Over the past few decades, spin detection and manipulation at the atomic scale using scanning tunneling microcopy has matured, which has opened the possibility of realizing spin-based functional devices with single at...Over the past few decades, spin detection and manipulation at the atomic scale using scanning tunneling microcopy has matured, which has opened the possibility of realizing spin-based functional devices with single atoms and molecules.This article reviews the principle of spin polarized scanning tunneling microscopy and inelastic tunneling spectroscopy,which are used to measure the static spin structure and dynamic spin excitation, respectively. Recent progress will be presented, including complex spin structure, magnetization of single atoms and molecules, as well as spin excitation of single atoms, clusters, and molecules. Finally, progress in the use of spin polarized tunneling current to manipulate an atomic magnet is discussed.展开更多
An FS/FE/NS/FE/FS double tunnel junction is suggested to have the ability to inject, modulate and detect the spin-polarized current electrically in a single device, where FS is the ferromagnetic semiconductor electrod...An FS/FE/NS/FE/FS double tunnel junction is suggested to have the ability to inject, modulate and detect the spin-polarized current electrically in a single device, where FS is the ferromagnetic semiconductor electrode, NS is the nonmagnetic semiconductor, and FE the ferroelectric barrier. The spin polarization of the current injected into the NS region can be switched between a highly spin-polarized state and a spin unpolarized state. The high spin polarization may be detected by measuring the tunneling magnetoresistance ratio of the double tunnel junction.展开更多
We theoretically study the spin transport through a two-terminal quantum dot device under the influence of a symmetric spin bias and circularly polarized light. It is found that the combination of the circularly polar...We theoretically study the spin transport through a two-terminal quantum dot device under the influence of a symmetric spin bias and circularly polarized light. It is found that the combination of the circularly polarized light and the applied spin bias can result in a net charge current. The resultant charge current is large enough to be measured when properly choosing the system parameters. The resultant charge current can be used to deduce the spin bias due to the fact that there exists a simple linear relation between them. When the external circuit is open, a charge bias instead of a charge current can be induced, which is also measurable by present technologies. These findings indicate a new approach to detect the spin bias by using circularly polarized light.展开更多
Research in the spintronics community has been intensively stimulated by the proposal of the spin field-effect transistor(SFET),which has the potential for combining the data storage and process in a single device.Her...Research in the spintronics community has been intensively stimulated by the proposal of the spin field-effect transistor(SFET),which has the potential for combining the data storage and process in a single device.Here we report the spin dependent transport on a Fe_(3)O_(4)/GaAs based lateral structured device.Parallel and antiparallel states of two Fe_(3)O_(4) electrodes are achieved.A clear MR loop shows the perfect butterfly shape at room temperature,of which the intensity decreases with the reducing current,showing the strong bias dependence.Understanding the spin-dependent transport properties in this architecture has strong implication in further development of the spintronic devices for room-temperature SFETs.展开更多
Optically levitated nano-particle with spins is a promising system for high-precision measurement and quantum information processing. We theoretically analyze the ratio between the fluctuation of particle's displa...Optically levitated nano-particle with spins is a promising system for high-precision measurement and quantum information processing. We theoretically analyze the ratio between the fluctuation of particle's displacement caused by spins in magnetic field and caused by molecular collisions of the residual air. When the ratio is larger than unity, the displacement fluctuation of spins flipping can be remarkably detected. By theoretical analysis and numerical simulation, we propose and validate a scheme for the detection of gradient of the magnetic field by levitating ferromagnetic nano-particle, and also put forward a realizable detection scheme of the single spin by levitating nano-diamond particle with single nitrogen-vacancy(NV) centers.展开更多
A rapid, simple and selective method based on molecularly imprinted, spin column extraction coupled with fluorescence detection was successfully established for the determination of 2,4-dinitrophenol in serum samples....A rapid, simple and selective method based on molecularly imprinted, spin column extraction coupled with fluorescence detection was successfully established for the determination of 2,4-dinitrophenol in serum samples. The 2,4-dinitrophenol imprinted polymers exhibited highly selective recognition for the template molecule and the maximum adsorption capacity was 138.9 mg/g. The results indicated that when water is used as the loading solution, only 2,4-dinitrophenol could be adsorbed on the spin column without the remaining structural analogs(2-nitrophenol, 4-nitrophenol and phenol). After eluting with acetonitrile/acetic acid(9/1, v/v), 2,4-dinitrophenol in serum samples could be determined by using the fluorescence spectrometer, based on the fluorescence enhancement of fluorescein by the template molecule. Under the optimal conditions, the spiked recovery ranged from 95.8% to 103.4% and the detection limit was 1 nmol/L. The results confirmed the reliability and practicality of the protocol and revealed a good perspective of this method for biological sample analysis.展开更多
The Nitrogen Vacancy (NV) center is becoming a promising qubit for quantum information processing. The defect has a long coherence time at room temperature and it allows spin state initialized and read out by laser ...The Nitrogen Vacancy (NV) center is becoming a promising qubit for quantum information processing. The defect has a long coherence time at room temperature and it allows spin state initialized and read out by laser and manipulated by microwave pulses. It has been utilized as a ultra sensi- tive probe for magnetic fields and remote spins as well. Here, we review the recent progresses in experimental demonstrations based on NV centers. We first introduce our work on implementation of the Deutsch- Jozsa algorithm with a single electronic spin in diamond. Then the quantum nature of the bath around the center spin is revealed and continuous wave dynamical decoupling has been demonstrated. By applying dynamical decoupling, a multi-pass quantum metrology protocol is realized to enhance phase estimation. In the final, we demonstrated NV center can be regarded as a ultra-sensitive sensor spin to implement nuclear magnetic resonance (NMR) imaging at nanoscale.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11427902 and 11674063)the National Key Research and Development Program of China(Grant No.2016YFA0300904)
文摘Over the past few decades, spin detection and manipulation at the atomic scale using scanning tunneling microcopy has matured, which has opened the possibility of realizing spin-based functional devices with single atoms and molecules.This article reviews the principle of spin polarized scanning tunneling microscopy and inelastic tunneling spectroscopy,which are used to measure the static spin structure and dynamic spin excitation, respectively. Recent progress will be presented, including complex spin structure, magnetization of single atoms and molecules, as well as spin excitation of single atoms, clusters, and molecules. Finally, progress in the use of spin polarized tunneling current to manipulate an atomic magnet is discussed.
基金Project supported by the State Key Program for Basic Research of China (Grant Nos 2009CB929504,2006CB921803 and 2004CB619004)
文摘An FS/FE/NS/FE/FS double tunnel junction is suggested to have the ability to inject, modulate and detect the spin-polarized current electrically in a single device, where FS is the ferromagnetic semiconductor electrode, NS is the nonmagnetic semiconductor, and FE the ferroelectric barrier. The spin polarization of the current injected into the NS region can be switched between a highly spin-polarized state and a spin unpolarized state. The high spin polarization may be detected by measuring the tunneling magnetoresistance ratio of the double tunnel junction.
基金Supported by the National Natural Science Foundation of China under Grant No 11404142the Youth Teacher Foundation of Huaiyin Institute of Technology under Grant No 2717577
文摘We theoretically study the spin transport through a two-terminal quantum dot device under the influence of a symmetric spin bias and circularly polarized light. It is found that the combination of the circularly polarized light and the applied spin bias can result in a net charge current. The resultant charge current is large enough to be measured when properly choosing the system parameters. The resultant charge current can be used to deduce the spin bias due to the fact that there exists a simple linear relation between them. When the external circuit is open, a charge bias instead of a charge current can be induced, which is also measurable by present technologies. These findings indicate a new approach to detect the spin bias by using circularly polarized light.
基金supported by the National Key Research and Development Program of China(Grant No.2017YFA0204800)the National Natural Science Foundation of China(Grant Nos.52071079 and 11504047)。
文摘Research in the spintronics community has been intensively stimulated by the proposal of the spin field-effect transistor(SFET),which has the potential for combining the data storage and process in a single device.Here we report the spin dependent transport on a Fe_(3)O_(4)/GaAs based lateral structured device.Parallel and antiparallel states of two Fe_(3)O_(4) electrodes are achieved.A clear MR loop shows the perfect butterfly shape at room temperature,of which the intensity decreases with the reducing current,showing the strong bias dependence.Understanding the spin-dependent transport properties in this architecture has strong implication in further development of the spintronic devices for room-temperature SFETs.
基金Supported by the National Natural Science Foundation of China under Grant Nos.11374032,61435007,and 11704026the Joint Fund of the Ministry of Education of China under Grant No.6141A02011604+1 种基金NSAF(China)under Grant No.U1530401National Key Research and Development Program of China under Grant No.2016YFA0301201
文摘Optically levitated nano-particle with spins is a promising system for high-precision measurement and quantum information processing. We theoretically analyze the ratio between the fluctuation of particle's displacement caused by spins in magnetic field and caused by molecular collisions of the residual air. When the ratio is larger than unity, the displacement fluctuation of spins flipping can be remarkably detected. By theoretical analysis and numerical simulation, we propose and validate a scheme for the detection of gradient of the magnetic field by levitating ferromagnetic nano-particle, and also put forward a realizable detection scheme of the single spin by levitating nano-diamond particle with single nitrogen-vacancy(NV) centers.
基金supported by National Key Technology R&D Program in the 11th Five-Year Plan of China(No.2009BADB9B02)
文摘A rapid, simple and selective method based on molecularly imprinted, spin column extraction coupled with fluorescence detection was successfully established for the determination of 2,4-dinitrophenol in serum samples. The 2,4-dinitrophenol imprinted polymers exhibited highly selective recognition for the template molecule and the maximum adsorption capacity was 138.9 mg/g. The results indicated that when water is used as the loading solution, only 2,4-dinitrophenol could be adsorbed on the spin column without the remaining structural analogs(2-nitrophenol, 4-nitrophenol and phenol). After eluting with acetonitrile/acetic acid(9/1, v/v), 2,4-dinitrophenol in serum samples could be determined by using the fluorescence spectrometer, based on the fluorescence enhancement of fluorescein by the template molecule. Under the optimal conditions, the spiked recovery ranged from 95.8% to 103.4% and the detection limit was 1 nmol/L. The results confirmed the reliability and practicality of the protocol and revealed a good perspective of this method for biological sample analysis.
基金Acknowledgements This work was supported by the National Key Basic Research Program of China (Grant No. 2013CB921800), the National Natural Science Foundation of China (Grant Nos. 11227901, 11275183, 91021005, and 10834005), the 'Strategic Priority Research Program (B)' of the CAS (Grant No. XDB01030400) and the Fundamental Research Funds for the Central Universities.
文摘The Nitrogen Vacancy (NV) center is becoming a promising qubit for quantum information processing. The defect has a long coherence time at room temperature and it allows spin state initialized and read out by laser and manipulated by microwave pulses. It has been utilized as a ultra sensi- tive probe for magnetic fields and remote spins as well. Here, we review the recent progresses in experimental demonstrations based on NV centers. We first introduce our work on implementation of the Deutsch- Jozsa algorithm with a single electronic spin in diamond. Then the quantum nature of the bath around the center spin is revealed and continuous wave dynamical decoupling has been demonstrated. By applying dynamical decoupling, a multi-pass quantum metrology protocol is realized to enhance phase estimation. In the final, we demonstrated NV center can be regarded as a ultra-sensitive sensor spin to implement nuclear magnetic resonance (NMR) imaging at nanoscale.