara H, Nara F, TNMY1, GBS-1) were used. We examined the mRNA expression of S1P receptors by RT-PCR, and the expression levels of SPHK by Real-time PCR. We used 4 MFH cell lines to analyze SPHK1 proteins by Western blotting. SPHK1 siRNA was transfected into MFH cell lines by lipofection method. Cell proliferation (control and transfected with siRNA) was assayed using WST-8 (Cell Counting Kit-8) assay. All high grade malignant tumors expressed S1P1, S1P2, S1P3 receptors, whereas the expression of S1P1 receptor was detected in 50% of low-grade malignant tumors, S1P2 receptor in 30%, and S1P3 in 50%. No statistically significant difference was found in the expression level of SPHK1 between high-grade and low-grade malignant tumors by Real-time PCR. By results of Western blotting, proteins of SPHK1 were expressed in all MFH cell lines. In MFH cell lines, transfection with SPHK1 siRNA oligonucleotides resulted in approximately 50 to 80% suppression of SPHK1 mRNA expression as determined by real-time PCR. Down-regulation of SPHK1 with small interfering RNA significantly reduced SPHK1 protein levels by Western blotting. Knock down of SPHK1 expression significantly decreased cell proliferation of all MFH cells. These results suggest that the expression of S1P receptors may play an important role for cell proliferation and may correlate with histologic grade in malignant bone and soft tissue tumors, and that SPHK1 may be one of essential molecules for cell proliferation in MFH cell lines.
基金Supported by The James Graham Brown Cancer Center and NIH, No. CA111987
文摘The sphingosine kinases, SK1 and SK2, produce the potent signaling lipid sphingosine-1-phosphate (S1P). These enzymes have garnered increasing interest for their roles in tumorigenesis, inflammation, vascular diseases, and immunity, as well as other functions. The sphingosine kinases are considered signaling enzymes by producing S1P, and their activity is acutely regulated by a variety of agonists. However, these enzymes are also key players in the control of sphingolipid metabolism. A variety of sphingolipids, such as sphingosine and the ceramides, are potent signaling molecules in their own right. The role of sphingosine kinases in regulating sphingolipid metabolism is potentially a critical aspect of their signaling function. A central aspect of signaling lipids is that their hydrophobic nature constrains them to membranes. Most enzymes of sphingolipid metabolism, including the enzymes that degrade S1P, are membrane enzymes. Therefore the localization of the sphingosine kinases and S1P is likely to be important in S1P signaling. Sphingosine kinase localization affects sphingolipid signaling in several ways. Translocation of SK1 to theplasma membrane promotes extracellular secretion of S1P. SK1 and SK2 localization to specific sites appears to direct S1P to intracellular protein effectors. SK localization also determines the access of these enzymes to their substrates. This may be an important mechanism for the regulation of ceramide biosynthesis by diverting dihydrosphingosine, a precursor in the ceramide biosynthetic pathway, from the de novo production of ceramide.
基金Supported by Grant 2010 from Tokyo MetropolisJapan
文摘AIM: To examine the expression of SphK1, an oncogenic kinase that produces sphingosine 1-phosphate (S1P), and its correlation with the expression of LPAR2, a major lysophosphatidic acid (LPA) receptor overexpressed in various cancers, in human colorectal cancer.METHODS: Real-time reverse-transcription polymerase chain reaction was used to measure the mRNA expression of SphK1, LPAR2, and the three major S1P receptors in 27 colorectal cancer samples and corresponding normal tissue samples. We also examined the correlation between the expression of SphK1 and LPAR2.RESULTS: Colorectal cancer tissue in 22 of 27 patients had higher levels of SphK1 mRNA than in normal tissue. In two-thirds of the samples, SphK1 mRNA expression was more than two-fold higher than in normal tissue. Consistent with previous reports, LPAR2 mRNA expression in 20 of 27 colorectal cancer tissue samples was higher compared to normal tissue samples. Expression profiles of all three major S1P receptors, S1PR1, S1PR2, and S1PR3, varied without any trend, with no significant difference in expression between cancer and normal tissues. A highly significant positive correlation was found between SphK1 and LPAR2 expression [Pearson’s correlation coefficient (r) = 0.784 and P < 0.01]. The mRNA levels of SphK1 and LPAR2 did not correlate with TNM stage.CONCLUSION: Our findings suggest that S1P and LPA may play important roles in the development of colorectal cancer via the upregulation of SphK1 and LPAR2, both of which could serve as new therapeutic targets in the treatment of colorectal cancer.
文摘Sphingosine 1-phosphate (S1P) is a bioactive sphingolipid with a variety of biological activities.It is generated from the conversion of ceramide to sphingosine by ceramidase and the subsequent conversion of sphingosine to S1P,which is catalyzed by sphingosine kinases.Through increasing its intracellular levels by sphingolipid metabolism and binding to its cell surface receptors,S1P regulates several physiological and pathological processes,including cell proliferation,migration,angiogenesis and autophagy.These processes are responsible for tumor growth,metastasis and invasion and promote tumor survival.Since ceramide and S1P have distinct functions in regulating in cell fate decision,the balance between the ceramide/sphingosine/S1P rheostat becomes a potent therapeutic target for cancer cells.Herein,we summarize our current understanding of S1P signaling on tumorigenesis and its potential as a target for cancer therapy.
基金Supported by the National Natural Science Foundation of China(No.81603355,81900745)。
文摘Objective To elucidate the renoprotective effect of resveratrol(RSV)on sphingosine kinase 1(SphK1)signaling pathway and expression of its downstream molecules including activator protein 1(AP-1)and transformation growth factor-β1(TGF-β1)in lipopolysaccharide(LPS)-induced glomerular mesangial cells(GMCs).Methods The rat GMCs line(HBZY-1)were cultured and randomly divided into 5 groups,including control,LPS(100 ng/mL),and 5,10,20µmol/L RSV-treated groups.In addition,SphK1 inhibitor(SK-II)was used as positive control.GMCs were pretreated with RSV for 2 h and treated with LPS for another 24 h.GMCs proliferation was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide(MTT)assay.The proteins expression of SphK1,p-c-Jun and TGF-β1 in GMCs were detected by Western blot,and DNA-binding activity of AP-1 was performed by electrophoretic mobility shift assay(EMSA).The binding activity between RSV and SphK1 protein was detected by AutoDock Vina and visualized by Discovery Studio 2016.Results LPS could obviously stimulate GMCs proliferation,elevate SphK1,p-c-Jun and TGF-β1 expression levels and increase the DNA-binding activity of AP-1(P<0.05 or P<0.01),whereas these effects were significantly blocked by RSV pretreatment.It was also suggested that the effect of RSV was similar to SK-II(P>0.05).Moreover,RSV exhibited good binding affinity towards SphK1,with docking scores of−8.1 kcal/moL and formed hydrogen bonds with ASP-178 and LEU-268 in SphK1.Conclusion RSV inhibited LPS-induced GMCs proliferation and TGF-β1 expression,which may be independent of its hypoglycemic effect on preventing the development of mesangial cell fibrosis and closely related to the direct inhibition of SphK1 pathway.
基金This work was supported by the USA National Institutes of Health(NIH)grants R01 DK104893 and R01DK-057543VA Merit Award I01BX004033 and 1I01BX001390Research Career Scientist Award(IK6BX004477)from the Department of Veterans Affairs.
文摘The liver is the central organ involved in lipid metabolism and the gastrointestinal(GI)tract is responsible for nutrient absorption and partitioning.Obesity,dyslipidemia and metabolic disorders are of increasing public health concern worldwide,and novel therapeutics that target both the liver and the GI tract(gut-liver axis)are much needed.In addition to aiding fat digestion,bile acids act as important signaling molecules that regulate lipid,glucose and energy metabolism via activating nuclear receptor,G protein-coupled receptors(GPCRs),Takeda G protein receptor 5(TGR5)and sphingosine-1-phosphate receptor 2(S1PR2).Sphingosine-1-phosphate(S1P)is synthesized by two sphingosine kinase isoforms and is a potent signaling molecule that plays a critical role in various diseases such as fatty liver,in-flammatory bowel disease(IBD)and colorectal cancer.In this review,we will focus on recent findings related to the role of S1P-mediated signaling pathways in the gut-liver axis.
基金Supported by A Grant-in-Aid from the Ministry of HealthLabour and Welfare of Japan+2 种基金No.KHD1017by that from JSTPRESTO
文摘AIM: To identify kinases involved in phenotype regulation of vascular endothelial cells(VECs): Proproliferative G-protein signaling 5(RGS5)^(high)(typeⅠ) vs anti-proliferative RGS5^(low)(typeⅡ) VECs.METHODS: Proteomic kinase assays were performed to identify the crucial kinase involved in the phenotype regulation of human VECs using typeⅠ VECs, which promotes the proliferation of human vascular smooth muscle cells(VSMCs), and typeⅡ VECs, which suppress the proliferation of human VSMCs. The assays were performed using multiple pairs of typeⅠ and typeⅡ VECs to obtain the least number of candidates. The involvement of the candidate kinases was verified by evaluating the effects of their specific inhibitors on the phenotype regulation of human VECs as well as the expression levels of regulator of RGS5, which is the causative gene for the "typeⅡ to typeⅠ" phenotype conversion of human VECs. RESULTS: p38α mitogen-activated protein kinase(p38α MAPK) was the only kinase that showed distinctive activities between typeⅠ and typeⅡ VECs: p38α MAPK activities were low and high in type-Ⅰand typeⅡ VECs, respectively. We found that an enforced expression of RGS5 indeed lowered p38α MAPK activitiesin typeⅡ VECs. Furthermore, treatments with a p38α MAPK inhibitor nullified the anti-proliferative potential in typeⅡ VECs. Interestingly, MAPK inhibitor treatments enhanced the induction of RGS5 gene. Thus, there is a vicious cycle between "RGS5 induction" and "p38α MAPK inhibition", which can explain the unidirectional process in the stress-induced "typeⅡ to typeⅠ" conversions of human VECs. To understand the upstream signaling of RGS5, which is known as an inhibitory molecule against the G protein-coupled receptor(GPCR)-mediated signaling, we examined the effects of RGS5 overexpression on the signaling events from sphingosine-1-phosphate(S1P) to N-cadherin, because S1 P receptors belong to the GPCR family gene and N-cadherin, one of their downstream effectors, is reportedly involved in the regulation of VEC-VSMC interactions. We found that RGS5 specifically bound with S1P1. Moreover, N-cadherin localization at intercellular junctions in typeⅡ VECs was abolished by "RGS5 overexpression" and "p38α MAPK inhibition".CONCLUSION: p38α MAPK plays crucial roles in "type-Ⅰ vs type-Ⅱ" phenotype regulations of human VECs at the downstream of RGS5.