A method for calculation of temperature distribution in adiabatic shear band is proposed in terms of gradient-dependent plasticity where the characteristic length describes the interactions and interplaying among micr...A method for calculation of temperature distribution in adiabatic shear band is proposed in terms of gradient-dependent plasticity where the characteristic length describes the interactions and interplaying among microstructures. First, the increment of the plastic shear strain distribution in adiabatic shear band is obtained based on gradient-dependent plasticity. Then, the plastic work distribution is derived according to the current flow shear stress and the obtained increment of plastic shear strain distribution. In the light of the well-known assumption that 90% of plastic work is converted into the heat resulting in increase in temperature in adiabatic shear band, the increment of the temperature distribution is presented. Next, the average temperature increment in the shear band is calculated to compute the change in flow shear stress due to the thermal softening effect. After the actual flow shear stress considering the thermal softening effect is obtained according to the Johnson-Cook constitutive relation, the increment of the plastic shear strain distribution, the plastic work and the temperature in the next time step are recalculated until the total time is consumed. Summing the temperature distribution leads to rise in the total temperature distribution. The present calculated maximum temperature in adiabatic shear band in titanium agrees with the experimental observations. Moreover, the temperature profiles for different flow shear stresses are qualitatively consistent with experimental and numerical results. Effects of some related parameters on the temperature distribution are also predicted.展开更多
Shear localization in linear strain softening heterogeneous material under simple shear was investigated analytically. The closed-form solutions obtained based on gradient plasticity theory considering interactions an...Shear localization in linear strain softening heterogeneous material under simple shear was investigated analytically. The closed-form solutions obtained based on gradient plasticity theory considering interactions and interplaying among microstructures due to heterogeneity of metal material show that in the normal direction of shear band, elastic shear displacement is linear; while plastic and total shear displacement are non-linear. Elastic shear strain in the band is uniform and the non-uniformity of total shear displacement stems from localized plastic shear displacement. In the center of the band, plastic and total shear displacement all reach their maximum values. In strain-softening process, elastic displacement decreases as flow shear stress decreases. Contrarily, plastic and total shear displacement increase and manifest shear localization occurs progressively. Under the same shear stress level, plastic and total shear displacement increase as strain softening modulus and elastic shear modulus decrease. The present analytical solutions were compared with many experimental results and the agreement is good.展开更多
The paper concerns the issue of size law,localized deformation and dilation or compaction due to shear localization. It is assumed that the shear localization initiates at the peak shear stress in the form of single s...The paper concerns the issue of size law,localized deformation and dilation or compaction due to shear localization. It is assumed that the shear localization initiates at the peak shear stress in the form of single shear band,and based on gradient-dependent plasticity,an analytical solution on size effect or snap-back is obtained. The results show that the post peak response becomes steeper and even exhibits snap-back with increasing of length. For small specimen,the relative shear displacement when specimen failure occurs is lower than that of larger specimen and the shear stress-relative displacement curve becomes steeper. The theoretical solution on non-uniformity of strains in shear band is obtained and evolution of the relative shear displacement is represented. By resorting to the linear relation between local plastic shear strain and local plastic volumetric strain,the dilation and compaction within shear band are analyzed. Relation between apparent shear strain and apparent normal strain and relation between shear displacement and vertical displacement are established.展开更多
Firstly, typical) gradient-dependent nonlocal inelastic models were briefly reviewed. Secondly, based on the principle of ‘gradient-dependent energy dissipation', a gradient-dependent constitutive model for plast...Firstly, typical) gradient-dependent nonlocal inelastic models were briefly reviewed. Secondly, based on the principle of ‘gradient-dependent energy dissipation', a gradient-dependent constitutive model for plasticity coupled with isotropic damage was presented in the framework of continuum thermodynamics. Numerical scheme for calculation of Laplacian term of damage field with the numerical results obtained by FEM calculation was proposed. Equations have been presented on the basis of Taylor series for both 2-dimensional and 3-dimensional cases, respectively. Numerical results have indicated the validity of the proposed gradient-dependent model and corresponding numerical scheme.展开更多
Gradient-dependent plasticity is introduced into the phenomenological Johnson-Cook model to study the effects of strainhardening, strain rate sensitivity, thermal-softening, and microstructure. The microstructural eff...Gradient-dependent plasticity is introduced into the phenomenological Johnson-Cook model to study the effects of strainhardening, strain rate sensitivity, thermal-softening, and microstructure. The microstructural effect (interactions and interplay among microstructures) due to heterogeneity of texture plays an important role in the process of development or evolution of an adiabatic shear band with a certain thickness depending on the grain diameter. The distributed plastic shear strain and deformation in the shear band are derived and depend on the critical plastic shear strain corresponding to the peak flow shear stress, the coordinate or position, the internal length parameter, and the average plastic shear strain or the flow shear stress. The critical plastic shear strain, the distributed plastic shear strain, and deformation in the shear band are numerically predicted for a kind of steel deformed at a constant shear strain rate. Beyond the peak shear stress, the local plastic shear strain in the shear band is highly nonuniform and the local plastic shear deformation in the band is highly nonlinear. Shear localization is more apparent with the increase of the average plastic shear strain. The calculated distributions of the local plastic shear strain and deformation agree with the previous numerical and experimental results.展开更多
Gradient-dependent plasticity considering interactions and interplay among microstructures was included into JOHNSON-COOK model to calculate the temperature distribution in adiabatic shear band(ASB), the peak and aver...Gradient-dependent plasticity considering interactions and interplay among microstructures was included into JOHNSON-COOK model to calculate the temperature distribution in adiabatic shear band(ASB), the peak and average temperatures as well as their evolutions. The differential local plastic shear strain was derived to calculate the differential local plastic work and the temperature rise due to the microstructural effect. The total temperature in ASB is the sum of initial temperature, temperature rise at strain-hardening stage and non-uniform temperature due to the microstructural effect beyond the peak shear stress. The flow shear stress—average plastic shear strain curve, the temperature distribution, the peak and average temperatures in ASB are computed for Ti-6Al-4V. When the imposed shear strain is less than 2 and the shear strain rate is 1 000 s?1, the dynamic recovery and recrystalliza-tion processes occur. However, without the microstructural effect, the processes might have not occurred since heat diffusion decreases the temperature in ASB. The calculated maximum temperature approaches 1 500 K so that phase transformation might take place. The present predictions support the previously experimental results showing that the transformed and deformed ASBs are observed in Ti-6Al-4V. Higher shear strain rate enhances the possibility of dynamic recrystallization and phase transformation.展开更多
Transformation plasticity is known to play an important role in the course of heat treatment processes, and so affect the results of heat treatment simulations, which means that the transformation plasticity coefficie...Transformation plasticity is known to play an important role in the course of heat treatment processes, and so affect the results of heat treatment simulations, which means that the transformation plasticity coefficient is necessary to be identifies. The authors developed a new method by use of four-point bending system of a beam to identify transformation plasticity coefficient taking advantage of its easiness and high accuracy compared with other conventional methods like tension test, etc., and identified the coefficient for four kinds of steels; plane carbon steel, Cr-steel, Cr-Mo steel and bearing steel. In this paper, further experimental data are presented for the steels if the coefficient Kp during pearlite transformation depend on the applied stress. Obtained results reveals that the stress dependence of Kp is rather trivial except for uncertain tendency detected in plane carbon steel. The relation between the Kp and carbon content included is discussed in comparison with other data referred from references.展开更多
To consider the effects of the interactions and interplay among microstructures, gradient-dependent models of second- and fourth-order are included in the widely used phenomenological Johnson-Cook model where the effe...To consider the effects of the interactions and interplay among microstructures, gradient-dependent models of second- and fourth-order are included in the widely used phenomenological Johnson-Cook model where the effects of strain-hardening, strain rate sensitivity, and thermal-softening are successfully described. The various parameters for 1006 steel, 4340 steel and S-7 tool steel are assigned. The distributions and evolutions of the local plastic shear strain and deformation in adiabatic shear band (ASB) are predicted. The calculated results of the second- and fourth- order gradient plasticity models are compared. S-7 tool steel possesses the steepest profile of local plastic shear strain in ASB, whereas 1006 steel has the least profile. The peak local plastic shear strain in ASB for S-7 tool steel is slightly higher than that for 4340 steel and is higher than that for 1006 steel. The extent of the nonlinear distribution of the local plastic shear deformation in ASB is more apparent for the S-7 tool steel, whereas it is the least apparent for 1006 steel. In fourth-order gradient plasticity model, the profile of the local plastic shear strain in the middle of ASB has a pronounced plateau whose width decreases with increasing average plastic shear strain, leading to a shrink of the portion of linear distribution of the profile of the local plastic shear deformation. When compared with the sec- ond-order gradient plasticity model, the fourth-order gradient plasticity model shows a lower peak local plastic shear strain in ASB and a higher magnitude of plastic shear deformation at the top or base of ASB, which is due to wider ASB. The present numerical results of the second- and fourth-order gradient plasticity models are consistent with the previous numerical and experimental results at least qualitatively.展开更多
Phase transitions widely exist in nature and occur when some control parameters are changed. In neural systems, their macroscopic states are represented by the activity states of neuron populations, and phase transiti...Phase transitions widely exist in nature and occur when some control parameters are changed. In neural systems, their macroscopic states are represented by the activity states of neuron populations, and phase transitions between different activity states are closely related to corresponding functions in the brain. In particular, phase transitions to some rhythmic synchronous firing states play significant roles on diverse brain functions and disfunctions, such as encoding rhythmical external stimuli, epileptic seizure, etc. However, in previous studies, phase transitions in neuronal networks are almost driven by network parameters (e.g., external stimuli), and there has been no investigation about the transitions between typical activity states of neuronal networks in a self-organized way by applying plastic connection weights. In this paper, we discuss phase transitions in electrically coupled and lattice-based small-world neuronal networks (LBSW networks) under spike-timing-dependent plasticity (STDP). By applying STDP on all electrical synapses, various known and novel phase transitions could emerge in LBSW networks, particularly, the phenomenon of self-organized phase transitions (SOPTs): repeated transitions between synchronous and asynchronous firing states. We further explore the mechanics generating SOPTs on the basis of synaptic weight dynamics.展开更多
Acoustic Emission Testing (AT) is one of the major non-destructive testing methods used for severity evaluation of structures. Amplitude distributions of AE signals are characterized by b-value and the value is mainly...Acoustic Emission Testing (AT) is one of the major non-destructive testing methods used for severity evaluation of structures. Amplitude distributions of AE signals are characterized by b-value and the value is mainly used for the severity evaluation of concrete structures until now. The value is assumed to be independent with propagation distance between acoustic emission sources to AE sensors. We evaluate the influence of the wide frequency band encountered in the fracture behavior of glass fiber reinforced plastic (GFRP) on the b-value analysis. In tensile tests, the b-value was determined from an acoustic emission (AE) source generated near a centered hole in a specimen of GFRP. At 15 mm from the hole, the b-value analysis indicated a decreasing trend with increasing tensile stress. At a propagation length of 45 mm, farthest from the hole, a?small number of AE signals were received. The attenuation is more rapid for high-frequency AE signals. Thus, the amplitude distribution bandwidth is wide and the b-value changes. This change in b-value for GFRPs is investigated by analyzing the spectral components of the AE signals. For a single-frequency AE source, the b-value is unchanged with propagation length. In contrast, multiple-frequency AE sources produce changes in b-value proportional to the fraction of each spectral component in the received signal. This is due to the frequency dependence of the attenuation with propagation length.?From these results, the b-value analysis cannot be applied to considering frequency dependence of AE attenuation.展开更多
Experimental investigations were pedermed on the plastic deformation along bilinear strain paths with various values of corner-angle by subjecting thin-walled tubular specimens of type 302 stainless steel to combined ...Experimental investigations were pedermed on the plastic deformation along bilinear strain paths with various values of corner-angle by subjecting thin-walled tubular specimens of type 302 stainless steel to combined axial and torsional loads. Variations of scalar and vectorial behavior of the stress response are discnssed in the vector space of plastic strain. It is found that the intrinsic geometry of loading path, the plastic strain history and the coapled effect among strain components effect effectively the stress response of the material. The experimental results also show that these effects will disappear gradually with increasing strain.展开更多
Environmental conditions change constantly either by anthropogenic perturbation or naturally across space and time.Often,a change in behavior is the frst response to changing conditions.Behavioral fexibility can poten...Environmental conditions change constantly either by anthropogenic perturbation or naturally across space and time.Often,a change in behavior is the frst response to changing conditions.Behavioral fexibility can potentially improve an organism’s chances to survive and reproduce.Currently,we lack an understanding on the time-scale such behavioral adjustments need,how they actually affect reproduction and survival and whether behavioral adjustments are suffcient in keeping up with changing conditions.We used house mice(Mus musculus)to test whether personality and life-history traits can adjust to an experimentally induced food-switch fexibly in adulthood or by intergenerational plasticity,that is,adjustments only becoming visible in the offspring generation.Mice lived in 6 experimental populations of semi-natural environments either on high or standard quality food for 4 generations.We showed previously that high-quality food induced better conditions and a less risk-prone personality.Here,we tested whether the speed and/or magnitude of adjustment shows condition-dependency and whether adjustments incur ftness effects.Life-history but not personality traits reacted fexibly to a food-switch,primarily by a direct reduction of reproduction and sloweddown growth.Offspring whose parents received a food-switch developed a more active stress-coping personality and gained weight at a slower rate compared with their respective controls.Furthermore,the modulation of most traits was condition-dependent,with animals previously fed with high-quality food showing stronger responses.Our study highlights that life-history and personality traits adjust at different speed toward environmental change,thus,highlighting the importance of the environment and the mode of response for evolutionary models.展开更多
Network fault diagnosis methods play a vital role in maintaining network service quality and enhancing user experience as an integral component of intelligent network management.Considering the unique characteristics ...Network fault diagnosis methods play a vital role in maintaining network service quality and enhancing user experience as an integral component of intelligent network management.Considering the unique characteristics of edge networks,such as limited resources,complex network faults,and the need for high real-time performance,enhancing and optimizing existing network fault diagnosis methods is necessary.Therefore,this paper proposes the lightweight edge-side fault diagnosis approach based on a spiking neural network(LSNN).Firstly,we use the Izhikevich neurons model to replace the Leaky Integrate and Fire(LIF)neurons model in the LSNN model.Izhikevich neurons inherit the simplicity of LIF neurons but also possess richer behavioral characteristics and flexibility to handle diverse data inputs.Inspired by Fast Spiking Interneurons(FSIs)with a high-frequency firing pattern,we use the parameters of FSIs.Secondly,inspired by the connection mode based on spiking dynamics in the basal ganglia(BG)area of the brain,we propose the pruning approach based on the FSIs of the BG in LSNN to improve computational efficiency and reduce the demand for computing resources and energy consumption.Furthermore,we propose a multiple iterative Dynamic Spike Timing Dependent Plasticity(DSTDP)algorithm to enhance the accuracy of the LSNN model.Experiments on two server fault datasets demonstrate significant precision,recall,and F1 improvements across three diagnosis dimensions.Simultaneously,lightweight indicators such as Params and FLOPs significantly reduced,showcasing the LSNN’s advanced performance and model efficiency.To conclude,experiment results on a pair of datasets indicate that the LSNN model surpasses traditional models and achieves cutting-edge outcomes in network fault diagnosis tasks.展开更多
Fully reversed low cyclic fatigue (LCF) tests were conducted on [0 0 1], [0 1 2], [(1) over bar 1 2], [0 1 1] and [(1) over bar 1 4] oriented single crystals of nickel-bared superalloy DD3 with different cyclic strain...Fully reversed low cyclic fatigue (LCF) tests were conducted on [0 0 1], [0 1 2], [(1) over bar 1 2], [0 1 1] and [(1) over bar 1 4] oriented single crystals of nickel-bared superalloy DD3 with different cyclic strain rates at 950 degrees C. The cyclic strain rates were chosen as 1.0 x 10(-2), 1.33 x 10(-3) and 0.33 x 10(-3) s(-1). The octahedral slip systems were confirmed to be activated on all the specimens. The experimental result shows that the fatigue behavior depends an the crystallographic orientation and cyclic strain rate. Except [0 0 1] orientation specimens, it is found from the scanning electron microscopy(SEM) examination that there are typical fatigue striations on the fracture surfaces. These fatigue striations are made up of cracks. The width of the fatigue striations depends on the crystallographic orientation and varies with the total strain range. A simple linear relationship exists between the width and total shear strain range modified by an orientation and strain rate parameter. The nonconformity to the Schmid law of tensile/compressive flaw stress and plastic behavior existed at 95 degrees C, and an orientation and strain rate modified Lall-Chin-Pope ( LCP) model was derived for the nonconformity. The influence of crysrallographic orientation and cyclic strain rate on the LCF behavior can be predicted satisfactorily by the model. In terms of an orientation and strain rate modified total strain range, a model for fatigue life was proposed and used successfully to correlate the fatigue lives studied.展开更多
This paper proposes a novel unified visco-plastic constitutive model for uniaxial ratcheting behaviors. The cyclic deformation of the material presents remarkable time-dependence and history memory phenomena. The frac...This paper proposes a novel unified visco-plastic constitutive model for uniaxial ratcheting behaviors. The cyclic deformation of the material presents remarkable time-dependence and history memory phenomena. The fractional(fractional-order)derivative is an efficient tool for modeling these phenomena. Therefore, we develop a cyclic fractional-order unified visco-plastic(FVP) constitutive model. Specifically, within the framework of the cyclic elasto-plastic theory, the fractional derivative is used to describe the accumulated plastic strain rate and nonlinear kinematic hardening rule based on the Ohno-Abdel-Karim model. Moreover, a new radial return method for the back stress is developed to describe the unclosed hysteresis loops of the stress-strain properly.The capacity of the FVP model used to predict the cyclic deformation of the SS304 stainless steel is verified through a comparison with the corresponding experimental data found in the literature(KANG, G. Z., KAN, Q. H., ZHANG, J., and SUN, Y. F. Timedependent ratcheting experiments of SS304 stainless steel. International Journal of Plasticity, 22(5), 858–894(2006)). The FVP model is shown to be successful in predicting the rate-dependent ratcheting behaviors of the SS304 stainless steel.展开更多
Both external and endogenous electrical fields widely exist in the environment of cortical neurons. The effects of a weak alternating current (AC) field on a neural network model with synaptic plasticity are studied...Both external and endogenous electrical fields widely exist in the environment of cortical neurons. The effects of a weak alternating current (AC) field on a neural network model with synaptic plasticity are studied. It is found that self-sustained rhythmic firing patterns, which are closely correlated with the cognitive functions, are significantly modified due to the self-organizing of the network in the weak AC field. The activities of the neural networks are affected by the synaptic connection strength, the exterrtal stimuli, and so on. In the presence of learning rules, the synaptic connections can be modulated by the external stimuli, which will further enhance the sensitivity of the network to the external signal. The properties of the external AC stimuli can serve as control parameters in modulating the evolution of the neural network.展开更多
文摘A method for calculation of temperature distribution in adiabatic shear band is proposed in terms of gradient-dependent plasticity where the characteristic length describes the interactions and interplaying among microstructures. First, the increment of the plastic shear strain distribution in adiabatic shear band is obtained based on gradient-dependent plasticity. Then, the plastic work distribution is derived according to the current flow shear stress and the obtained increment of plastic shear strain distribution. In the light of the well-known assumption that 90% of plastic work is converted into the heat resulting in increase in temperature in adiabatic shear band, the increment of the temperature distribution is presented. Next, the average temperature increment in the shear band is calculated to compute the change in flow shear stress due to the thermal softening effect. After the actual flow shear stress considering the thermal softening effect is obtained according to the Johnson-Cook constitutive relation, the increment of the plastic shear strain distribution, the plastic work and the temperature in the next time step are recalculated until the total time is consumed. Summing the temperature distribution leads to rise in the total temperature distribution. The present calculated maximum temperature in adiabatic shear band in titanium agrees with the experimental observations. Moreover, the temperature profiles for different flow shear stresses are qualitatively consistent with experimental and numerical results. Effects of some related parameters on the temperature distribution are also predicted.
文摘Shear localization in linear strain softening heterogeneous material under simple shear was investigated analytically. The closed-form solutions obtained based on gradient plasticity theory considering interactions and interplaying among microstructures due to heterogeneity of metal material show that in the normal direction of shear band, elastic shear displacement is linear; while plastic and total shear displacement are non-linear. Elastic shear strain in the band is uniform and the non-uniformity of total shear displacement stems from localized plastic shear displacement. In the center of the band, plastic and total shear displacement all reach their maximum values. In strain-softening process, elastic displacement decreases as flow shear stress decreases. Contrarily, plastic and total shear displacement increase and manifest shear localization occurs progressively. Under the same shear stress level, plastic and total shear displacement increase as strain softening modulus and elastic shear modulus decrease. The present analytical solutions were compared with many experimental results and the agreement is good.
基金Supported by the National Natural Science Foundation of China(50309004)。
文摘The paper concerns the issue of size law,localized deformation and dilation or compaction due to shear localization. It is assumed that the shear localization initiates at the peak shear stress in the form of single shear band,and based on gradient-dependent plasticity,an analytical solution on size effect or snap-back is obtained. The results show that the post peak response becomes steeper and even exhibits snap-back with increasing of length. For small specimen,the relative shear displacement when specimen failure occurs is lower than that of larger specimen and the shear stress-relative displacement curve becomes steeper. The theoretical solution on non-uniformity of strains in shear band is obtained and evolution of the relative shear displacement is represented. By resorting to the linear relation between local plastic shear strain and local plastic volumetric strain,the dilation and compaction within shear band are analyzed. Relation between apparent shear strain and apparent normal strain and relation between shear displacement and vertical displacement are established.
文摘Firstly, typical) gradient-dependent nonlocal inelastic models were briefly reviewed. Secondly, based on the principle of ‘gradient-dependent energy dissipation', a gradient-dependent constitutive model for plasticity coupled with isotropic damage was presented in the framework of continuum thermodynamics. Numerical scheme for calculation of Laplacian term of damage field with the numerical results obtained by FEM calculation was proposed. Equations have been presented on the basis of Taylor series for both 2-dimensional and 3-dimensional cases, respectively. Numerical results have indicated the validity of the proposed gradient-dependent model and corresponding numerical scheme.
基金This work was financially supported by the Educational Department of Liaoning Province (No.2004F052) and the National Natural Science Foundation of China (No. 50309004).
文摘Gradient-dependent plasticity is introduced into the phenomenological Johnson-Cook model to study the effects of strainhardening, strain rate sensitivity, thermal-softening, and microstructure. The microstructural effect (interactions and interplay among microstructures) due to heterogeneity of texture plays an important role in the process of development or evolution of an adiabatic shear band with a certain thickness depending on the grain diameter. The distributed plastic shear strain and deformation in the shear band are derived and depend on the critical plastic shear strain corresponding to the peak flow shear stress, the coordinate or position, the internal length parameter, and the average plastic shear strain or the flow shear stress. The critical plastic shear strain, the distributed plastic shear strain, and deformation in the shear band are numerically predicted for a kind of steel deformed at a constant shear strain rate. Beyond the peak shear stress, the local plastic shear strain in the shear band is highly nonuniform and the local plastic shear deformation in the band is highly nonlinear. Shear localization is more apparent with the increase of the average plastic shear strain. The calculated distributions of the local plastic shear strain and deformation agree with the previous numerical and experimental results.
基金Project(2004F052) supported by the Educational Department of Liaoning Province, China
文摘Gradient-dependent plasticity considering interactions and interplay among microstructures was included into JOHNSON-COOK model to calculate the temperature distribution in adiabatic shear band(ASB), the peak and average temperatures as well as their evolutions. The differential local plastic shear strain was derived to calculate the differential local plastic work and the temperature rise due to the microstructural effect. The total temperature in ASB is the sum of initial temperature, temperature rise at strain-hardening stage and non-uniform temperature due to the microstructural effect beyond the peak shear stress. The flow shear stress—average plastic shear strain curve, the temperature distribution, the peak and average temperatures in ASB are computed for Ti-6Al-4V. When the imposed shear strain is less than 2 and the shear strain rate is 1 000 s?1, the dynamic recovery and recrystalliza-tion processes occur. However, without the microstructural effect, the processes might have not occurred since heat diffusion decreases the temperature in ASB. The calculated maximum temperature approaches 1 500 K so that phase transformation might take place. The present predictions support the previously experimental results showing that the transformed and deformed ASBs are observed in Ti-6Al-4V. Higher shear strain rate enhances the possibility of dynamic recrystallization and phase transformation.
基金one part of the fruits of VHT(Virtual Heat Treatment)Project of IMS(Intelligent Manufacturing Science)Program supported by Ministry of Economy,Trade and Industries,Japan.
文摘Transformation plasticity is known to play an important role in the course of heat treatment processes, and so affect the results of heat treatment simulations, which means that the transformation plasticity coefficient is necessary to be identifies. The authors developed a new method by use of four-point bending system of a beam to identify transformation plasticity coefficient taking advantage of its easiness and high accuracy compared with other conventional methods like tension test, etc., and identified the coefficient for four kinds of steels; plane carbon steel, Cr-steel, Cr-Mo steel and bearing steel. In this paper, further experimental data are presented for the steels if the coefficient Kp during pearlite transformation depend on the applied stress. Obtained results reveals that the stress dependence of Kp is rather trivial except for uncertain tendency detected in plane carbon steel. The relation between the Kp and carbon content included is discussed in comparison with other data referred from references.
基金Item Sponsored by Educational Department of Liaoning Province of China (2004F052)
文摘To consider the effects of the interactions and interplay among microstructures, gradient-dependent models of second- and fourth-order are included in the widely used phenomenological Johnson-Cook model where the effects of strain-hardening, strain rate sensitivity, and thermal-softening are successfully described. The various parameters for 1006 steel, 4340 steel and S-7 tool steel are assigned. The distributions and evolutions of the local plastic shear strain and deformation in adiabatic shear band (ASB) are predicted. The calculated results of the second- and fourth- order gradient plasticity models are compared. S-7 tool steel possesses the steepest profile of local plastic shear strain in ASB, whereas 1006 steel has the least profile. The peak local plastic shear strain in ASB for S-7 tool steel is slightly higher than that for 4340 steel and is higher than that for 1006 steel. The extent of the nonlinear distribution of the local plastic shear deformation in ASB is more apparent for the S-7 tool steel, whereas it is the least apparent for 1006 steel. In fourth-order gradient plasticity model, the profile of the local plastic shear strain in the middle of ASB has a pronounced plateau whose width decreases with increasing average plastic shear strain, leading to a shrink of the portion of linear distribution of the profile of the local plastic shear deformation. When compared with the sec- ond-order gradient plasticity model, the fourth-order gradient plasticity model shows a lower peak local plastic shear strain in ASB and a higher magnitude of plastic shear deformation at the top or base of ASB, which is due to wider ASB. The present numerical results of the second- and fourth-order gradient plasticity models are consistent with the previous numerical and experimental results at least qualitatively.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11135001 and 11174034)
文摘Phase transitions widely exist in nature and occur when some control parameters are changed. In neural systems, their macroscopic states are represented by the activity states of neuron populations, and phase transitions between different activity states are closely related to corresponding functions in the brain. In particular, phase transitions to some rhythmic synchronous firing states play significant roles on diverse brain functions and disfunctions, such as encoding rhythmical external stimuli, epileptic seizure, etc. However, in previous studies, phase transitions in neuronal networks are almost driven by network parameters (e.g., external stimuli), and there has been no investigation about the transitions between typical activity states of neuronal networks in a self-organized way by applying plastic connection weights. In this paper, we discuss phase transitions in electrically coupled and lattice-based small-world neuronal networks (LBSW networks) under spike-timing-dependent plasticity (STDP). By applying STDP on all electrical synapses, various known and novel phase transitions could emerge in LBSW networks, particularly, the phenomenon of self-organized phase transitions (SOPTs): repeated transitions between synchronous and asynchronous firing states. We further explore the mechanics generating SOPTs on the basis of synaptic weight dynamics.
文摘Acoustic Emission Testing (AT) is one of the major non-destructive testing methods used for severity evaluation of structures. Amplitude distributions of AE signals are characterized by b-value and the value is mainly used for the severity evaluation of concrete structures until now. The value is assumed to be independent with propagation distance between acoustic emission sources to AE sensors. We evaluate the influence of the wide frequency band encountered in the fracture behavior of glass fiber reinforced plastic (GFRP) on the b-value analysis. In tensile tests, the b-value was determined from an acoustic emission (AE) source generated near a centered hole in a specimen of GFRP. At 15 mm from the hole, the b-value analysis indicated a decreasing trend with increasing tensile stress. At a propagation length of 45 mm, farthest from the hole, a?small number of AE signals were received. The attenuation is more rapid for high-frequency AE signals. Thus, the amplitude distribution bandwidth is wide and the b-value changes. This change in b-value for GFRPs is investigated by analyzing the spectral components of the AE signals. For a single-frequency AE source, the b-value is unchanged with propagation length. In contrast, multiple-frequency AE sources produce changes in b-value proportional to the fraction of each spectral component in the received signal. This is due to the frequency dependence of the attenuation with propagation length.?From these results, the b-value analysis cannot be applied to considering frequency dependence of AE attenuation.
文摘Experimental investigations were pedermed on the plastic deformation along bilinear strain paths with various values of corner-angle by subjecting thin-walled tubular specimens of type 302 stainless steel to combined axial and torsional loads. Variations of scalar and vectorial behavior of the stress response are discnssed in the vector space of plastic strain. It is found that the intrinsic geometry of loading path, the plastic strain history and the coapled effect among strain components effect effectively the stress response of the material. The experimental results also show that these effects will disappear gradually with increasing strain.
文摘Environmental conditions change constantly either by anthropogenic perturbation or naturally across space and time.Often,a change in behavior is the frst response to changing conditions.Behavioral fexibility can potentially improve an organism’s chances to survive and reproduce.Currently,we lack an understanding on the time-scale such behavioral adjustments need,how they actually affect reproduction and survival and whether behavioral adjustments are suffcient in keeping up with changing conditions.We used house mice(Mus musculus)to test whether personality and life-history traits can adjust to an experimentally induced food-switch fexibly in adulthood or by intergenerational plasticity,that is,adjustments only becoming visible in the offspring generation.Mice lived in 6 experimental populations of semi-natural environments either on high or standard quality food for 4 generations.We showed previously that high-quality food induced better conditions and a less risk-prone personality.Here,we tested whether the speed and/or magnitude of adjustment shows condition-dependency and whether adjustments incur ftness effects.Life-history but not personality traits reacted fexibly to a food-switch,primarily by a direct reduction of reproduction and sloweddown growth.Offspring whose parents received a food-switch developed a more active stress-coping personality and gained weight at a slower rate compared with their respective controls.Furthermore,the modulation of most traits was condition-dependent,with animals previously fed with high-quality food showing stronger responses.Our study highlights that life-history and personality traits adjust at different speed toward environmental change,thus,highlighting the importance of the environment and the mode of response for evolutionary models.
基金supported by National Key R&D Program of China(2019YFB2103202).
文摘Network fault diagnosis methods play a vital role in maintaining network service quality and enhancing user experience as an integral component of intelligent network management.Considering the unique characteristics of edge networks,such as limited resources,complex network faults,and the need for high real-time performance,enhancing and optimizing existing network fault diagnosis methods is necessary.Therefore,this paper proposes the lightweight edge-side fault diagnosis approach based on a spiking neural network(LSNN).Firstly,we use the Izhikevich neurons model to replace the Leaky Integrate and Fire(LIF)neurons model in the LSNN model.Izhikevich neurons inherit the simplicity of LIF neurons but also possess richer behavioral characteristics and flexibility to handle diverse data inputs.Inspired by Fast Spiking Interneurons(FSIs)with a high-frequency firing pattern,we use the parameters of FSIs.Secondly,inspired by the connection mode based on spiking dynamics in the basal ganglia(BG)area of the brain,we propose the pruning approach based on the FSIs of the BG in LSNN to improve computational efficiency and reduce the demand for computing resources and energy consumption.Furthermore,we propose a multiple iterative Dynamic Spike Timing Dependent Plasticity(DSTDP)algorithm to enhance the accuracy of the LSNN model.Experiments on two server fault datasets demonstrate significant precision,recall,and F1 improvements across three diagnosis dimensions.Simultaneously,lightweight indicators such as Params and FLOPs significantly reduced,showcasing the LSNN’s advanced performance and model efficiency.To conclude,experiment results on a pair of datasets indicate that the LSNN model surpasses traditional models and achieves cutting-edge outcomes in network fault diagnosis tasks.
文摘Fully reversed low cyclic fatigue (LCF) tests were conducted on [0 0 1], [0 1 2], [(1) over bar 1 2], [0 1 1] and [(1) over bar 1 4] oriented single crystals of nickel-bared superalloy DD3 with different cyclic strain rates at 950 degrees C. The cyclic strain rates were chosen as 1.0 x 10(-2), 1.33 x 10(-3) and 0.33 x 10(-3) s(-1). The octahedral slip systems were confirmed to be activated on all the specimens. The experimental result shows that the fatigue behavior depends an the crystallographic orientation and cyclic strain rate. Except [0 0 1] orientation specimens, it is found from the scanning electron microscopy(SEM) examination that there are typical fatigue striations on the fracture surfaces. These fatigue striations are made up of cracks. The width of the fatigue striations depends on the crystallographic orientation and varies with the total strain range. A simple linear relationship exists between the width and total shear strain range modified by an orientation and strain rate parameter. The nonconformity to the Schmid law of tensile/compressive flaw stress and plastic behavior existed at 95 degrees C, and an orientation and strain rate modified Lall-Chin-Pope ( LCP) model was derived for the nonconformity. The influence of crysrallographic orientation and cyclic strain rate on the LCF behavior can be predicted satisfactorily by the model. In terms of an orientation and strain rate modified total strain range, a model for fatigue life was proposed and used successfully to correlate the fatigue lives studied.
基金Project supported by the National Natural Science Foundation of China(Nos.11790282,U1534204,and 11472179)the Natural Science Foundation of Hebei Province of China(No.A2016210099)
文摘This paper proposes a novel unified visco-plastic constitutive model for uniaxial ratcheting behaviors. The cyclic deformation of the material presents remarkable time-dependence and history memory phenomena. The fractional(fractional-order)derivative is an efficient tool for modeling these phenomena. Therefore, we develop a cyclic fractional-order unified visco-plastic(FVP) constitutive model. Specifically, within the framework of the cyclic elasto-plastic theory, the fractional derivative is used to describe the accumulated plastic strain rate and nonlinear kinematic hardening rule based on the Ohno-Abdel-Karim model. Moreover, a new radial return method for the back stress is developed to describe the unclosed hysteresis loops of the stress-strain properly.The capacity of the FVP model used to predict the cyclic deformation of the SS304 stainless steel is verified through a comparison with the corresponding experimental data found in the literature(KANG, G. Z., KAN, Q. H., ZHANG, J., and SUN, Y. F. Timedependent ratcheting experiments of SS304 stainless steel. International Journal of Plasticity, 22(5), 858–894(2006)). The FVP model is shown to be successful in predicting the rate-dependent ratcheting behaviors of the SS304 stainless steel.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61072012, 60901035, 50907044, and 61172009)
文摘Both external and endogenous electrical fields widely exist in the environment of cortical neurons. The effects of a weak alternating current (AC) field on a neural network model with synaptic plasticity are studied. It is found that self-sustained rhythmic firing patterns, which are closely correlated with the cognitive functions, are significantly modified due to the self-organizing of the network in the weak AC field. The activities of the neural networks are affected by the synaptic connection strength, the exterrtal stimuli, and so on. In the presence of learning rules, the synaptic connections can be modulated by the external stimuli, which will further enhance the sensitivity of the network to the external signal. The properties of the external AC stimuli can serve as control parameters in modulating the evolution of the neural network.