Metal oxide-based electrocatalysts are promising alternatives to platinum group metals for water splitting due to their low cost,abundant raw materials,and impressive stability.This review covers recent progress in va...Metal oxide-based electrocatalysts are promising alternatives to platinum group metals for water splitting due to their low cost,abundant raw materials,and impressive stability.This review covers recent progress in various metal oxides tailored for hydrogen and oxygen evolution reactions,discussing their crystal structure,composition,and surface modification influence on performance.Strategies like surface engineering,doping,and nanostructuring are evaluated for enhancing catalytic activity and stability.The key considerations for commercialization are highlighted,emphasizing ongoing research,innovation,and future scope to drive widespread adoption of water-splitting technology for a cleaner and sustainable future.展开更多
Oil spills continue to generate various issues and concerns regarding their effect and behavior in the marine environment,owing to the related potential for detrimental environmental,economic and social implications.I...Oil spills continue to generate various issues and concerns regarding their effect and behavior in the marine environment,owing to the related potential for detrimental environmental,economic and social implications.It is essential to have a solid understanding of the ways in which oil interacts with the water and the coastal ecosystems that are located nearby.This study proposes a simplified model for predicting the plume-like transport behavior of heavy Bunker C fuel oil discharging downward from an acutely-angled broken pipeline located on the water surface.The results show that the spill overall profile is articulated in three major flow areas.The first,is the source field,i.e.,a region near the origin of the initial jet,followed by the intermediate or transport field,namely,the region where the jet oil flow transitions into an underwater oil plume flow and starts to move horizontally,and finally,the far-field,where the oil re-surface and spreads onto the shore at a significant distance from the spill site.The behavior of the oil in the intermediate field is investigated using a simplified injection-type oil spill model capable of mimicking the undersea trapping and lateral migration of an oil plume originating from a negatively buoyant jet spill.A rectangular domain with proper boundary conditions is used to implement the model.The Projection approach is used to discretize a modified version of the Navier-Stokes equations in two dimensions.A benchmark fluid flow issue is used to verify the model and the results indicate a reasonable relationship between specific gravity and depth as well as agreement with the aerial data and a vertical temperature profile plot.展开更多
Recently,piezocatalysis has attracted considerable attention as a new type of renewable mechanical energy conversion technology,which relies on the strain induced polarization of the piezoelectric material.This new te...Recently,piezocatalysis has attracted considerable attention as a new type of renewable mechanical energy conversion technology,which relies on the strain induced polarization of the piezoelectric material.This new technology has been extensively applied in the applications of water splitting,water remediation,gas purification and tumor therapy.Despite the rapid development in the piezo-catalysis,the utilization of piezoelectric materials for synthetic purpose is still under exploration.Piezoelectric means to promote or-ganic reactions expand the scope of piezoelectrically mediated reactions and show successes in both organic and polymer synthesis.Herein,we provide a comprehensive review on recent progress of piezoelectrically mediated reactions,catalytic mechanisms and applications in the last few years.The limitations and future directions of this area are also discussed.We believe this review will provide new insights into the underlying mechanism of piezoelectric mediated electron transfer process and guide the design of new chemistry.展开更多
文摘Metal oxide-based electrocatalysts are promising alternatives to platinum group metals for water splitting due to their low cost,abundant raw materials,and impressive stability.This review covers recent progress in various metal oxides tailored for hydrogen and oxygen evolution reactions,discussing their crystal structure,composition,and surface modification influence on performance.Strategies like surface engineering,doping,and nanostructuring are evaluated for enhancing catalytic activity and stability.The key considerations for commercialization are highlighted,emphasizing ongoing research,innovation,and future scope to drive widespread adoption of water-splitting technology for a cleaner and sustainable future.
文摘Oil spills continue to generate various issues and concerns regarding their effect and behavior in the marine environment,owing to the related potential for detrimental environmental,economic and social implications.It is essential to have a solid understanding of the ways in which oil interacts with the water and the coastal ecosystems that are located nearby.This study proposes a simplified model for predicting the plume-like transport behavior of heavy Bunker C fuel oil discharging downward from an acutely-angled broken pipeline located on the water surface.The results show that the spill overall profile is articulated in three major flow areas.The first,is the source field,i.e.,a region near the origin of the initial jet,followed by the intermediate or transport field,namely,the region where the jet oil flow transitions into an underwater oil plume flow and starts to move horizontally,and finally,the far-field,where the oil re-surface and spreads onto the shore at a significant distance from the spill site.The behavior of the oil in the intermediate field is investigated using a simplified injection-type oil spill model capable of mimicking the undersea trapping and lateral migration of an oil plume originating from a negatively buoyant jet spill.A rectangular domain with proper boundary conditions is used to implement the model.The Projection approach is used to discretize a modified version of the Navier-Stokes equations in two dimensions.A benchmark fluid flow issue is used to verify the model and the results indicate a reasonable relationship between specific gravity and depth as well as agreement with the aerial data and a vertical temperature profile plot.
基金supported by the National Natural Science Foundation of China(22101195 and 21925107)the Natural Science Foundation of liangsu Province(BK20210732)+2 种基金the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)the Program of Innovative Research Team of Soochow UniversityWe thank Dr.Bo Tang for the helpful discussion and support from the Special Key Project of Technology Innovation and Application Development of Chongqing(No.cstc2020jscx-dxwtBx0025).
文摘Recently,piezocatalysis has attracted considerable attention as a new type of renewable mechanical energy conversion technology,which relies on the strain induced polarization of the piezoelectric material.This new technology has been extensively applied in the applications of water splitting,water remediation,gas purification and tumor therapy.Despite the rapid development in the piezo-catalysis,the utilization of piezoelectric materials for synthetic purpose is still under exploration.Piezoelectric means to promote or-ganic reactions expand the scope of piezoelectrically mediated reactions and show successes in both organic and polymer synthesis.Herein,we provide a comprehensive review on recent progress of piezoelectrically mediated reactions,catalytic mechanisms and applications in the last few years.The limitations and future directions of this area are also discussed.We believe this review will provide new insights into the underlying mechanism of piezoelectric mediated electron transfer process and guide the design of new chemistry.