Owing to the distinctive structural characteristics,vanadium nitride(VN)is highly regarded as a catalyst for oxygen reduction reaction(ORR)in zinc-air batteries(ZABs).However,VN exhibits limited intrinsic ORR activity...Owing to the distinctive structural characteristics,vanadium nitride(VN)is highly regarded as a catalyst for oxygen reduction reaction(ORR)in zinc-air batteries(ZABs).However,VN exhibits limited intrinsic ORR activity due to the weak adsorption ability to O-containing species.Here,the S-doped VN anchored on N,S-doped multi-dimensional carbon(S-VN/Co/NS-MC)was constructed using the solvothermal and in-situ doping methods.Incorporating sulfur atoms into VN species alters the electron spin state of vanadium in the S-VN/Co/NS-MC for regulating the adsorption energy of vanadium sites to oxygen molecules.The introduced sulfur atoms polarize the V 3d_(z)^(2) electrons,shifting spin-down electrons closer to the Fermi level in the S-VN/Co/NS-MC.Consequently,the introduction of sulfur atoms into VN species enhances the adsorption energy of vanadium sites for oxygen molecules.The*OOH dissociation transitions from being unspontaneous on the VN surface to a spontaneous state on the S-doped VN surface.Then,the ORR barrier on the S-VN/Co/NS-MC surface is reduced.The S-VN/Co/NS-MC demonstrates a higher half-wave potential and limiting current density compared to the VN/Co/N-MC.The S-VN/Co/NS-MC-based liquid ZABs display a power density of 195.7 m W cm^(-2),a specific capacity of 815.7 m A h g^(-1),and a cycling stability exceeding 250 h.The S-VN/Co/NS-MC-based flexible ZABs are successfully employed to charge both a smart watch and a mobile phone.This approach holds promise for advancing the commercial utilization of VN-based catalysts in ZABs.展开更多
The distribution of the nuclear ground-state spin in a two-body random ensemble(TBRE)was studied using a general classification neural network(NN)model with two-body interaction matrix elements as input features and t...The distribution of the nuclear ground-state spin in a two-body random ensemble(TBRE)was studied using a general classification neural network(NN)model with two-body interaction matrix elements as input features and the corresponding ground-state spins as labels or output predictions.The quantum many-body system problem exceeds the capability of our optimized NNs in terms of accurately predicting the ground-state spin of each sample within the TBRE.However,our NN model effectively captured the statistical properties of the ground-state spin because it learned the empirical regularity of the ground-state spin distribution in TBRE,as discovered by physicists.展开更多
The exploration of spin symmetry (SS) in nuclear physics has been instrumental in identifying atomic nucleus structures.In this study,we solve the Dirac equation from the relativistic mean field (RMF) in complex momen...The exploration of spin symmetry (SS) in nuclear physics has been instrumental in identifying atomic nucleus structures.In this study,we solve the Dirac equation from the relativistic mean field (RMF) in complex momentum representation.We investigated SS and its breaking in single-particle resonant states within deformed nuclei,with a focus on the illustrative nucleus168Er.This was the initial discovery of a resonant spin doublet in a deformed nucleus,with the expectation of the SS approaching the continuum threshold.With increasing single-particle energy,the splitting of the resonant spin doublets widened significantly.This escalating splitting implies diminishing adherence to the SS,indicating a departure from the expected behavior as the energy levels increase.We also analyzed the width of the resonant states,showing that lower orbital angular momentum resonances possess shorter decay times and that SS is preserved within broad resonant doublets,as opposed to narrow resonant doublets.Comparing the radial density of the upper components for the bound-state and resonant-state doublets,it becomes evident that while SS is well-preserved in the bound states,it deteriorates in the resonant states.The impact of nuclear deformation (β_(2)) on SS was examined,demonstrating that an increase in β_(2) resulted in higher energy and width splitting in the resonant spin doublets,which is attributed to increased component mixing.Furthermore,the sensitivity of spin doublets to various potential parameters such as surface diffuseness (a),radius (R),and depth (Σ0) is discussed,emphasizing the role of these parameters in SS.This study provides valuable insights into the behavior of spin doublets in deformed nuclei and their interplay with the nuclear structure,thereby advancing our understanding of SS in the resonance state.展开更多
Iron is an impurity widely occurred in sphalerite,and its effect on sphalerite flotation is complex.In this work,the effects of iron content and spin state on electronic properties and floatability of iron-bearing sph...Iron is an impurity widely occurred in sphalerite,and its effect on sphalerite flotation is complex.In this work,the effects of iron content and spin state on electronic properties and floatability of iron-bearing sphalerite are comprehensively studied using density functional theory Hubbard U(DFT+U)calculations combined with coordination chemistry flotation.The band gap of ideal sphalerite is 3.723 eV,and thus electron transition is difficult to occur,resulting in poor floatability.The results suggest the band gap of sphalerite decreases with increasing iron content.For low iron content,the decreased band gap facilitates electron transition;at this case,Fe^(2+)in a high-spin state possesses oneπelectron pair,which can form a weakπ-backbonding with xanthate,causing increasing floatability.However,for medium and high iron-bearing sphalerite,with the further decrease of band gap,Fe^(2+)is oxidized to Fe^(3+)due to electrochemical interaction,and henceπ-backbonding is eliminated,leading to lower floatability of iron-bearing sphalerite,which is consistent with the flotation experimental results.This work could give a deeper understanding of how sphalerite flotation behaviors are affected by iron content.展开更多
By the first-principles calculations, most studies indicated that the (1102)-CoO2 termination of LaCoO3 cannot be stabilized, which disagrees with the experimental observation. Besides the crystal structure, we foun...By the first-principles calculations, most studies indicated that the (1102)-CoO2 termination of LaCoO3 cannot be stabilized, which disagrees with the experimental observation. Besides the crystal structure, we found that the spin states of Co3+ ions could affect surface stability, which previously were not well considered. By examining the different states of Co3+ ions in hexagonal-phase LaCoO3, including low spin, intermediate spin, and high spin states, the surface grand potentials of these facets are calculated and compared. The results show that the spin states of Co3+ ions have an important influence on stability of the LaCoO3 facets. Different from the previous results, the stability diagrams demonstrate that the (1102)- CoO2 termination can stably exist under O-rich condition, which can get an agreement with the experimental ones. Furthermore, the surface oxygen vacancy formation energies (Eov) of stable facets are computed in different spin states. The Eov of these possible exposed terminations strongly depend on the spin state of Co3+ ions: in particular, the Eov of the HS states is lower than that of other spin states. This indicates that one can tune the properties of LaCoO3 by directly tuning the spin states of Co3+ ions.展开更多
Metal-organic frameworks(MOFs)have been developed as an ideal platform for exploration of the relationship between intrinsic structure and catalytic activity,but the limited catalytic activity and stability has hamper...Metal-organic frameworks(MOFs)have been developed as an ideal platform for exploration of the relationship between intrinsic structure and catalytic activity,but the limited catalytic activity and stability has hampered their practical use in water splitting.Herein,we develop a bond length adjustment strategy for optimizing naphthalene-based MOFs that synthesized by acid etching Co-naphthalenedicarboxylic acid-based MOFs(donated as AE-CoNDA)to serve as efficient catalyst for water splitting.AE-CoNDA exhibits a low overpotential of 260 mV to reach 10 mA cm^(−2)and a small Tafel slope of 62 mV dec^(−1)with excellent stability over 100 h.After integrated AE-CoNDA onto BiVO_(4),photocurrent density of 4.3 mA cm^(−2)is achieved at 1.23 V.Experimental investigations demonstrate that the stretched Co-O bond length was found to optimize the orbitals hybridization of Co 3d and O 2p,which accounts for the fast kinetics and high activity.Theoretical calculations reveal that the stretched Co-O bond length strengthens the adsorption of oxygen-contained intermediates at the Co active sites for highly efficient water splitting.展开更多
We investigate the stability of magnetization in free layer where the spin torque is induced by the spin Hall effect.In terms of the Landau–Liftshitz–Gilbert equation,we find the low-energy and high-energy equilibri...We investigate the stability of magnetization in free layer where the spin torque is induced by the spin Hall effect.In terms of the Landau–Liftshitz–Gilbert equation,we find the low-energy and high-energy equilibrium states,as well as the saddle points.The stability region is defined in the phase diagram spanned by the current density and the spin Hall angle.The spin Hall effect makes the previous saddle point into a stable state above a critical current.However,in the presence of magnetic field,the spin Hall effect leads to the opposite changes in the stable regions of the two low-energy states.展开更多
The helicity-dependent photoconductance of the edge states in three-dimensional topological insulator Bi_(2)Te_(3)films is investigated.It is revealed that the helicity-dependent photoconductivity current on the left ...The helicity-dependent photoconductance of the edge states in three-dimensional topological insulator Bi_(2)Te_(3)films is investigated.It is revealed that the helicity-dependent photoconductivity current on the left edge of the Bi_(2)Te_(3)film shows an opposite sign with that on the right edge.In addition,the helicity-dependent photoconductivity current increases linearly with the applied longitudinal electric field,and it reverses the sign with the reversal of the electric field.As the thickness of the Bi_(2)Te_(3)film increases,the helicity-dependent photoconductivity current also increases.Theoretical analysis suggests that the helicity-dependent photo-conductivity current may come from the intrinsic spin orbit coupling(SOC)or the SOC introduced by the chiral impurities or defects.展开更多
We investigate phase diffusion of a two-component Bose--Einstein condensates prepared initially in arbitrary coherent spin state |θ0,φ0|. Analytical expression of the phase-diffusion time is presented for θ0~π/...We investigate phase diffusion of a two-component Bose--Einstein condensates prepared initially in arbitrary coherent spin state |θ0,φ0|. Analytical expression of the phase-diffusion time is presented for θ0~π/2 case. In comparison with the symmetrical case (i.e., θ0=π/2), we find that the diffusion process becomes slow due to the reduced atom number variance.展开更多
There is a quantum spin Hall state in the inverted HgTe quantum well, characterized by the topologically protected gapless helical edge states lying within the bulk gap. It has been found that for a strip of finite wi...There is a quantum spin Hall state in the inverted HgTe quantum well, characterized by the topologically protected gapless helical edge states lying within the bulk gap. It has been found that for a strip of finite width, the edge states on the two sides can couple together to produce a gap in the spectrum. The phenomenon is called the finite size effect in quantum spin Hall systems. In this paper, we investigate the effects of the spin-orbit coupling due to bulk- and structure-inversion asymmetries on the finite size effect in the HgTe quantum well by means of the numerical diagonalization method. When the bulk-inversion asymmetry is taken into account, it is shown that the energy gap Eg of the edge states due to the finite size effect features an oscillating exponential decay as a function of the strip width of the HgTe quantum well. The origin of this oscillatory pattern on the exponential decay is explained. Furthermore, if the bulk- and structure-inversion asymmetries are considered simultaneously, the structure-inversion asymmetry will induce a shift of the energy gap Eg closing point. Finally, based on the roles of the bulk- and structure-inversion asymmetries on the finite size effects, a way to realize the quantum spin Hall field effect transistor is proposed.展开更多
The spin crossover(SCO) compound [Fe(bapbpy)(NCS)2],where bapbpy contains two fused N,N-bis(2-pyridyl)amines,has been studied by DFT/TD-DFT/BS-DFT methods.Several density functionals and basis sets were used i...The spin crossover(SCO) compound [Fe(bapbpy)(NCS)2],where bapbpy contains two fused N,N-bis(2-pyridyl)amines,has been studied by DFT/TD-DFT/BS-DFT methods.Several density functionals and basis sets were used in the calculation to obtain optimized geometries of the compound in the low-(LS) and high-spin(HS) states.The vibrational modes and IR spectra,spin splitting energies,excited states and UV/Vis absorption spectra were obtained.The structural parameters of the calculated isolated complex are in good agreement with the X-ray data.We investigate three dimers of [Fe(bapbpy)(NCS)2] complex for their magnetic properties.It has been found that the complex(1,3) has ferromagnetic character while the others are antiferromagnetic in nature by using a broken symmetry approach in the DFT framework(BS-DFT) with support from the coupling constant values(J) and spin density plots.展开更多
Based on the conclusion that the generalized Bargmann representation of a two-mode Fock state is a two-variable Hermite polynomial function /Hong-Yi Fan and Jun-hua Chen,Phys.Lett.A303(2002)311] we derive the generali...Based on the conclusion that the generalized Bargmann representation of a two-mode Fock state is a two-variable Hermite polynomial function /Hong-Yi Fan and Jun-hua Chen,Phys.Lett.A303(2002)311] we derive the generalized Bargmann representation of the spin coherent state and some new relations in the generalized function space.展开更多
As a demonstration of the spectrum-parity matching condition (SPMC) for quantum state transfer, we investigate the propagation of single-magnon state in the Heisenberg chain in the confined external tangent magnetic...As a demonstration of the spectrum-parity matching condition (SPMC) for quantum state transfer, we investigate the propagation of single-magnon state in the Heisenberg chain in the confined external tangent magnetic field analytically and numerically. It shows that the initial Gaussian wave packet can be retrieved at the counterpart location near-perfectly over a longer distance if the dispersion relation of the system meets the SPMC approximately.展开更多
The photon-added spin coherent state as a new kind of coherent state has been defined by iterated actions of the proper raising operator on the ordinary spin coherent state. In this paper, the quantum statistical prop...The photon-added spin coherent state as a new kind of coherent state has been defined by iterated actions of the proper raising operator on the ordinary spin coherent state. In this paper, the quantum statistical properties of photon-added spin coherent states such as photon number distribution, second-order correlation function and Wigner function are studied. It is found that the Wigner function shows the negativity in some regions and the second-order correlation function is less than unity. Therefore, the photon-added spin coherent state is a nonclassical state.展开更多
In view of the low resolution and accuracy of traditional magnetometer,a method of microwave frequency modulation technology based on nitrogen-vacancy(NV)center in diamond for magnetic detection was proposed.The magne...In view of the low resolution and accuracy of traditional magnetometer,a method of microwave frequency modulation technology based on nitrogen-vacancy(NV)center in diamond for magnetic detection was proposed.The magnetometer studied can reduce the frequency noise of system and improve the magnetic sensitivity by microwave frequency modulation.Firstly,ESR spectra by sweeping the microwave frequency was obtained.Further,the microwave frequency modulated was gained through the mixed high-frequency sinusoidal modulation signal generated by signal generator.In addition,the frequency through the lock-in amplifier was locked,and the signal which was proportional to the first derivative of the spectrum was obtained.The experimental results show that the sensitivity of magnetic field detection can reach 17.628 nT/Hz based on microwave frequency modulation technology.The method realizes high resolution and sensitivity for magnetic field detection.展开更多
Inner edge state with spin and valley degrees of freedom is a promising candidate for designing a dissipationless device due to the topological protection. The central challenge for the application of the inner edge s...Inner edge state with spin and valley degrees of freedom is a promising candidate for designing a dissipationless device due to the topological protection. The central challenge for the application of the inner edge state is to generate and modulate the polarized currents. In this work, we discover a new mechanism to generate fully valley-and spin–valley-polarized current caused by the Bloch wavevector mismatch(BWM). Based on this mechanism, we design some serial-typed inner-edge filters. By using once of the BWM, the coincident states could be divided into transmitted and reflected modes, which can serve as a valley or spin–valley filter. In particular, while with twice of the BWM, the incident current is absolutely reflected to support an off state with a specified valley and spin, which is different from the gap effect.These findings give rise to a new platform for designing valleytronics and spin-valleytronics.展开更多
We propose a different entanglement concentration protocol (ECP) for nonlocal N-electron systems in a partially entangled Bell-type pure state using the CNOT gates and the projection measurements on an additional el...We propose a different entanglement concentration protocol (ECP) for nonlocal N-electron systems in a partially entangled Bell-type pure state using the CNOT gates and the projection measurements on an additional electron. For each nonlocal N-electron system, Alice first entangles it with the additional electron, and then she projects the additional electron onto an orthogonal basis for dividing the N-electron systems into two groups. In the first group, the N parties obtain a subset of N-electron systems in a maximally entangled state directly. In the second group, they obtain some less-entangled N-electron systems, which are the resource for the entanglement concentration in the next round. By iterating the entanglement concentration process several times, the present ECP has the maximal success probability, which is the theoretical limit of an ECP, equal to the entanglement of the partially entangled state, and higher than the others. This ECP may be useful in quantum computers based on electron-spin systems in the future.展开更多
The celebrated Majorana representation is exploited to investigate spin squeezing in different classes of pure symmetric states of N qubits with two distinct spinors, namely the Dicke-class of states. On obtaining a g...The celebrated Majorana representation is exploited to investigate spin squeezing in different classes of pure symmetric states of N qubits with two distinct spinors, namely the Dicke-class of states. On obtaining a general expression for spin squeezing parameter, the variation of squeezing for different configurations is studied in detail. It is shown that the states in the Dicke-class, characterized by two-distinct non-orthogonal spinors, exhibit squeezing.展开更多
We study the spatiotemporal Bloch states of a high-frequency driven two-component Bose–Einstein condensate(BEC)with spin–orbit coupling(SOC) in an optical lattice. By adopting the rotating-wave approximation(RWA) an...We study the spatiotemporal Bloch states of a high-frequency driven two-component Bose–Einstein condensate(BEC)with spin–orbit coupling(SOC) in an optical lattice. By adopting the rotating-wave approximation(RWA) and applying an exact trial-solution to the corresponding quasistationary system, we establish a different method for tuning SOC via external field such that the existence conditions of the exact particular solutions are fitted. Several novel features related to the exact states are demonstrated; for example, SOC leads to spin–motion entanglement for the spatiotemporal Bloch states, SOC increases the population imbalance of the two-component BEC, and SOC can be applied to manipulate the stable atomic flow which is conducive to control quantum transport of the BEC for different application purposes.展开更多
基金financially supported by the National Natural Science Foundation of China(Grant Nos.22178148,22278193,22075113)the Jiangsu Province and Education Ministry Co-Sponsored Synergistic Innovation Center of Modern Agricultural Equipment(Grant No.XTCX2029)+1 种基金a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutionsthe Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.KYCX22_3691)。
文摘Owing to the distinctive structural characteristics,vanadium nitride(VN)is highly regarded as a catalyst for oxygen reduction reaction(ORR)in zinc-air batteries(ZABs).However,VN exhibits limited intrinsic ORR activity due to the weak adsorption ability to O-containing species.Here,the S-doped VN anchored on N,S-doped multi-dimensional carbon(S-VN/Co/NS-MC)was constructed using the solvothermal and in-situ doping methods.Incorporating sulfur atoms into VN species alters the electron spin state of vanadium in the S-VN/Co/NS-MC for regulating the adsorption energy of vanadium sites to oxygen molecules.The introduced sulfur atoms polarize the V 3d_(z)^(2) electrons,shifting spin-down electrons closer to the Fermi level in the S-VN/Co/NS-MC.Consequently,the introduction of sulfur atoms into VN species enhances the adsorption energy of vanadium sites for oxygen molecules.The*OOH dissociation transitions from being unspontaneous on the VN surface to a spontaneous state on the S-doped VN surface.Then,the ORR barrier on the S-VN/Co/NS-MC surface is reduced.The S-VN/Co/NS-MC demonstrates a higher half-wave potential and limiting current density compared to the VN/Co/N-MC.The S-VN/Co/NS-MC-based liquid ZABs display a power density of 195.7 m W cm^(-2),a specific capacity of 815.7 m A h g^(-1),and a cycling stability exceeding 250 h.The S-VN/Co/NS-MC-based flexible ZABs are successfully employed to charge both a smart watch and a mobile phone.This approach holds promise for advancing the commercial utilization of VN-based catalysts in ZABs.
基金supported by the National Natural Science Foundation of China Youth Fund(12105234)。
文摘The distribution of the nuclear ground-state spin in a two-body random ensemble(TBRE)was studied using a general classification neural network(NN)model with two-body interaction matrix elements as input features and the corresponding ground-state spins as labels or output predictions.The quantum many-body system problem exceeds the capability of our optimized NNs in terms of accurately predicting the ground-state spin of each sample within the TBRE.However,our NN model effectively captured the statistical properties of the ground-state spin because it learned the empirical regularity of the ground-state spin distribution in TBRE,as discovered by physicists.
基金supported by the National Natural Science Foundation of China(No.11935001)the Natural Science Foundation of Anhui Province(No.2008085MA26).
文摘The exploration of spin symmetry (SS) in nuclear physics has been instrumental in identifying atomic nucleus structures.In this study,we solve the Dirac equation from the relativistic mean field (RMF) in complex momentum representation.We investigated SS and its breaking in single-particle resonant states within deformed nuclei,with a focus on the illustrative nucleus168Er.This was the initial discovery of a resonant spin doublet in a deformed nucleus,with the expectation of the SS approaching the continuum threshold.With increasing single-particle energy,the splitting of the resonant spin doublets widened significantly.This escalating splitting implies diminishing adherence to the SS,indicating a departure from the expected behavior as the energy levels increase.We also analyzed the width of the resonant states,showing that lower orbital angular momentum resonances possess shorter decay times and that SS is preserved within broad resonant doublets,as opposed to narrow resonant doublets.Comparing the radial density of the upper components for the bound-state and resonant-state doublets,it becomes evident that while SS is well-preserved in the bound states,it deteriorates in the resonant states.The impact of nuclear deformation (β_(2)) on SS was examined,demonstrating that an increase in β_(2) resulted in higher energy and width splitting in the resonant spin doublets,which is attributed to increased component mixing.Furthermore,the sensitivity of spin doublets to various potential parameters such as surface diffuseness (a),radius (R),and depth (Σ0) is discussed,emphasizing the role of these parameters in SS.This study provides valuable insights into the behavior of spin doublets in deformed nuclei and their interplay with the nuclear structure,thereby advancing our understanding of SS in the resonance state.
基金This work was supported by the National Natural Science Foundation of People’s Republic of China(No.NSFC52174246)the Interdisciplinary Scientific Research Foundation of Guangxi University(No.2022JCC016).
文摘Iron is an impurity widely occurred in sphalerite,and its effect on sphalerite flotation is complex.In this work,the effects of iron content and spin state on electronic properties and floatability of iron-bearing sphalerite are comprehensively studied using density functional theory Hubbard U(DFT+U)calculations combined with coordination chemistry flotation.The band gap of ideal sphalerite is 3.723 eV,and thus electron transition is difficult to occur,resulting in poor floatability.The results suggest the band gap of sphalerite decreases with increasing iron content.For low iron content,the decreased band gap facilitates electron transition;at this case,Fe^(2+)in a high-spin state possesses oneπelectron pair,which can form a weakπ-backbonding with xanthate,causing increasing floatability.However,for medium and high iron-bearing sphalerite,with the further decrease of band gap,Fe^(2+)is oxidized to Fe^(3+)due to electrochemical interaction,and henceπ-backbonding is eliminated,leading to lower floatability of iron-bearing sphalerite,which is consistent with the flotation experimental results.This work could give a deeper understanding of how sphalerite flotation behaviors are affected by iron content.
基金This work was supported by the National Natural Science Foundation of China (No.U1232118, No.21203099), the National Basic Research Program (No.2014CB932403), the Program of Introducing Talents of Disciplines to China Universities (No.B06006), Research Program for Advanced and Applied Technology of Tianjin (No.13JCYBJC36800), Doctoral Fund of Ministry of Education of China (No.20120031120033), Fok Ying Tung Education Foundation (No.151008), and Special Program for Applied Research on Super Computation of the NSFC-Guangdong Joint Fund (the second phase). We appreciate the supports from the National Super-Computing Center at Tianjin and Guangzhou.
文摘By the first-principles calculations, most studies indicated that the (1102)-CoO2 termination of LaCoO3 cannot be stabilized, which disagrees with the experimental observation. Besides the crystal structure, we found that the spin states of Co3+ ions could affect surface stability, which previously were not well considered. By examining the different states of Co3+ ions in hexagonal-phase LaCoO3, including low spin, intermediate spin, and high spin states, the surface grand potentials of these facets are calculated and compared. The results show that the spin states of Co3+ ions have an important influence on stability of the LaCoO3 facets. Different from the previous results, the stability diagrams demonstrate that the (1102)- CoO2 termination can stably exist under O-rich condition, which can get an agreement with the experimental ones. Furthermore, the surface oxygen vacancy formation energies (Eov) of stable facets are computed in different spin states. The Eov of these possible exposed terminations strongly depend on the spin state of Co3+ ions: in particular, the Eov of the HS states is lower than that of other spin states. This indicates that one can tune the properties of LaCoO3 by directly tuning the spin states of Co3+ ions.
基金supported by the National Key Research and Development Program of China (2022YFB4002100)the development project of Zhejiang Province's "Jianbing" and "Lingyan" (2023C01226)+4 种基金the National Natural Science Foundation of China (22278364, U22A20432, 22238008, 22211530045, and 22178308)the Fundamental Research Funds for the Central Universities (226-2022-00044 and 226-2022-00055)the Science Foundation of Donghai Laboratory (DH-2022ZY0009)the Startup Foundation for Hundred-Talent Program of Zhejiang UniversityScientific Research Fund of Zhejiang Provincial Education Department.
文摘Metal-organic frameworks(MOFs)have been developed as an ideal platform for exploration of the relationship between intrinsic structure and catalytic activity,but the limited catalytic activity and stability has hampered their practical use in water splitting.Herein,we develop a bond length adjustment strategy for optimizing naphthalene-based MOFs that synthesized by acid etching Co-naphthalenedicarboxylic acid-based MOFs(donated as AE-CoNDA)to serve as efficient catalyst for water splitting.AE-CoNDA exhibits a low overpotential of 260 mV to reach 10 mA cm^(−2)and a small Tafel slope of 62 mV dec^(−1)with excellent stability over 100 h.After integrated AE-CoNDA onto BiVO_(4),photocurrent density of 4.3 mA cm^(−2)is achieved at 1.23 V.Experimental investigations demonstrate that the stretched Co-O bond length was found to optimize the orbitals hybridization of Co 3d and O 2p,which accounts for the fast kinetics and high activity.Theoretical calculations reveal that the stretched Co-O bond length strengthens the adsorption of oxygen-contained intermediates at the Co active sites for highly efficient water splitting.
基金the Program of State Key Laboratory of Quantum Optics and Quantum Optics Devices of Shanxi University of China(Grant No.KF202203)。
文摘We investigate the stability of magnetization in free layer where the spin torque is induced by the spin Hall effect.In terms of the Landau–Liftshitz–Gilbert equation,we find the low-energy and high-energy equilibrium states,as well as the saddle points.The stability region is defined in the phase diagram spanned by the current density and the spin Hall angle.The spin Hall effect makes the previous saddle point into a stable state above a critical current.However,in the presence of magnetic field,the spin Hall effect leads to the opposite changes in the stable regions of the two low-energy states.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.62074036 and 61674038)the National Key Research and Development Program of China(Grant No.2016YFB0402303)。
文摘The helicity-dependent photoconductance of the edge states in three-dimensional topological insulator Bi_(2)Te_(3)films is investigated.It is revealed that the helicity-dependent photoconductivity current on the left edge of the Bi_(2)Te_(3)film shows an opposite sign with that on the right edge.In addition,the helicity-dependent photoconductivity current increases linearly with the applied longitudinal electric field,and it reverses the sign with the reversal of the electric field.As the thickness of the Bi_(2)Te_(3)film increases,the helicity-dependent photoconductivity current also increases.Theoretical analysis suggests that the helicity-dependent photo-conductivity current may come from the intrinsic spin orbit coupling(SOC)or the SOC introduced by the chiral impurities or defects.
基金supported by the National Natural Science Foundation of China (Grant No. 10804007)the Special Research Foundation and Development Program (Grant No. 200800041003)Research Funds of Beijing Jiaotong University (Grant No. 2007XM049)
文摘We investigate phase diffusion of a two-component Bose--Einstein condensates prepared initially in arbitrary coherent spin state |θ0,φ0|. Analytical expression of the phase-diffusion time is presented for θ0~π/2 case. In comparison with the symmetrical case (i.e., θ0=π/2), we find that the diffusion process becomes slow due to the reduced atom number variance.
基金Project supported by the National Natural Science Foundation of China(Grant No.11274102)the Program for New Century Excellent Talents in Universities,China(Grant No.NCET-11-0960)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20134208110001)
文摘There is a quantum spin Hall state in the inverted HgTe quantum well, characterized by the topologically protected gapless helical edge states lying within the bulk gap. It has been found that for a strip of finite width, the edge states on the two sides can couple together to produce a gap in the spectrum. The phenomenon is called the finite size effect in quantum spin Hall systems. In this paper, we investigate the effects of the spin-orbit coupling due to bulk- and structure-inversion asymmetries on the finite size effect in the HgTe quantum well by means of the numerical diagonalization method. When the bulk-inversion asymmetry is taken into account, it is shown that the energy gap Eg of the edge states due to the finite size effect features an oscillating exponential decay as a function of the strip width of the HgTe quantum well. The origin of this oscillatory pattern on the exponential decay is explained. Furthermore, if the bulk- and structure-inversion asymmetries are considered simultaneously, the structure-inversion asymmetry will induce a shift of the energy gap Eg closing point. Finally, based on the roles of the bulk- and structure-inversion asymmetries on the finite size effects, a way to realize the quantum spin Hall field effect transistor is proposed.
基金Supported by the Natural Science Foundation of Shandong Province(No.Y2006B43)
文摘The spin crossover(SCO) compound [Fe(bapbpy)(NCS)2],where bapbpy contains two fused N,N-bis(2-pyridyl)amines,has been studied by DFT/TD-DFT/BS-DFT methods.Several density functionals and basis sets were used in the calculation to obtain optimized geometries of the compound in the low-(LS) and high-spin(HS) states.The vibrational modes and IR spectra,spin splitting energies,excited states and UV/Vis absorption spectra were obtained.The structural parameters of the calculated isolated complex are in good agreement with the X-ray data.We investigate three dimers of [Fe(bapbpy)(NCS)2] complex for their magnetic properties.It has been found that the complex(1,3) has ferromagnetic character while the others are antiferromagnetic in nature by using a broken symmetry approach in the DFT framework(BS-DFT) with support from the coupling constant values(J) and spin density plots.
文摘Based on the conclusion that the generalized Bargmann representation of a two-mode Fock state is a two-variable Hermite polynomial function /Hong-Yi Fan and Jun-hua Chen,Phys.Lett.A303(2002)311] we derive the generalized Bargmann representation of the spin coherent state and some new relations in the generalized function space.
基金The project supported by National Natural Science Foundation of China under Grant No. 10474104 and the National Fundamental Research Program of China under Grant No. 2001CB309310
文摘As a demonstration of the spectrum-parity matching condition (SPMC) for quantum state transfer, we investigate the propagation of single-magnon state in the Heisenberg chain in the confined external tangent magnetic field analytically and numerically. It shows that the initial Gaussian wave packet can be retrieved at the counterpart location near-perfectly over a longer distance if the dispersion relation of the system meets the SPMC approximately.
文摘The photon-added spin coherent state as a new kind of coherent state has been defined by iterated actions of the proper raising operator on the ordinary spin coherent state. In this paper, the quantum statistical properties of photon-added spin coherent states such as photon number distribution, second-order correlation function and Wigner function are studied. It is found that the Wigner function shows the negativity in some regions and the second-order correlation function is less than unity. Therefore, the photon-added spin coherent state is a nonclassical state.
基金National Natural Science Foundation of China(Nos.51635011,61503346,51727808)National Science Foundation of Shanxi Province(No.201701D121080)
文摘In view of the low resolution and accuracy of traditional magnetometer,a method of microwave frequency modulation technology based on nitrogen-vacancy(NV)center in diamond for magnetic detection was proposed.The magnetometer studied can reduce the frequency noise of system and improve the magnetic sensitivity by microwave frequency modulation.Firstly,ESR spectra by sweeping the microwave frequency was obtained.Further,the microwave frequency modulated was gained through the mixed high-frequency sinusoidal modulation signal generated by signal generator.In addition,the frequency through the lock-in amplifier was locked,and the signal which was proportional to the first derivative of the spectrum was obtained.The experimental results show that the sensitivity of magnetic field detection can reach 17.628 nT/Hz based on microwave frequency modulation technology.The method realizes high resolution and sensitivity for magnetic field detection.
基金supported by the National Natural Science Foundation of China (Grant Nos.12204073 and 12147102)the Scientific and Technological Research Program of Chongqing Municipal Education Commission (Grant No.KJQN202303105)+1 种基金the Specific Research Project of Guangxi for Research Bases and Talents (Grant No.2022AC21077)the Foundation of Guangxi University of Science and Technology (Grant No.21Z52)。
文摘Inner edge state with spin and valley degrees of freedom is a promising candidate for designing a dissipationless device due to the topological protection. The central challenge for the application of the inner edge state is to generate and modulate the polarized currents. In this work, we discover a new mechanism to generate fully valley-and spin–valley-polarized current caused by the Bloch wavevector mismatch(BWM). Based on this mechanism, we design some serial-typed inner-edge filters. By using once of the BWM, the coincident states could be divided into transmitted and reflected modes, which can serve as a valley or spin–valley filter. In particular, while with twice of the BWM, the incident current is absolutely reflected to support an off state with a specified valley and spin, which is different from the gap effect.These findings give rise to a new platform for designing valleytronics and spin-valleytronics.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10974020 and 11174039)the Program for New Century Excellent Talents in University of Ministry of Education of China (Grant No. NCET-11-0031)the Fundamental Research Funds for the Central Universities, China
文摘We propose a different entanglement concentration protocol (ECP) for nonlocal N-electron systems in a partially entangled Bell-type pure state using the CNOT gates and the projection measurements on an additional electron. For each nonlocal N-electron system, Alice first entangles it with the additional electron, and then she projects the additional electron onto an orthogonal basis for dividing the N-electron systems into two groups. In the first group, the N parties obtain a subset of N-electron systems in a maximally entangled state directly. In the second group, they obtain some less-entangled N-electron systems, which are the resource for the entanglement concentration in the next round. By iterating the entanglement concentration process several times, the present ECP has the maximal success probability, which is the theoretical limit of an ECP, equal to the entanglement of the partially entangled state, and higher than the others. This ECP may be useful in quantum computers based on electron-spin systems in the future.
文摘The celebrated Majorana representation is exploited to investigate spin squeezing in different classes of pure symmetric states of N qubits with two distinct spinors, namely the Dicke-class of states. On obtaining a general expression for spin squeezing parameter, the variation of squeezing for different configurations is studied in detail. It is shown that the states in the Dicke-class, characterized by two-distinct non-orthogonal spinors, exhibit squeezing.
基金Project supported by the National Natural Science Foundation of China(Grant No.11475060)
文摘We study the spatiotemporal Bloch states of a high-frequency driven two-component Bose–Einstein condensate(BEC)with spin–orbit coupling(SOC) in an optical lattice. By adopting the rotating-wave approximation(RWA) and applying an exact trial-solution to the corresponding quasistationary system, we establish a different method for tuning SOC via external field such that the existence conditions of the exact particular solutions are fitted. Several novel features related to the exact states are demonstrated; for example, SOC leads to spin–motion entanglement for the spatiotemporal Bloch states, SOC increases the population imbalance of the two-component BEC, and SOC can be applied to manipulate the stable atomic flow which is conducive to control quantum transport of the BEC for different application purposes.