期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Renormalization of Tripartite Entanglement in Spin Systems with Dzyaloshinskii–Moriya Interaction
1
作者 秦猛 王黎 +3 位作者 王必利 王晓 白忠 李延标 《Chinese Physics Letters》 SCIE CAS CSCD 2018年第10期1-4,共4页
Quantum entanglement represents a fundamental feature of quantum many-body systems. We combine tripartite entanglement with quantum renormalization group theory to study the quantum critical phenomena. The Ising model... Quantum entanglement represents a fundamental feature of quantum many-body systems. We combine tripartite entanglement with quantum renormalization group theory to study the quantum critical phenomena. The Ising model and the Heisenberg X X Z model in the presence of the Dzyaloshinskii–Moriya interaction are adopted as the research objects. We identify that the tripartite entanglement can signal the critical point. The derivative of tripartite entanglement shows singularity as the spin chain size increases. Furthermore, the intuitive scaling behavior of the system selected is studied and the result allows us to precisely quantify the correlation exponent by utilizing the power law. 展开更多
关键词 Renormalization of Tripartite Entanglement in spin systems with Dzyaloshinskii
下载PDF
Electron Spin Resonance(ESR)Spectroscopy of the Transition-metal Complexes and Clusters I.Systematic Investigations of Real-and Complex-Orbital Methods for Calculating the d-Orbital Energies of a Low-spin(S=1/2)nd^5(t_2~5,~2T_2)(n=3
2
作者 ZHAO Kun (Fujian Institute of Research on the Structure of Matter, the Chinese Academy of Sciences, Fuzhou, Fujian, China 350002) 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 1999年第2期61-65,共5页
On the basis of the first paper’s theoretical derivations and concrete instance calculations of the energies of the d orbitals for a low spin ( S =1/2) nd 5(t 2 5, 2T 2)(n =3, 4, 5) system, the ma... On the basis of the first paper’s theoretical derivations and concrete instance calculations of the energies of the d orbitals for a low spin ( S =1/2) nd 5(t 2 5, 2T 2)(n =3, 4, 5) system, the major results reported in this paper contain the following two respects: explicit relationships between the coefficients of the real and complex Kramers doublets have been derived by using two types of the expressions of the principal components of the g tensors in real and complex orbital representations obtained in the first paper; the use of these relationships of the real and complex orbital coefficients has carried out a series of mathematical demonstrations on the agreement of the real and complex orbital methods . 展开更多
关键词 ESR transition metal complexes and clusters low spin d 5 systems
下载PDF
Emergent O(4) symmetry at the phase transition from plaquette-singlet to antiferromagnetic order in quasi-two-dimensional quantum magnets
3
作者 孙光宇 马女森 +2 位作者 赵博文 Anders W.Sandvik 孟子杨 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第6期570-582,共13页
Recent experiments [Guo et al., Phys. Rev. Lett. 124 206602(2020)] on thermodynamic properties of the frustrated layered quantum magnet SrCu_(2)(BO_(3))_(2)-the Shastry–Sutherland material-have provided strong eviden... Recent experiments [Guo et al., Phys. Rev. Lett. 124 206602(2020)] on thermodynamic properties of the frustrated layered quantum magnet SrCu_(2)(BO_(3))_(2)-the Shastry–Sutherland material-have provided strong evidence for a lowtemperature phase transition between plaquette-singlet and antiferromagnetic order as a function of pressure. Further motivated by the recently discovered unusual first-order quantum phase transition with an apparent emergent O(4) symmetry of the antiferromagnetic and plaquette-singlet order parameters in a two-dimensional "checkerboard J-Q" quantum spin model[Zhao et al., Nat. Phys. 15 678(2019)], we here study the same model in the presence of weak inter-layer couplings. Our focus is on the evolution of the emergent symmetry as the system crosses over from two to three dimensions and the phase transition extends from strictly zero temperature in two dimensions up to finite temperature as expected in SrCu_(2)(BO_(3))_(2).Using quantum Monte Carlo simulations, we map out the phase boundaries of the plaquette-singlet and antiferromagnetic phases, with particular focus on the triple point where these two ordered phases meet the paramagnetic phase for given strength of the inter-layer coupling. All transitions are first-order in the neighborhood of the triple point. We show that the emergent O(4) symmetry of the coexistence state breaks down clearly when the interlayer coupling becomes sufficiently large, but for a weak coupling, of the magnitude expected experimentally, the enlarged symmetry can still be observed at the triple point up to significant length scales. Thus, it is likely that the plaquette-singlet to antiferromagnetic transition in SrCu_(2)(BO_(3))_(2) exhibits remnants of emergent O(4) symmetry, which should be observable due to additional weakly gapped Goldstone modes. 展开更多
关键词 quantum phase transitions quantum spin systems emergent symmetry quantum Monte Carlo simulations
下载PDF
Tunable deconfined quantum criticality and interplay of different valence-bond solid phases
4
作者 赵博文 Jun Takahashi Anders W.Sandvik 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第5期52-65,共14页
We use quantum Monte Carlo simulations to study an S = 1/2 spin model with competing multi-spin interactions. We find a quantum phase transition between a columnar valence-bond solid(cVBS) and a Néel antiferromag... We use quantum Monte Carlo simulations to study an S = 1/2 spin model with competing multi-spin interactions. We find a quantum phase transition between a columnar valence-bond solid(cVBS) and a Néel antiferromagnet(AFM), as in the scenario of deconfined quantum-critical points, as well as a transition between the AFM and a staggered valence-bond solid(sVBS). By continuously varying a parameter, the sVBS–AFM and AFM–cVBS boundaries merge into a direct sVBS–cVBS transition. Unlike previous models with putative deconfined AFM–cVBS transitions, e.g., the standard J–Q model,in our extended J–Q model with competing cVBS and sVBS inducing terms the transition can be tuned from continuous to first-order. We find the expected emergent U(1) symmetry of the microscopically Z4 symmetric cVBS order parameter when the transition is continuous. In contrast, when the transition changes to first-order, the clock-like Z4 fluctuations are absent and there is no emergent higher symmetry. We argue that the confined spinons in the sVBS phase are fracton-like.We also present results for an SU(3) symmetric model with a similar phase diagram. The new family of models can serve as a useful tool for further investigating open questions related to deconfined quantum criticality and its associated emergent symmetries. 展开更多
关键词 quantum phase transitions deconfined quantum criticality quantum spin systems quantum Monte Carlo simulations
下载PDF
Performance of an irreversible quantum refrigeration cycle
5
作者 何济洲 欧阳微频 伍歆 《Chinese Physics B》 SCIE EI CAS CSCD 2006年第1期53-59,共7页
A new model of a quantum refrigeration cycle composed of two adiabatic and two isomagnetic field processes is established. The working substance in the cycle consists of many non-interacting spin-1/2 systems. The perf... A new model of a quantum refrigeration cycle composed of two adiabatic and two isomagnetic field processes is established. The working substance in the cycle consists of many non-interacting spin-1/2 systems. The performance of the cycle is investigated, based on the quantum master equation and semi-group approach. The general expressions of several important performance parameters, such as the coefficient of performance, cooling rate, and power input, are given. It is found that the coefficient of performance of this cycle is in the closest analogy to that of the classical Carnot cycle. Furthermore, at high temperatures the optimal relations of the cooling rate and the maximum cooling rate are analysed in detail. Some performance characteristic curves of the cycle are plotted, such as the cooling rate versus the maximum ratio between high and low "temperatures" of the working substances, the maximum cooling rate versus the ratio between high and low "magnetic fields" and the "temperature" ratio between high and low reservoirs. The obtained results are further generalized and discussed, so that they may be directly applied to describing the performance of the quantum refrigerator using spin-J systems as the working substance. Finally, the optimum characteristics of the quantum Carnot and Ericsson refrigeration cycles are derived by analogy. 展开更多
关键词 spin systems quantum refrigeration cycle performance parameters
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部