Frustrated quantum magnets are expected to host many exotic quantum spin states like quantum spin liquid(QSL), and have attracted numerous interest in modern condensed matter physics. The discovery of the triangular...Frustrated quantum magnets are expected to host many exotic quantum spin states like quantum spin liquid(QSL), and have attracted numerous interest in modern condensed matter physics. The discovery of the triangular lattice spin liquid candidate YbMgGaO_4 stimulated an increasing attention on the rare-earth-based frustrated magnets with strong spin-orbit coupling. Here we report the synthesis and characterization of a large family of rare-earth chalcogenides AReCh_2(A = alkali or monovalent ions, Re = rare earth, Ch = O,S,Se). The family compounds share the same structure(R3 m) as YbMgGaO_4,and antiferromagnetically coupled rare-earth ions form perfect triangular layers that are well separated along the c-axis. Specific heat and magnetic susceptibility measurements on NaYbO_2,NaYbS_2 and NaYbSe_2 single crystals and polycrystals, reveal no structural or magnetic transition down to 50 mK. The family, having the simplest structure and chemical formula among the known QSL candidates, removes the issue on possible exchange disorders in YbMgGaO_4. More excitingly, the rich diversity of the family members allows tunable charge gaps, variable exchange coupling, and many other advantages.This makes the family an ideal platform for fundamental research of QSLs and its promising applications.展开更多
We report a new kagome quantum spin liquid candidate CuaZn(OH)6FBr, which does not experience any phase transition down to 50inK, more than three orders lower than the antiferromagnetic Curie-Weiss temperature (-20...We report a new kagome quantum spin liquid candidate CuaZn(OH)6FBr, which does not experience any phase transition down to 50inK, more than three orders lower than the antiferromagnetic Curie-Weiss temperature (-200 K). A clear gap opening at low temperature is observed in the uniform spin susceptibility obtained from 19F nuclear magnetic resonance measurements. We observe the characteristic magnetic field dependence of the gap as expected for fractionalized spin-1/2 spinon excitations. Our experimental results provide firm evidence for spin fractionalization in a topologically ordered spin system, resembling charge fraetionalization in the fractional quantum Hall state.展开更多
Despite the apparent ubiquity and variety of quantum spin liquids in theory,experimental confirmation of spin liquids remains to be a huge challenge.Motivated by the recent surge of evidences for spin liquids in a ser...Despite the apparent ubiquity and variety of quantum spin liquids in theory,experimental confirmation of spin liquids remains to be a huge challenge.Motivated by the recent surge of evidences for spin liquids in a series of candidate materials,we highlight the experimental schemes,involving the thermal Hall transport and spectrum measurements,that can result in smoking-gun signatures of spin liquids beyond the usual ones.For clarity,we investigate the square lattice spin liquids and theoretically predict the possible phenomena that may emerge in the corresponding spin liquids candidates.The mechanisms for these signatures can be traced back to either the intrinsic characters of spin liquids or the external field-driven behaviors.Our conclusion does not depend on the geometry of lattices and can broadly apply to other relevant spin liquids.展开更多
The magnetic properties of two-dimensional antiferromagnet NiGa2S4 have attracted much attention and yet some problems are far from being solved. We investigate the magnetic properties of NiGa2S4 by Monte Carlo simula...The magnetic properties of two-dimensional antiferromagnet NiGa2S4 have attracted much attention and yet some problems are far from being solved. We investigate the magnetic properties of NiGa2S4 by Monte Carlo simulations. A new spin-interacting model is proposed to describe the system, and the specific heat together with the doping effect of nonmagnetic impurity is studied by simulations. The double peaks of the specific heat as well as other behaviors are well reproduced. We also compare our results with those of other models, and the underlying physics is discussed.展开更多
Pressure induced insulator to metal transition followed by the appearance of superconductivity has been observed recently in inorganic quantum spin liquid candidate NaYbSe_(2).In this paper,we study the properties of ...Pressure induced insulator to metal transition followed by the appearance of superconductivity has been observed recently in inorganic quantum spin liquid candidate NaYbSe_(2).In this paper,we study the properties of isostructural compound NaYbS_(2)under pressure.It is found that the resistance of Na YbS_(2)single crystal exhibits an insulating state below 82.9 GPa,but with a drop of more than six orders of magnitude at room temperature.Then a minimum of resistance is observed at about 100.1 GPa and it moves to lower temperature with further compression.Finally,a metallic state in the whole temperature range is observed at about 130.3 GPa accompanied by a non-Fermi liquid behavior below 100 K.The insulator to metal transition,non-monotonic resistance feature and non-Fermi liquid behavior of NaYbS_(2)under pressure are similar to those of NaYbSe_(2),suggesting that these phenomena might be the universal properties in NaLnCh_(2)(Ln=rare earth,Ch=O,S,Se)system.展开更多
We study the spin-1/2 two-dimensional Shastry–Sutherland spin model by exact diagonalization of clusters with periodic boundary conditions, developing an improved level spectroscopic technique using energy gaps betwe...We study the spin-1/2 two-dimensional Shastry–Sutherland spin model by exact diagonalization of clusters with periodic boundary conditions, developing an improved level spectroscopic technique using energy gaps between states with different quantum numbers. The crossing points of some of the relative(composite) gaps have much weaker finite-size drifts than the normally used gaps defined only with respect to the ground state, thus allowing precise determination of quantum critical points even with small clusters. Our results support the picture of a spin liquid phase intervening between the well-known plaquette-singlet and antiferromagnetic ground states, with phase boundaries in almost perfect agreement with a recent density matrix renormalization group study, where much larger cylindrical lattices were used [J. Yang et al., Phys. Rev. B 105, L060409(2022)]. The method of using composite low-energy gaps to reduce scaling corrections has potentially broad applications in numerical studies of quantum critical phenomena.展开更多
Recently rare-earth chalcogenides have been revealed as a family of quantum spin liquid(QSL)candidates hosting a large number of members.In this paper we report the crystal growth and magnetic measurements of KErTe_(2...Recently rare-earth chalcogenides have been revealed as a family of quantum spin liquid(QSL)candidates hosting a large number of members.In this paper we report the crystal growth and magnetic measurements of KErTe_(2),which is the first member of telluride in the family.Compared to its cousins of oxides,sulfides and selenides,KErTe_(2) retains the high symmetry of R3m and Er3+ions still sit on a perfect triangular lattice.The separation between adjacent magnetic layers is expectedly increased,which further enhances the two dimensionality of the spin system.Specific heat and magnetic susceptibility measurements on KErTe_(2) single crystals reveal no structural and magnetic transition down to 1.8 K.Most interestingly,the absorption spectrum shows that the charge gap of KErTe_(2) is roughly 0.93±0.35 eV,which is the smallest among all the reported members in the family.This immediately invokes the interest towards metallization even superconductivity using the compound.展开更多
The emergence of exotic quantum phenomena in frustrated magnets is rapidly driving the development of quantum many-body physics,raising fundamental questions on the nature of quantum phase transitions.Here we unveil t...The emergence of exotic quantum phenomena in frustrated magnets is rapidly driving the development of quantum many-body physics,raising fundamental questions on the nature of quantum phase transitions.Here we unveil the behaviour of emergent symmetry involving two extraordinarily representative phenomena,i.e.,the deconfined quantum critical point(DQCP)and the quantum spin liquid(QSL)state.Via large-scale tensor network simulations,we study a spatially anisotropic spin-1/2 square-lattice frustrated antiferromagnetic(AFM)model,namely the J1x-J1y-J2 model,which contains anisotropic nearestneighbor couplings J1x,J1y and the next nearest neighbor coupling J2.For small J1y/J1x,by tuning J2,a direct continuous transition between the AFM and valence bond solid phase is observed.With growing J1y/J1x,a gapless QSL phase gradually emerges between the AFM and VBS phases.We observe an emergent O(4)symmetry along the AFM–VBS transition line,which is consistent with the prediction of DQCP theory.Most surprisingly,we find that such an emergent O(4)symmetry holds for the whole QSL–VBS transition line as well.These findings reveal the intrinsic relationship between the QSL and DQCP from categorical symmetry point of view,and strongly constrain the quantum field theory description of the QSL phase.The phase diagram and critical exponents presented in this paper are of direct relevance to future experiments on frustrated magnets and cold atom systems.展开更多
Here we report the successful synthesis of large single crystals of triangular frustrated PrMgAl_(11)O_(19)using the optical floating zone technique.Single crystal x-ray diffraction(XRD)measurements unveiled the prese...Here we report the successful synthesis of large single crystals of triangular frustrated PrMgAl_(11)O_(19)using the optical floating zone technique.Single crystal x-ray diffraction(XRD)measurements unveiled the presence of quenched disorder within the mirror plane,specifically~7%of Pr ions deviating from the ideal 2d site towards the 6h site.Magnetic susceptibility measurements revealed an Ising anisotropy with the c-axis being the easy axis.Despite a large spin–spin interaction that develops below~10 K and considerable site disorder,the spins do not order or freeze down to at least 50 mK.The availability of large single crystals offers a distinct opportunity to investigate the exotic magnetic state on a triangular lattice with an easy axis out of the plane.展开更多
The nature of the zero-temperature phase diagram of the spin-1/2 J_(1)-J_(2)Heisenberg model on a square lattice has been debated in the past three decades,and it remains one of the fundamental problems unsettled in t...The nature of the zero-temperature phase diagram of the spin-1/2 J_(1)-J_(2)Heisenberg model on a square lattice has been debated in the past three decades,and it remains one of the fundamental problems unsettled in the study of quantum many-body theory.By using the state-of-the-art tensor network method,specifically,the finite projected entangled pair state(PEPS)algorithm,to simulate the global phase diagram of the J_(1)-J_(2)Heisenberg model up to 24×24 sites,we provide very solid evidences to show that the nature of the intermediate nonmagnetic phase is a gapless quantum spin liquid(QSL),whose spin-spin and dimer-dimer correlations both decay with a power law behavior.There also exists a valence-bond solid(VBS)phase in a very narrow region 0.56■J_(2)/J_(1)≤0.61 before the system enters the well known collinear antiferromagnetic phase.We stress that we make the first detailed comparison between the results of PEPS and the well-established density matrix renormalization group(DMRG)method through one-to-one direct benchmark for small system sizes,and thus give rise to a very solid PEPS calculation beyond DMRG.Our numerical evidences explicitly demonstrate the huge power of PEPS for highly frustrated spin systems.Finally,an effective field theory is also proposed to understand the physical nature of the discovered gapless QSL and its relation to deconfined quantum critical point(DQCP).展开更多
Quantum spin liquids(QSLs) represent a novel state of matter in which quantum fluctuations prevent the conventional magnetic order from being established, and the spins remain disordered even at zero temperature. Th...Quantum spin liquids(QSLs) represent a novel state of matter in which quantum fluctuations prevent the conventional magnetic order from being established, and the spins remain disordered even at zero temperature. There have been many theoretical developments proposing various QSL states. On the other hand, experimental movement was relatively slow largely due to limitations on the candidate materials and difficulties in the measurements. In recent years, the experimental progress has been accelerated. In this topical review, we give a brief summary of experiments on the QSL candidates under magnetic fields. We arrange our discussions by two categories: i) Geometrically-frustrated systems, including triangularlattice compounds YbMgGaO4 and YbZnGaO4, κ-(BEDT-TTF)2 Cu2(CN)3, and EtMe3 Sb[Pd(dmit)2]2, and the kagom′e system ZnCu3(OH)6 Cl2; ii) the Kitaev material α-RuCl3. Among these, we will pay special attention to α-RuCl3, which has been intensively studied by ours and other groups recently. We will present evidence that both supports and rejects the QSL ground state for these materials, based on which we give several perspectives to stimulate further research activities.展开更多
A new quantum spin liquid(QSL)candidate material H3LiIr2O6 was synthesized recently and was found not to show any magnetic order or phase transition down to low temperatures.In this work,we study the quantum dynamics ...A new quantum spin liquid(QSL)candidate material H3LiIr2O6 was synthesized recently and was found not to show any magnetic order or phase transition down to low temperatures.In this work,we study the quantum dynamics of the hydrogen ions,i.e.,protons,in this material by combining first-principles calculations and theoretical analysis.We show that each proton and its adjacent oxygen ions form an electric dipole.The dipole interactions and the proton tunneling are captured by a transverse-field Ising model with a quantum disordered paraelectric ground state.The dipole excitations have an energy gap△d=60 meV,and can be probed by the infrared optical spectroscopy and the dielectric response.We argue that the electric dipole fluctuations renormalize the magnetic interactions in H3LiIr2O6 and lead to a Kitaev QSL state.展开更多
Polycrystalline samples of a novel spin-liquid compound Tb2Ti2O7 were prepared by a standard solid-state reaction. X-ray diffraction at room temperature confirms that the synthesized compound of Tb2Ti2O7 is single pha...Polycrystalline samples of a novel spin-liquid compound Tb2Ti2O7 were prepared by a standard solid-state reaction. X-ray diffraction at room temperature confirms that the synthesized compound of Tb2Ti2O7 is single phase with cubic unit cell constant a0 of 1.015 44 nm. Magnetic susceptibility measurements in the temperature range between 100 and 300 K give an effective moment of 9.44 μB and Curie-Weiss temperature of 12.68 K, respectively, indicating the dominance of antiferromagnetic interactions. However, below 50 K, the magnetic behavior of Tb2Ti2O7 deviates from Curie-Weiss law, whose origin remains suspicion.展开更多
Spiral spin liquids are unique classical spin liquids that occur in many frustrated spin systems,but do not comprise a new phase of matter.Owing to extensive classical ground-state degeneracy,the spins in a spiral spi...Spiral spin liquids are unique classical spin liquids that occur in many frustrated spin systems,but do not comprise a new phase of matter.Owing to extensive classical ground-state degeneracy,the spins in a spiral spin liquid thermally fluctuate cooperatively from a collection of spiral configurations at low temperatures.These spiral propagation wavevectors form a continuous manifold in reciprocal space,i.e.,a spiral contour or a spiral surface,that strongly governs the low-temperature thermal fluctuations and magnetic physics.In this paper,the relevant spin models conveying the spiral spin liquid physics are systematically explored and the geometric origin of the spiral manifold is clarified in the model construction.The spiral spin liquids based on the dimension and the codimension of the spiral manifold are further clarified.For each class,the physical properties are studied both generally and for specific examples.The results are relevant to a wide range of frustrated magnets.A survey of materials is given and future experiments are suggested.展开更多
Six samples of linear high randomness 60PHB/ PET thermotropic liquid crystal copolyesters are made by melt copolymerization at 290℃ , whose randomness about 0.955 is measured by the discernible ’H-NMR spectrometer. ...Six samples of linear high randomness 60PHB/ PET thermotropic liquid crystal copolyesters are made by melt copolymerization at 290℃ , whose randomness about 0.955 is measured by the discernible ’H-NMR spectrometer. High tenacity, high module fiber is prepared by melt spinning in liquid crystal phase. The effect of molecular weight, shear rate, temperature as well as spinning drawn ratio on the mechanical behavior of 60PHB / PET copolyester fiber are shown that, lower shear rate (2<sup> </sup>10 s<sup>-1</sup>), higher temperature melting (300℃ ), lower temperature spinning (280℃ ) and higher molecular weight are favourable to the increase of the fiber mechanical properties. With the variance of drawn ratio, fiber mechanical property has a transition point due to traversion from shear-orientation to drawn-orientation. The copolyester fiber has high crystallinity, high orientation at the crystalline region, high chain orientation and high regular fibrillar structure.展开更多
In order to understand the properties of the spin system with orbital degeneracy, we first study the ground state of the SU(4) spin-orbital model on a square lattice. The mean-field results suggest that for a small Hu...In order to understand the properties of the spin system with orbital degeneracy, we first study the ground state of the SU(4) spin-orbital model on a square lattice. The mean-field results suggest that for a small Hund's interaction, the flavor liquid state is stable against the solid state, but with sufficient deviation from the SU(4) limit the long-range order may be attained in 2D system. Furthermore, we employ a variational approach to calculate the phase diagram of the ground state and the temperature-dependent susceptibility by taking into account the Hund's interaction and the anisotropy in orbital wavefunctions. Finally, the implications for the experimental observations on the material, , are discussed.展开更多
It is crucial to develop flexible and wearable electronic devices that have attracted tremendous interest due to their merits on compactness,flexibility and high capacitive properties.Herein we report the continuously...It is crucial to develop flexible and wearable electronic devices that have attracted tremendous interest due to their merits on compactness,flexibility and high capacitive properties.Herein we report the continuously ordered macroscopic poly(ionic liquid)-graphene fibers by wet spinning method via liquid crystal assembly for supercapacitor application.The fabricated all-solid-state supercapacitors exhibited a high areal capacitance(268.2 mF cm 2)and volumetric capacitance(204.6 F cm 3)with an outstanding areal energy density(9.31μWh cm-2)and volumetric energy density(8.28 mWh cm-3).The fiber supercapacitors demonstrated exceptional cycle life for straight electrodes of about 10,000 cycles(94.2%capacitance retention)and flexibility at different angles(0°,45°,90°,180°)along with a good flexible cycling stability after 6000 cycles(92.7%capacitance retention).To date,such a novel poly(ionic liquid)-graphene fiber supercapacitors would be a new platform in real-time flexible electronics.展开更多
The ribbons of Cu-Cr alloys with high Cr content (15%- 35%, mass fraction) were prepared by rapid solidification. The microstructures of solidified samples were analyzed by scanning electron microscopy and transmissio...The ribbons of Cu-Cr alloys with high Cr content (15%- 35%, mass fraction) were prepared by rapid solidification. The microstructures of solidified samples were analyzed by scanning electron microscopy and transmission electron microscopy. The results reveal that a representative liquid phase separation microstructures are observed in Cu75Cr25 ribbons solidified at a cooling rate of about 104K/s. The liquid phase separation is not restrained when the cooling rate is enhanced to about 107K/s. However, the size of Cr particles solidified from Cr-rich liquid or Cr-rich regions in alloy melts could be refined by increasing the cooling rates. The size of Cr particles increases with increasing Cr contents when the ribbons contain 15% to 35%Cr.展开更多
Graphene edges with a zigzag-type atomic structure can theoretically produce spontaneous spin polarization despite being a critical-metal-free material. We have demonstrated this in graphene nanomeshes (GNMs) with hon...Graphene edges with a zigzag-type atomic structure can theoretically produce spontaneous spin polarization despite being a critical-metal-free material. We have demonstrated this in graphene nanomeshes (GNMs) with honeycomb-like arrays of low-defect hexagonal nanopores by observing room-temperature ferromagnetism and spin-based phenomena arising from the zigzag-pore edges. Here, we apply extremely high electric fields to the ferromagnetic (FM) GNMs using an ionic-liquid gate. A large on/off-ratio for hole current is observed for even small applied ionic-liquid gate voltages (Vig). Observations of the magnetoresistance behavior reveal high carrier densities of ~1013 cm-2 at large Vig values. We find a maximum conductance peak in the high -Vig region and its separation into two peaks upon applying a side-gate (in-plane external) voltage (Vex). It is discussed that localized edge-π band with excess-density electrons induced by Vig and its spin splitting for majority and minority of spins by Vex (half-metallicity model) lead to these phenomena. The results must realize critical-element-free novel spintronic devices.展开更多
基金Supported by the Ministry of Science and Technology of China under Grant Nos 2016YFA0300504,2017YFA0302904 and 2016YFA0301001the Natural Science Foundation of China under Grant Nos 11774419,11474357,11822412,11774423 and 11574394
文摘Frustrated quantum magnets are expected to host many exotic quantum spin states like quantum spin liquid(QSL), and have attracted numerous interest in modern condensed matter physics. The discovery of the triangular lattice spin liquid candidate YbMgGaO_4 stimulated an increasing attention on the rare-earth-based frustrated magnets with strong spin-orbit coupling. Here we report the synthesis and characterization of a large family of rare-earth chalcogenides AReCh_2(A = alkali or monovalent ions, Re = rare earth, Ch = O,S,Se). The family compounds share the same structure(R3 m) as YbMgGaO_4,and antiferromagnetically coupled rare-earth ions form perfect triangular layers that are well separated along the c-axis. Specific heat and magnetic susceptibility measurements on NaYbO_2,NaYbS_2 and NaYbSe_2 single crystals and polycrystals, reveal no structural or magnetic transition down to 50 mK. The family, having the simplest structure and chemical formula among the known QSL candidates, removes the issue on possible exchange disorders in YbMgGaO_4. More excitingly, the rich diversity of the family members allows tunable charge gaps, variable exchange coupling, and many other advantages.This makes the family an ideal platform for fundamental research of QSLs and its promising applications.
基金Supported by the National Key Research and Development Program of China under Grant Nos 2016YFA0300502,2016YFA0300503,2016YFA0300604,2016YF0300300 and 2016YFA0300802the National Natural Science Foundation of China under Grant Nos 11421092,11474330,11574359,11674406,11374346 and 11674375+3 种基金the National Basic Research Program of China(973 Program)under Grant No 2015CB921304the National Thousand-Young-Talents Program of Chinathe Strategic Priority Research Program(B) of the Chinese Academy of Sciences under Grant Nos XDB07020000,XDB07020200 and XDB07020300supported by DOE-BES under Grant No DE-FG02-04ER46148
文摘We report a new kagome quantum spin liquid candidate CuaZn(OH)6FBr, which does not experience any phase transition down to 50inK, more than three orders lower than the antiferromagnetic Curie-Weiss temperature (-200 K). A clear gap opening at low temperature is observed in the uniform spin susceptibility obtained from 19F nuclear magnetic resonance measurements. We observe the characteristic magnetic field dependence of the gap as expected for fractionalized spin-1/2 spinon excitations. Our experimental results provide firm evidence for spin fractionalization in a topologically ordered spin system, resembling charge fraetionalization in the fractional quantum Hall state.
基金Project supported by the National Key R&D Program of China(Grant Nos.2016YFA0301001,2018YFGH000095,and 2016YFA0300500)Shanghai Municipal Science and Technology Major Project,China(Grant No.2019SHZDZX04)the Research Grants Council of Hong Kong with General Research Fund,China(Grant No.17303819).
文摘Despite the apparent ubiquity and variety of quantum spin liquids in theory,experimental confirmation of spin liquids remains to be a huge challenge.Motivated by the recent surge of evidences for spin liquids in a series of candidate materials,we highlight the experimental schemes,involving the thermal Hall transport and spectrum measurements,that can result in smoking-gun signatures of spin liquids beyond the usual ones.For clarity,we investigate the square lattice spin liquids and theoretically predict the possible phenomena that may emerge in the corresponding spin liquids candidates.The mechanisms for these signatures can be traced back to either the intrinsic characters of spin liquids or the external field-driven behaviors.Our conclusion does not depend on the geometry of lattices and can broadly apply to other relevant spin liquids.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11247428,11247210,10974228,and 61274101)the Natural Science Foundation of Liaoning Province,China(Grant No.20121078)the Education Office of Liaoning Province,China(Grant No.L201197)
文摘The magnetic properties of two-dimensional antiferromagnet NiGa2S4 have attracted much attention and yet some problems are far from being solved. We investigate the magnetic properties of NiGa2S4 by Monte Carlo simulations. A new spin-interacting model is proposed to describe the system, and the specific heat together with the doping effect of nonmagnetic impurity is studied by simulations. The double peaks of the specific heat as well as other behaviors are well reproduced. We also compare our results with those of other models, and the underlying physics is discussed.
基金the National Key Research and Development Program of China(Grant Nos.2018YFA0305700,2018YFE0202600,and 2022YFA1403800)the Beijing Natural Science Foundation(Grant Nos.2202059 and Z200005)+2 种基金the National Natural Science Foundation of China(Grant Nos.22171283 and 12274459)the Hebei Natural Science Foundation(Grant No.B2020205040)the Beijing National Laboratory for Condensed Matter Physics。
文摘Pressure induced insulator to metal transition followed by the appearance of superconductivity has been observed recently in inorganic quantum spin liquid candidate NaYbSe_(2).In this paper,we study the properties of isostructural compound NaYbS_(2)under pressure.It is found that the resistance of Na YbS_(2)single crystal exhibits an insulating state below 82.9 GPa,but with a drop of more than six orders of magnitude at room temperature.Then a minimum of resistance is observed at about 100.1 GPa and it moves to lower temperature with further compression.Finally,a metallic state in the whole temperature range is observed at about 130.3 GPa accompanied by a non-Fermi liquid behavior below 100 K.The insulator to metal transition,non-monotonic resistance feature and non-Fermi liquid behavior of NaYbS_(2)under pressure are similar to those of NaYbSe_(2),suggesting that these phenomena might be the universal properties in NaLnCh_(2)(Ln=rare earth,Ch=O,S,Se)system.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11874080 and 11734002)supported as a Simons Investigator by the Simons Foundation (Grant No. 511064)。
文摘We study the spin-1/2 two-dimensional Shastry–Sutherland spin model by exact diagonalization of clusters with periodic boundary conditions, developing an improved level spectroscopic technique using energy gaps between states with different quantum numbers. The crossing points of some of the relative(composite) gaps have much weaker finite-size drifts than the normally used gaps defined only with respect to the ground state, thus allowing precise determination of quantum critical points even with small clusters. Our results support the picture of a spin liquid phase intervening between the well-known plaquette-singlet and antiferromagnetic ground states, with phase boundaries in almost perfect agreement with a recent density matrix renormalization group study, where much larger cylindrical lattices were used [J. Yang et al., Phys. Rev. B 105, L060409(2022)]. The method of using composite low-energy gaps to reduce scaling corrections has potentially broad applications in numerical studies of quantum critical phenomena.
基金supported by the National Key Research and Development Program of China (Grant Nos. 2017YFA0302904 and 2016YFA0300504)the National Natural Science Foundation of China (Grant Nos. U1932215 and 11774419)+2 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No. XDB33010100)Postdoctoral Science Foundation of China (Grant No. 2020M670500)the support from Users with Excellence Program of Hefei Science Center and High Magnetic Field Facility,CAS
文摘Recently rare-earth chalcogenides have been revealed as a family of quantum spin liquid(QSL)candidates hosting a large number of members.In this paper we report the crystal growth and magnetic measurements of KErTe_(2),which is the first member of telluride in the family.Compared to its cousins of oxides,sulfides and selenides,KErTe_(2) retains the high symmetry of R3m and Er3+ions still sit on a perfect triangular lattice.The separation between adjacent magnetic layers is expectedly increased,which further enhances the two dimensionality of the spin system.Specific heat and magnetic susceptibility measurements on KErTe_(2) single crystals reveal no structural and magnetic transition down to 1.8 K.Most interestingly,the absorption spectrum shows that the charge gap of KErTe_(2) is roughly 0.93±0.35 eV,which is the smallest among all the reported members in the family.This immediately invokes the interest towards metallization even superconductivity using the compound.
基金supported by the National Key R&D Program of China(2022YFA1403700)the National Natural Science Foundation of China(NSFC)and the Research Grants Council(RGC)Joint Research Scheme of the Hong Kong Research Grants Council(N-CUHK427/18)+4 种基金the National Natural Science Foundation of China(12141402)supported by the Science,Technology and Innovation Commission of Shenzhen Municipality(ZDSYS20190902092905285)Guangdong Basic and Applied Basic Research Foundation(2020B1515120100)Center for Computational Science and Engineering at Southern University of Science and Technology.S.S.G.was supported by the National Natural Science Foundation of China(11874078 and 11834014)the Dongguan Key Laboratory of Artificial Intelligence Design for Advanced Materials.
文摘The emergence of exotic quantum phenomena in frustrated magnets is rapidly driving the development of quantum many-body physics,raising fundamental questions on the nature of quantum phase transitions.Here we unveil the behaviour of emergent symmetry involving two extraordinarily representative phenomena,i.e.,the deconfined quantum critical point(DQCP)and the quantum spin liquid(QSL)state.Via large-scale tensor network simulations,we study a spatially anisotropic spin-1/2 square-lattice frustrated antiferromagnetic(AFM)model,namely the J1x-J1y-J2 model,which contains anisotropic nearestneighbor couplings J1x,J1y and the next nearest neighbor coupling J2.For small J1y/J1x,by tuning J2,a direct continuous transition between the AFM and valence bond solid phase is observed.With growing J1y/J1x,a gapless QSL phase gradually emerges between the AFM and VBS phases.We observe an emergent O(4)symmetry along the AFM–VBS transition line,which is consistent with the prediction of DQCP theory.Most surprisingly,we find that such an emergent O(4)symmetry holds for the whole QSL–VBS transition line as well.These findings reveal the intrinsic relationship between the QSL and DQCP from categorical symmetry point of view,and strongly constrain the quantum field theory description of the QSL phase.The phase diagram and critical exponents presented in this paper are of direct relevance to future experiments on frustrated magnets and cold atom systems.
基金funded by the Guangdong Basic and Applied Basic Research Foundation(Grant No.2022B1515120020)the NSF of China with Grant Nos.12004270 and 11874158supported by the Laboratory Directed Research and Development(LDRD)program of Oak Ridge National Laboratory,managed by UT-Battelle,LLC for the U.S.Department of Energy.
文摘Here we report the successful synthesis of large single crystals of triangular frustrated PrMgAl_(11)O_(19)using the optical floating zone technique.Single crystal x-ray diffraction(XRD)measurements unveiled the presence of quenched disorder within the mirror plane,specifically~7%of Pr ions deviating from the ideal 2d site towards the 6h site.Magnetic susceptibility measurements revealed an Ising anisotropy with the c-axis being the easy axis.Despite a large spin–spin interaction that develops below~10 K and considerable site disorder,the spins do not order or freeze down to at least 50 mK.The availability of large single crystals offers a distinct opportunity to investigate the exotic magnetic state on a triangular lattice with an easy axis out of the plane.
基金supported by the National Natural Science Foundation of China(NSFC)/RGC Joint Research Scheme No.N-CUHK427/18the ANR/RGC Joint Research Scheme No.A-CUHK402/18 from the Hong Kong’s Research Grants Council+7 种基金the TNSTRONG ANR-16-CE30-0025,TNTOP ANR-18CE30-0026-01 grants awarded from the French Research Councilsupported by the NSFC(11874078 and 11834014)the Fundamental Research Funds for the Central Universitiessupported by the NSFC(11861161001)the Science,Technology and Innovation Commission of Shenzhen Municipality(ZDSYS20190902092905285)Guangdong Basic and Applied Basic Research Foundation(2020B1515120100)Shenzhen-Hong Kong Cooperation Zone for Technology and Innovation(HZQB-KCZYB-2020050)Center for Computational Science and Engineering at Southern University of Science and Technology。
文摘The nature of the zero-temperature phase diagram of the spin-1/2 J_(1)-J_(2)Heisenberg model on a square lattice has been debated in the past three decades,and it remains one of the fundamental problems unsettled in the study of quantum many-body theory.By using the state-of-the-art tensor network method,specifically,the finite projected entangled pair state(PEPS)algorithm,to simulate the global phase diagram of the J_(1)-J_(2)Heisenberg model up to 24×24 sites,we provide very solid evidences to show that the nature of the intermediate nonmagnetic phase is a gapless quantum spin liquid(QSL),whose spin-spin and dimer-dimer correlations both decay with a power law behavior.There also exists a valence-bond solid(VBS)phase in a very narrow region 0.56■J_(2)/J_(1)≤0.61 before the system enters the well known collinear antiferromagnetic phase.We stress that we make the first detailed comparison between the results of PEPS and the well-established density matrix renormalization group(DMRG)method through one-to-one direct benchmark for small system sizes,and thus give rise to a very solid PEPS calculation beyond DMRG.Our numerical evidences explicitly demonstrate the huge power of PEPS for highly frustrated spin systems.Finally,an effective field theory is also proposed to understand the physical nature of the discovered gapless QSL and its relation to deconfined quantum critical point(DQCP).
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11674157 and 11822405)the Fundamental Research Funds for the Central Universities(Grant No.020414380105)
文摘Quantum spin liquids(QSLs) represent a novel state of matter in which quantum fluctuations prevent the conventional magnetic order from being established, and the spins remain disordered even at zero temperature. There have been many theoretical developments proposing various QSL states. On the other hand, experimental movement was relatively slow largely due to limitations on the candidate materials and difficulties in the measurements. In recent years, the experimental progress has been accelerated. In this topical review, we give a brief summary of experiments on the QSL candidates under magnetic fields. We arrange our discussions by two categories: i) Geometrically-frustrated systems, including triangularlattice compounds YbMgGaO4 and YbZnGaO4, κ-(BEDT-TTF)2 Cu2(CN)3, and EtMe3 Sb[Pd(dmit)2]2, and the kagom′e system ZnCu3(OH)6 Cl2; ii) the Kitaev material α-RuCl3. Among these, we will pay special attention to α-RuCl3, which has been intensively studied by ours and other groups recently. We will present evidence that both supports and rejects the QSL ground state for these materials, based on which we give several perspectives to stimulate further research activities.
基金supported by the National Key Basic Research Program of China(Grant No.2014CB920902)the National Key Research and Development Program of China(Grant Nos.2017YFA0302904,and 2018YFA0305800)+2 种基金the National Natural Science Foundation of China(Grant No.11804337)the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB28000000)the Beijing Municipal Science&Technology Commission(Grant No.Z181100004218001)。
文摘A new quantum spin liquid(QSL)candidate material H3LiIr2O6 was synthesized recently and was found not to show any magnetic order or phase transition down to low temperatures.In this work,we study the quantum dynamics of the hydrogen ions,i.e.,protons,in this material by combining first-principles calculations and theoretical analysis.We show that each proton and its adjacent oxygen ions form an electric dipole.The dipole interactions and the proton tunneling are captured by a transverse-field Ising model with a quantum disordered paraelectric ground state.The dipole excitations have an energy gap△d=60 meV,and can be probed by the infrared optical spectroscopy and the dielectric response.We argue that the electric dipole fluctuations renormalize the magnetic interactions in H3LiIr2O6 and lead to a Kitaev QSL state.
基金Supported by the National Natural Science Foundation of China (1047074)
文摘Polycrystalline samples of a novel spin-liquid compound Tb2Ti2O7 were prepared by a standard solid-state reaction. X-ray diffraction at room temperature confirms that the synthesized compound of Tb2Ti2O7 is single phase with cubic unit cell constant a0 of 1.015 44 nm. Magnetic susceptibility measurements in the temperature range between 100 and 300 K give an effective moment of 9.44 μB and Curie-Weiss temperature of 12.68 K, respectively, indicating the dominance of antiferromagnetic interactions. However, below 50 K, the magnetic behavior of Tb2Ti2O7 deviates from Curie-Weiss law, whose origin remains suspicion.
基金This work was supported by the Ministry of Science and Technology of China(Grant Nos.2018YFE0103200,2016YFA0300500,and 2016YFA0301001)the Shanghai Municipal Science and Technology Major Project(Grant No.2019SHZDZX04)the Research Grants Council of Hong Kong with General Research Fund(Grant No.17306520).
文摘Spiral spin liquids are unique classical spin liquids that occur in many frustrated spin systems,but do not comprise a new phase of matter.Owing to extensive classical ground-state degeneracy,the spins in a spiral spin liquid thermally fluctuate cooperatively from a collection of spiral configurations at low temperatures.These spiral propagation wavevectors form a continuous manifold in reciprocal space,i.e.,a spiral contour or a spiral surface,that strongly governs the low-temperature thermal fluctuations and magnetic physics.In this paper,the relevant spin models conveying the spiral spin liquid physics are systematically explored and the geometric origin of the spiral manifold is clarified in the model construction.The spiral spin liquids based on the dimension and the codimension of the spiral manifold are further clarified.For each class,the physical properties are studied both generally and for specific examples.The results are relevant to a wide range of frustrated magnets.A survey of materials is given and future experiments are suggested.
文摘Six samples of linear high randomness 60PHB/ PET thermotropic liquid crystal copolyesters are made by melt copolymerization at 290℃ , whose randomness about 0.955 is measured by the discernible ’H-NMR spectrometer. High tenacity, high module fiber is prepared by melt spinning in liquid crystal phase. The effect of molecular weight, shear rate, temperature as well as spinning drawn ratio on the mechanical behavior of 60PHB / PET copolyester fiber are shown that, lower shear rate (2<sup> </sup>10 s<sup>-1</sup>), higher temperature melting (300℃ ), lower temperature spinning (280℃ ) and higher molecular weight are favourable to the increase of the fiber mechanical properties. With the variance of drawn ratio, fiber mechanical property has a transition point due to traversion from shear-orientation to drawn-orientation. The copolyester fiber has high crystallinity, high orientation at the crystalline region, high chain orientation and high regular fibrillar structure.
文摘In order to understand the properties of the spin system with orbital degeneracy, we first study the ground state of the SU(4) spin-orbital model on a square lattice. The mean-field results suggest that for a small Hund's interaction, the flavor liquid state is stable against the solid state, but with sufficient deviation from the SU(4) limit the long-range order may be attained in 2D system. Furthermore, we employ a variational approach to calculate the phase diagram of the ground state and the temperature-dependent susceptibility by taking into account the Hund's interaction and the anisotropy in orbital wavefunctions. Finally, the implications for the experimental observations on the material, , are discussed.
基金supported by the National Natural Science Foundation of China (Nos. 21325417, 51533008, and 51703194)National Key R&D Program of China (No. 2016YFA0200200)Fundamental Research Funds for the Central Universities (Nos. 2017QNA4036 and 2017XZZX008-06)
文摘It is crucial to develop flexible and wearable electronic devices that have attracted tremendous interest due to their merits on compactness,flexibility and high capacitive properties.Herein we report the continuously ordered macroscopic poly(ionic liquid)-graphene fibers by wet spinning method via liquid crystal assembly for supercapacitor application.The fabricated all-solid-state supercapacitors exhibited a high areal capacitance(268.2 mF cm 2)and volumetric capacitance(204.6 F cm 3)with an outstanding areal energy density(9.31μWh cm-2)and volumetric energy density(8.28 mWh cm-3).The fiber supercapacitors demonstrated exceptional cycle life for straight electrodes of about 10,000 cycles(94.2%capacitance retention)and flexibility at different angles(0°,45°,90°,180°)along with a good flexible cycling stability after 6000 cycles(92.7%capacitance retention).To date,such a novel poly(ionic liquid)-graphene fiber supercapacitors would be a new platform in real-time flexible electronics.
基金Project(50371066) supported by the National Natural Science Foundation of China
文摘The ribbons of Cu-Cr alloys with high Cr content (15%- 35%, mass fraction) were prepared by rapid solidification. The microstructures of solidified samples were analyzed by scanning electron microscopy and transmission electron microscopy. The results reveal that a representative liquid phase separation microstructures are observed in Cu75Cr25 ribbons solidified at a cooling rate of about 104K/s. The liquid phase separation is not restrained when the cooling rate is enhanced to about 107K/s. However, the size of Cr particles solidified from Cr-rich liquid or Cr-rich regions in alloy melts could be refined by increasing the cooling rates. The size of Cr particles increases with increasing Cr contents when the ribbons contain 15% to 35%Cr.
文摘Graphene edges with a zigzag-type atomic structure can theoretically produce spontaneous spin polarization despite being a critical-metal-free material. We have demonstrated this in graphene nanomeshes (GNMs) with honeycomb-like arrays of low-defect hexagonal nanopores by observing room-temperature ferromagnetism and spin-based phenomena arising from the zigzag-pore edges. Here, we apply extremely high electric fields to the ferromagnetic (FM) GNMs using an ionic-liquid gate. A large on/off-ratio for hole current is observed for even small applied ionic-liquid gate voltages (Vig). Observations of the magnetoresistance behavior reveal high carrier densities of ~1013 cm-2 at large Vig values. We find a maximum conductance peak in the high -Vig region and its separation into two peaks upon applying a side-gate (in-plane external) voltage (Vex). It is discussed that localized edge-π band with excess-density electrons induced by Vig and its spin splitting for majority and minority of spins by Vex (half-metallicity model) lead to these phenomena. The results must realize critical-element-free novel spintronic devices.