Spin injection and detection in bulk GaN were investigated by performing magnetotransport measurements at low temperatures.A non-local four-terminal lateral spin valve device was fabricated with Co/GaN Schottky contac...Spin injection and detection in bulk GaN were investigated by performing magnetotransport measurements at low temperatures.A non-local four-terminal lateral spin valve device was fabricated with Co/GaN Schottky contacts.The spin injection efficiency of 21%was achieved at 1.7 K.It was confirmed that the thin Schottky barrier formed between the heavily ndoped GaN and Co was conducive to the direct spin tunneling,by reducing the spin scattering relaxation through the interface states.展开更多
2x (FeNi/CoZnO)/ZnO/(CoZnO/Co) x2 spin-inJection devices were prepared by sputtering and photo-lithography. In the devices, two composite magnetic layers 2x(FeNi/CoZnO) and (CoZnO/Co)x2 with different coercivi...2x (FeNi/CoZnO)/ZnO/(CoZnO/Co) x2 spin-inJection devices were prepared by sputtering and photo-lithography. In the devices, two composite magnetic layers 2x(FeNi/CoZnO) and (CoZnO/Co)x2 with different coercivities were used to fabricate the ZnO-based semiconductor spin valve. Since the CoZnO ferromagnetic semiconductor layers touched the ZnO space layer directly, the significant spin injection from CoZnO into ZnO was observed by measuring the magnetoresistance of the spin-injection devices. The magnetoresistance reduced linearly with increasing temperature, from 1.12% at 90 K to 0.35% at room temperature.展开更多
[FeNi(3 nm)/Zn1-xCoxO(3 nm)]2/ZnO(d nm)/[Zn1-xCoxO(3 nm)/Co(3 nm)]2 (d=3 and 10) semiconductor junctions were prepared by magnetron sputtering system and photolithography. The spin valve effect was observe...[FeNi(3 nm)/Zn1-xCoxO(3 nm)]2/ZnO(d nm)/[Zn1-xCoxO(3 nm)/Co(3 nm)]2 (d=3 and 10) semiconductor junctions were prepared by magnetron sputtering system and photolithography. The spin valve effect was observed in these junctions because the utility of the ferromagnetic composite layers acted as soft and hard magnetic layers. The electrical detection was performed by measuring the magnetoresistance of these junctions to investigate the current spin polarization asc in the ZnO layer and the spin injection efficiency η of spin-polarized electrons. asc was reduced from 11.7% (and 10.5%) at 90 K to 7.31% (and 5.93%) at room temperature for d=3 (and d=10). And η was reduced from 39.5% (and 35.5%) at 90 K to 24.7% (and 20.0%) at room temperature for d=3 (and d=10).展开更多
The combination of ferromagnetic metal(FM)and semiconductor(SC)for spin injection was studied and demonstrated with FM-SC-FM junction.The semiconductor was chosen to be doped Indium-Tin-Oxide(ITO).Both ITO single-laye...The combination of ferromagnetic metal(FM)and semiconductor(SC)for spin injection was studied and demonstrated with FM-SC-FM junction.The semiconductor was chosen to be doped Indium-Tin-Oxide(ITO).Both ITO single-layer film and CoFe-ITO-CoFe junction were sputtering deposited.The ITO single-layer film was n-type with a small resistance of about 100Ω/Square.I-V curves and Magnetoresistance(MR)effect of the CoFe-ITO-CoFe junction were measured at room temperature and 77 K.Results show that the CoFe forms an ohmic contact to ITO film.But at low temperature,the I-V curves show a Schottky-like characteristic,which is strongly affect by applied magnetic field.The MR effect was measured to be 1%at 77 K,which indicates a spin injection into semiconductor to be realized in this sandwich junction.展开更多
Spin injection, spin diffusion, and spin detection are investigated in Co/Ag/Co lateral spin valves at room temperature.Clear spin accumulation signals are detected by the non-local measurement. By fitting the results...Spin injection, spin diffusion, and spin detection are investigated in Co/Ag/Co lateral spin valves at room temperature.Clear spin accumulation signals are detected by the non-local measurement. By fitting the results to the one-dimensional diffusion equation,8.6% spin polarization of the Co/Ag interface and -180 nm spin diffusion length in Ag are obtained.Thermal treatment results show that the spin accumulation signal drastically decreases after 100℃ annealing, and disappears under 200℃ annealing. Our results demonstrate that, compared to the spin diffusion length, the decrease and the disappearance of the spin accumulation signal are mainly dominated by the variation of the interfacial spin polarization of the Co/Ag interface.展开更多
The spin transport property of a ferromagnet (FM)/insulator (Ⅰ)/resonant tunneling diode (RTD) heterostructure was studied. The transmission coefficient and spin polarization in a multilayered heterostructure w...The spin transport property of a ferromagnet (FM)/insulator (Ⅰ)/resonant tunneling diode (RTD) heterostructure was studied. The transmission coefficient and spin polarization in a multilayered heterostructure was calculated by a Schrdinger wave equation. An Airy function formalism approach was used to solve this equation. Based on the transfer matrix approach,the transmittivity of the structure was determined as a function of the Feimi energy and other parameters. The result shows that the spin polarization induced by the structure oscillates with the increasing Fermi energy of the FM layer. While the thickness of the RTD is reduced,the resonant peaks become broad. In the heterostructure,the spin polarization reaches as high as 40% and can be easily controlled by the external bias voltage.展开更多
Semiconductor quantum-dot (QD) structures are promising for spintronic applications owing to their strong quenching of spin relaxation processes that are promoted by carrier and exciton motions. Unfortunately, the s...Semiconductor quantum-dot (QD) structures are promising for spintronic applications owing to their strong quenching of spin relaxation processes that are promoted by carrier and exciton motions. Unfortunately, the spin injection efficiency in such nanostructures is very low and the exact physical mechanism of the spin loss is still not fully understood. Here, we show that exciton spin injection in self-assembled InAs/GaAs QDs and QD molecular structures (QMSs) is dominated by localized excitons confined within the QD-like regions of the wetting layer (WL) and GaAs barrier layer that immediately surround the QDs and QMSs. These localized excitons in fact lack the commonly believed 2D and 3D character with an extended wavefunction. We attribute the microscopic origin of the severe spin loss observed during spin injection to a sizable anisotropic exchange interaction (AEI) of the localized excitons in the WL and GaAs barrier layer, which has so far been overlooked. We determined that the AEI of the injected excitons and, thus, the efficiency of the spin injection processes are correlated with the overall geometric symmetry of the QMSs. This symmetry largely defines the anisotropy of the confinement potential of the localized excitons in the surrounding WL and GaAs barrier. These results pave the way for a better understanding of spin injection processes and the microscopic origin of spin loss in QD structures. Furthermore, they provide a useful guideline to significantly improve spin injection efficiency by optimizing the lateral arrangement of QMSs and overcome a major challenge in spintronic device applications utilizing semiconductor QDs.展开更多
Electric luminescence and its circular polarization in a Co2 MnAl injector-based light emitting diode (LED) has been detected at the transition of e–A0 C , where injected spin-polarized electrons recombine with bou...Electric luminescence and its circular polarization in a Co2 MnAl injector-based light emitting diode (LED) has been detected at the transition of e–A0 C , where injected spin-polarized electrons recombine with bound holes at carbon acceptors. A spin polarization degree of 24.6% is obtained at 77 K after spin-polarized electrons traverse a distance of 300 nm before they recombine with holes bound at neutral carbon acceptors in a p + -GaAs layer. The large volume of the p + -GaAs layer can facilitate the detection of weak electric luminescence (EL) from e–A 0C emission without being quenched at higher bias as in quantum wells. Moreover, unlike the interband electric luminescence in the p+ -GaAs layer, where the spin polarization of injected electrons is destroyed by a very effective electron–hole exchange scattering (BAP mechanism), the spin polarization of injected electrons seems to survive during their recombination with holes bound at carbon acceptors.展开更多
Recent progress in organic spintronics is given an informative overview, covering spin injection, detection, and trans-port in organic spin valve devices, and the magnetic field effect in organic semiconductors (OSCs...Recent progress in organic spintronics is given an informative overview, covering spin injection, detection, and trans-port in organic spin valve devices, and the magnetic field effect in organic semiconductors (OSCs). In particular, we focus on our own recent work in spin injection and the organic magnetic field effect (OMFE).展开更多
Research in the spintronics community has been intensively stimulated by the proposal of the spin field-effect transistor(SFET),which has the potential for combining the data storage and process in a single device.Her...Research in the spintronics community has been intensively stimulated by the proposal of the spin field-effect transistor(SFET),which has the potential for combining the data storage and process in a single device.Here we report the spin dependent transport on a Fe_(3)O_(4)/GaAs based lateral structured device.Parallel and antiparallel states of two Fe_(3)O_(4) electrodes are achieved.A clear MR loop shows the perfect butterfly shape at room temperature,of which the intensity decreases with the reducing current,showing the strong bias dependence.Understanding the spin-dependent transport properties in this architecture has strong implication in further development of the spintronic devices for room-temperature SFETs.展开更多
Molecular spintronics,as an emerging field that makes full use of the advantage of ultralong room-temperature spin lifetime and abundant electrical-optical-magnetic properties of molecular semiconductors,has gained wi...Molecular spintronics,as an emerging field that makes full use of the advantage of ultralong room-temperature spin lifetime and abundant electrical-optical-magnetic properties of molecular semiconductors,has gained wide attention for its great potential for further commercial applications.Despite the significant progress that has been made,there remain several huge challenges that limit the future development of this field.This Perspective provides discussions on the spin transport mechanisms and performances of molecular semiconductors,spinterface effect,and related spin injection in spintronic devices,and current spin-charge interactive functionalities,along with the summarization of the main obstacles of these aspects.Furthermore,we particularly propose targeted solutions,aiming to enhance the spin injection and transport efficiency by molecular design and interface engineering and explore diverse spinrelated functionalities.Through this Perspective,we hope it will help the spintronic community identify the research trends and accelerate the development of molecular spintronics.展开更多
Molecular semiconductors(MSCs),characterized by a longer spin lifetime than most of other materials due to their weak spin relaxation mechanisms,especially at room temperature,together with their abundant chemical tai...Molecular semiconductors(MSCs),characterized by a longer spin lifetime than most of other materials due to their weak spin relaxation mechanisms,especially at room temperature,together with their abundant chemical tailorability and flexibility,are regarded as promising candidates for spintronic applications.Molecular spintronics,as an emerging subject that utilizes the unique properties of MSCs to study spin-dependent phenomena and properties,has attracted wide attention.In molecular spintronic devices,MSCs play the role as medium for information transport,process,and storage,in which the efficient spin inject–transport process is the prerequisite.Herein,we focus mainly on summarizing and discussing the recent advances in theoretical principles towards spin transport of MSCs in terms of the injection of spin-polarized carriers through the ferromagnetic metal/MSC interface and the subsequent transport within the MSC layer.Based on the theoretical progress,we cautiously present targeted design strategies of MSCs that contribute to the optimization of spin-transport efficiency and give favorable approaches to exploring accessional possibilities of spintronic materials.Finally,challenges and prospects regarding current spin transport are also presented,aiming to promote the development and application of the rosy and energetic field of molecular spintronics.展开更多
A double T-shaped device model is constructed to investigate the spin polarized current injection and transportation properties in organic semiconductors.Based on the spin diffusion theory and Ohm’s law and consideri...A double T-shaped device model is constructed to investigate the spin polarized current injection and transportation properties in organic semiconductors.Based on the spin diffusion theory and Ohm’s law and considering the different charge-spin relationship of the special carriers in organic semiconductors,the current spin polarization has been obtained.Effects of the branch current ratio and the polaron proportion on the spin polarized current injection efficiency are studied.From the calculation,it is found that the improvement of the spin polarized current injection efficiency can be obtained by adjusting the branch current ratio;moreover,high polaron proportion in organic semiconductors is beneficial for obtaining high current spin polarization.展开更多
The spin relaxation time is long in organic semiconductors because of the weak spin-orbit and hyperfine interactions,leading to intensive study on spin transport in organic semiconductors.The rapid progress towards ut...The spin relaxation time is long in organic semiconductors because of the weak spin-orbit and hyperfine interactions,leading to intensive study on spin transport in organic semiconductors.The rapid progress towards utilizing spin degree of freedom in organic electronic devices is occurring.While the spin injection,transport and detection in organic semiconductors are demonstrated,the fundamental physics of these phenomena remains unclear.This paper highlights recent progress that has been made,focusing primarily on present experimental work.展开更多
A brief review is presented,which includes the direct current,alternate current,electrical and thermoelectrical transport as well as spin transfer effect in a variety of spin-based nanostructures such as the magnetic ...A brief review is presented,which includes the direct current,alternate current,electrical and thermoelectrical transport as well as spin transfer effect in a variety of spin-based nanostructures such as the magnetic tunnel junction(MTJ),ferromagnet(FM)-quantum dot(QD)/FM-FM,double barrier MTJ,FM-marginal Fermi liquid-FM,FM-unconventional superconductor-FM(FUSF),quantum ring and optical spin-field-effect transistor.The magnetoresistances in those structures,spin accumulation effect in FM-QD-FM and FUSF systems,spin injection and spin filter into semiconductor,spin transfer effect,photon-assisted spin transport,magnonassisted tunneling,electron-electron interaction effect on spin transport,laser-controlled spin dynamics,and thermoelectrical spin transport are discussed.展开更多
Carbon-based spintronics refers mainly to the spin injection and transport in carbon materials including carbon nanotubes,graphene,fullerene,and organic materials.In the last decade,extraordinary development has been ...Carbon-based spintronics refers mainly to the spin injection and transport in carbon materials including carbon nanotubes,graphene,fullerene,and organic materials.In the last decade,extraordinary development has been achieved for carbon-based spintronics,and the spin transport has been studied in both local and nonlocal spin valve devices.A series of theoretical and experimental studies have been done to reveal the spin relaxation mechanisms and spin transport properties in carbon materials,mostly for graphene and carbon nanotubes.In this article,we provide a brief review on spin injection and transport in graphene,carbon nanotubes,fullerene and organic thin films.展开更多
基金This work was supported by the National Key Research and Development Program of China(Nos.2022YFB3605604,and 2018YFE0125700)the National Natural Science Foundation of China(Nos.62225402,61927806,62234001,and U22A2074).The authors are grateful for the technical support for Nano-X from Suzhou Institute of Nano-Tech and Nano-Bionics,Chinese Academy of Sciences(SINANO),Chinese Academy of Sciences.
文摘Spin injection and detection in bulk GaN were investigated by performing magnetotransport measurements at low temperatures.A non-local four-terminal lateral spin valve device was fabricated with Co/GaN Schottky contacts.The spin injection efficiency of 21%was achieved at 1.7 K.It was confirmed that the thin Schottky barrier formed between the heavily ndoped GaN and Co was conducive to the direct spin tunneling,by reducing the spin scattering relaxation through the interface states.
基金This work was supported by the National Natural Science Foundation of China under grant No. 50102019 and 50572053New Century Fund for Outstanding Scholars (Grant No. 040634).
文摘2x (FeNi/CoZnO)/ZnO/(CoZnO/Co) x2 spin-inJection devices were prepared by sputtering and photo-lithography. In the devices, two composite magnetic layers 2x(FeNi/CoZnO) and (CoZnO/Co)x2 with different coercivities were used to fabricate the ZnO-based semiconductor spin valve. Since the CoZnO ferromagnetic semiconductor layers touched the ZnO space layer directly, the significant spin injection from CoZnO into ZnO was observed by measuring the magnetoresistance of the spin-injection devices. The magnetoresistance reduced linearly with increasing temperature, from 1.12% at 90 K to 0.35% at room temperature.
基金supported by the State Key Project of Fundamental Research of China No.2007CB924903 and NSFC No.50572053
文摘[FeNi(3 nm)/Zn1-xCoxO(3 nm)]2/ZnO(d nm)/[Zn1-xCoxO(3 nm)/Co(3 nm)]2 (d=3 and 10) semiconductor junctions were prepared by magnetron sputtering system and photolithography. The spin valve effect was observed in these junctions because the utility of the ferromagnetic composite layers acted as soft and hard magnetic layers. The electrical detection was performed by measuring the magnetoresistance of these junctions to investigate the current spin polarization asc in the ZnO layer and the spin injection efficiency η of spin-polarized electrons. asc was reduced from 11.7% (and 10.5%) at 90 K to 7.31% (and 5.93%) at room temperature for d=3 (and d=10). And η was reduced from 39.5% (and 35.5%) at 90 K to 24.7% (and 20.0%) at room temperature for d=3 (and d=10).
基金This project was financially supported by the Key Program of NSFC(No.90306015).
文摘The combination of ferromagnetic metal(FM)and semiconductor(SC)for spin injection was studied and demonstrated with FM-SC-FM junction.The semiconductor was chosen to be doped Indium-Tin-Oxide(ITO).Both ITO single-layer film and CoFe-ITO-CoFe junction were sputtering deposited.The ITO single-layer film was n-type with a small resistance of about 100Ω/Square.I-V curves and Magnetoresistance(MR)effect of the CoFe-ITO-CoFe junction were measured at room temperature and 77 K.Results show that the CoFe forms an ohmic contact to ITO film.But at low temperature,the I-V curves show a Schottky-like characteristic,which is strongly affect by applied magnetic field.The MR effect was measured to be 1%at 77 K,which indicates a spin injection into semiconductor to be realized in this sandwich junction.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11304381 and 11374244)the Research Funds of Renmin University of China(Grant No.17XNLF02)+1 种基金the Foundation for the Author of National Excellent Doctoral Dissertation of China(Grant No.201443)the Natural Science Foundation of Fujian Province of China(Grant No.2015J06016)
文摘Spin injection, spin diffusion, and spin detection are investigated in Co/Ag/Co lateral spin valves at room temperature.Clear spin accumulation signals are detected by the non-local measurement. By fitting the results to the one-dimensional diffusion equation,8.6% spin polarization of the Co/Ag interface and -180 nm spin diffusion length in Ag are obtained.Thermal treatment results show that the spin accumulation signal drastically decreases after 100℃ annealing, and disappears under 200℃ annealing. Our results demonstrate that, compared to the spin diffusion length, the decrease and the disappearance of the spin accumulation signal are mainly dominated by the variation of the interfacial spin polarization of the Co/Ag interface.
基金the National Natural Science Foundation of China and Beijing (No50831002,No50701005)the Specialized Research Fund for the Doctoral Program of Higher Education of China (No20070008024)+1 种基金the National Basic Research and Development Program of China (No2007CB936202)the Foundation of the Ministry of Education of China for Returned Scholars
文摘The spin transport property of a ferromagnet (FM)/insulator (Ⅰ)/resonant tunneling diode (RTD) heterostructure was studied. The transmission coefficient and spin polarization in a multilayered heterostructure was calculated by a Schrdinger wave equation. An Airy function formalism approach was used to solve this equation. Based on the transfer matrix approach,the transmittivity of the structure was determined as a function of the Feimi energy and other parameters. The result shows that the spin polarization induced by the structure oscillates with the increasing Fermi energy of the FM layer. While the thickness of the RTD is reduced,the resonant peaks become broad. In the heterostructure,the spin polarization reaches as high as 40% and can be easily controlled by the external bias voltage.
文摘Semiconductor quantum-dot (QD) structures are promising for spintronic applications owing to their strong quenching of spin relaxation processes that are promoted by carrier and exciton motions. Unfortunately, the spin injection efficiency in such nanostructures is very low and the exact physical mechanism of the spin loss is still not fully understood. Here, we show that exciton spin injection in self-assembled InAs/GaAs QDs and QD molecular structures (QMSs) is dominated by localized excitons confined within the QD-like regions of the wetting layer (WL) and GaAs barrier layer that immediately surround the QDs and QMSs. These localized excitons in fact lack the commonly believed 2D and 3D character with an extended wavefunction. We attribute the microscopic origin of the severe spin loss observed during spin injection to a sizable anisotropic exchange interaction (AEI) of the localized excitons in the WL and GaAs barrier layer, which has so far been overlooked. We determined that the AEI of the injected excitons and, thus, the efficiency of the spin injection processes are correlated with the overall geometric symmetry of the QMSs. This symmetry largely defines the anisotropy of the confinement potential of the localized excitons in the surrounding WL and GaAs barrier. These results pave the way for a better understanding of spin injection processes and the microscopic origin of spin loss in QD structures. Furthermore, they provide a useful guideline to significantly improve spin injection efficiency by optimizing the lateral arrangement of QMSs and overcome a major challenge in spintronic device applications utilizing semiconductor QDs.
基金Project supported by the National Basic Research Program of China (Grant No. 2011CB932901)the National Natural Science Foundation of China (GrantNo. 60836002)
文摘Electric luminescence and its circular polarization in a Co2 MnAl injector-based light emitting diode (LED) has been detected at the transition of e–A0 C , where injected spin-polarized electrons recombine with bound holes at carbon acceptors. A spin polarization degree of 24.6% is obtained at 77 K after spin-polarized electrons traverse a distance of 300 nm before they recombine with holes bound at neutral carbon acceptors in a p + -GaAs layer. The large volume of the p + -GaAs layer can facilitate the detection of weak electric luminescence (EL) from e–A 0C emission without being quenched at higher bias as in quantum wells. Moreover, unlike the interband electric luminescence in the p+ -GaAs layer, where the spin polarization of injected electrons is destroyed by a very effective electron–hole exchange scattering (BAP mechanism), the spin polarization of injected electrons seems to survive during their recombination with holes bound at carbon acceptors.
基金Project supported by the National Basic Research Program of China(Grant No.2010CB923402)the National Natural Science Foundation of China(Grant Nos.11174181 and 21161160445)the 111 Project,China(Grant No.B13029)
文摘Recent progress in organic spintronics is given an informative overview, covering spin injection, detection, and trans-port in organic spin valve devices, and the magnetic field effect in organic semiconductors (OSCs). In particular, we focus on our own recent work in spin injection and the organic magnetic field effect (OMFE).
基金supported by the National Key Research and Development Program of China(Grant No.2017YFA0204800)the National Natural Science Foundation of China(Grant Nos.52071079 and 11504047)。
文摘Research in the spintronics community has been intensively stimulated by the proposal of the spin field-effect transistor(SFET),which has the potential for combining the data storage and process in a single device.Here we report the spin dependent transport on a Fe_(3)O_(4)/GaAs based lateral structured device.Parallel and antiparallel states of two Fe_(3)O_(4) electrodes are achieved.A clear MR loop shows the perfect butterfly shape at room temperature,of which the intensity decreases with the reducing current,showing the strong bias dependence.Understanding the spin-dependent transport properties in this architecture has strong implication in further development of the spintronic devices for room-temperature SFETs.
基金supported financially by the National Natural Science Foundation of China(Grant Nos.52250008,52050171,51973043,22175047,52103203,and 52103338)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB36020000)+4 种基金the Ministry of Science and Technology of the People’s Republic of China(2017YFA0206600)the CAS Instrument Development Project(Grant No.YJKYYQ20170037)the Beijing Natural Science Foundation(Grant Nos.4222087,2222086)Natural Science Foundation of Shandong Province(Grant No.ZR2020ME070)the Beijing National Laboratory for Molecular Sciences(Grant No.BNLMS201907),and the CAS Pioneer Hundred Talents Program.
文摘Molecular spintronics,as an emerging field that makes full use of the advantage of ultralong room-temperature spin lifetime and abundant electrical-optical-magnetic properties of molecular semiconductors,has gained wide attention for its great potential for further commercial applications.Despite the significant progress that has been made,there remain several huge challenges that limit the future development of this field.This Perspective provides discussions on the spin transport mechanisms and performances of molecular semiconductors,spinterface effect,and related spin injection in spintronic devices,and current spin-charge interactive functionalities,along with the summarization of the main obstacles of these aspects.Furthermore,we particularly propose targeted solutions,aiming to enhance the spin injection and transport efficiency by molecular design and interface engineering and explore diverse spinrelated functionalities.Through this Perspective,we hope it will help the spintronic community identify the research trends and accelerate the development of molecular spintronics.
基金supported by the National Natural Science Foundation of China(Nos.52250008,52050171,51973043,22175047,52103203,52103338,and 91963126)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB36020000)+5 种基金the Ministry of Science and Technology of the People’s Republic of China(No.2017YFA0206600)the CAS Instrument Development Project(No.YJKYYQ20170037)the Beijing Natural Science Foundation(Nos.4222087 and 2222086)Shandong Province(No.ZR2020ME070),the China Postdoctoral Science Foundation(No.2021M690802)the Beijing National Laboratory for Molecular Sciences(No.BNLMS201907)the CAS Pioneer Hundred Talents Program.
文摘Molecular semiconductors(MSCs),characterized by a longer spin lifetime than most of other materials due to their weak spin relaxation mechanisms,especially at room temperature,together with their abundant chemical tailorability and flexibility,are regarded as promising candidates for spintronic applications.Molecular spintronics,as an emerging subject that utilizes the unique properties of MSCs to study spin-dependent phenomena and properties,has attracted wide attention.In molecular spintronic devices,MSCs play the role as medium for information transport,process,and storage,in which the efficient spin inject–transport process is the prerequisite.Herein,we focus mainly on summarizing and discussing the recent advances in theoretical principles towards spin transport of MSCs in terms of the injection of spin-polarized carriers through the ferromagnetic metal/MSC interface and the subsequent transport within the MSC layer.Based on the theoretical progress,we cautiously present targeted design strategies of MSCs that contribute to the optimization of spin-transport efficiency and give favorable approaches to exploring accessional possibilities of spintronic materials.Finally,challenges and prospects regarding current spin transport are also presented,aiming to promote the development and application of the rosy and energetic field of molecular spintronics.
基金supported by the National Natural Science Foundation of China(Grant Nos.10904083 and 10904084)the Project of Shandong Provincial Higher Educational Science and Technology Program(Grant No.J13LA05)the Excellent Young Scholars Research Fund of Shandong Normal University
文摘A double T-shaped device model is constructed to investigate the spin polarized current injection and transportation properties in organic semiconductors.Based on the spin diffusion theory and Ohm’s law and considering the different charge-spin relationship of the special carriers in organic semiconductors,the current spin polarization has been obtained.Effects of the branch current ratio and the polaron proportion on the spin polarized current injection efficiency are studied.From the calculation,it is found that the improvement of the spin polarized current injection efficiency can be obtained by adjusting the branch current ratio;moreover,high polaron proportion in organic semiconductors is beneficial for obtaining high current spin polarization.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10974084,11222435 and 11023002)the National Basic Research Program of China (Grant Nos. 2010CB923402 and 2013CB922103)+1 种基金the Priority Academic Program Development of Jiangsu Higher Education Institutionsthe Fundamental Research Funds for the Central Universities
文摘The spin relaxation time is long in organic semiconductors because of the weak spin-orbit and hyperfine interactions,leading to intensive study on spin transport in organic semiconductors.The rapid progress towards utilizing spin degree of freedom in organic electronic devices is occurring.While the spin injection,transport and detection in organic semiconductors are demonstrated,the fundamental physics of these phenomena remains unclear.This paper highlights recent progress that has been made,focusing primarily on present experimental work.
基金supported in part by the National Science Fund for Distinguished Young Scholars of China(Grant No. 10625419)the National Natural Science Foundation of China(Grant Nos. 90922033 and 10934008)+1 种基金the Ministry of Science and Technology of China (Grant Nos.2012CB932900 and 2013CB933401)the Chinese Academy of Sciences,China,the DFG and the state of Saxony-Anhalt,Germany
文摘A brief review is presented,which includes the direct current,alternate current,electrical and thermoelectrical transport as well as spin transfer effect in a variety of spin-based nanostructures such as the magnetic tunnel junction(MTJ),ferromagnet(FM)-quantum dot(QD)/FM-FM,double barrier MTJ,FM-marginal Fermi liquid-FM,FM-unconventional superconductor-FM(FUSF),quantum ring and optical spin-field-effect transistor.The magnetoresistances in those structures,spin accumulation effect in FM-QD-FM and FUSF systems,spin injection and spin filter into semiconductor,spin transfer effect,photon-assisted spin transport,magnonassisted tunneling,electron-electron interaction effect on spin transport,laser-controlled spin dynamics,and thermoelectrical spin transport are discussed.
基金supported by the National Basic Research Program of China(Grant Nos. 2013CB934500 and 2012CB921302)the National Natural Science Foundation of China (Grant No. 91223204)the "100 Talents Project" of Chinese Academy of Sciences
文摘Carbon-based spintronics refers mainly to the spin injection and transport in carbon materials including carbon nanotubes,graphene,fullerene,and organic materials.In the last decade,extraordinary development has been achieved for carbon-based spintronics,and the spin transport has been studied in both local and nonlocal spin valve devices.A series of theoretical and experimental studies have been done to reveal the spin relaxation mechanisms and spin transport properties in carbon materials,mostly for graphene and carbon nanotubes.In this article,we provide a brief review on spin injection and transport in graphene,carbon nanotubes,fullerene and organic thin films.