期刊文献+
共找到552篇文章
< 1 2 28 >
每页显示 20 50 100
Observer-based robust high-order fully actuated attitude autopilot design for spinning glide-guided projectiles
1
作者 Wei Wang Yuchen Wang +2 位作者 Shiwei Chen Yongcang Guo Zhongjiao Shi 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第4期282-294,共13页
This paper investigates the design of an attitude autopilot for a dual-channel controlled spinning glideguided projectile(SGGP),addressing model uncertainties and external disturbances.Based on fixed-time stable theor... This paper investigates the design of an attitude autopilot for a dual-channel controlled spinning glideguided projectile(SGGP),addressing model uncertainties and external disturbances.Based on fixed-time stable theory,a disturbance observer with integral sliding mode and adaptive techniques is proposed to mitigate total disturbance effects,irrespective of initial conditions.By introducing an error integral signal,the dynamics of the SGGP are transformed into two separate second-order fully actuated systems.Subsequently,employing the high-order fully actuated approach and a parametric approach,the nonlinear dynamics of the SGGP are recast into a constant linear closed-loop system,ensuring that the projectile's attitude asymptotically tracks the given goal with the desired eigenstructure.Under the proposed composite control framework,the ultimately uniformly bounded stability of the closed-loop system is rigorously demonstrated via the Lyapunov method.Validation of the effectiveness of the proposed attitude autopilot design is provided through extensive numerical simulations. 展开更多
关键词 spinning glide-guided projectile Attitude control Sliding mode disturbance observer Fixed-time stable theory High-order fully actuated approach
下载PDF
Stability analysis of the projectile based on random center manifold reduction
2
作者 Yong Huang Chunyan Yang 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2023年第1期3-7,共5页
The center manifold method has been widely used in the field of stochastic dynamics as a dimensionality reduction method.This paper studied the angular motion stability of a projectile system under random disturbances... The center manifold method has been widely used in the field of stochastic dynamics as a dimensionality reduction method.This paper studied the angular motion stability of a projectile system under random disturbances.The random bifurcation of the projectile is studied using the idea of the Routh-Hurwitz stability criterion,the center manifold reduction,and the polar coordinates transformation.Then,an approximate analytical presentation for the stationary probability density function is found from the related Fokker–Planck equation.From the results,the random dynamical system of projectile generates three different dynamical behaviors with the changes of the bifurcation parameter and the noise strength,which can be a reference for projectile design. 展开更多
关键词 Center manifold reduction FPK equation Routh-Hurwitz stability criterion projectile stability The polar coordinates transformation
下载PDF
Influence of control strategy on stability of dual-spin projectiles with fixed canards 被引量:7
3
作者 Yu Wang Xiao-ming Wang Ji-yan Yu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2018年第6期709-719,共11页
Existing literature has shown that the control force at the nose could cause dynamic instability for controlled projectiles. To lower the adverse impact on the dual-spin projectile with fixed canards under the premise... Existing literature has shown that the control force at the nose could cause dynamic instability for controlled projectiles. To lower the adverse impact on the dual-spin projectile with fixed canards under the premise of meeting guidance system requirements, the influence of control moment provided by a motor on the flight stability is analyzed in this paper. Firstly, the effect of the rolling movement on stability is analyzed based on the stability criterion derived using the Hurwitz stability theory. Secondly, the evaluation parameters combining the features of different control periods that could assess the variation of stability features after the motor torque are obtained. These effective formulas are used to indicate that, to reduce the flight instability risks, the stabilized rolling speed of roll speed keeping period should be as small as possible; the variation trend of motor torque during the rolling speed controlling period and the roll angle of the forward body during roll angle switching period are recommended corresponding to the projectile and trajectory characteristics. Moreover,detailed numerical simulations of 155 mm dual-spin projectile are satisfactory agreement with the theoretical results. 展开更多
关键词 Dual-spin projectile Fixed CANARDS Control strategy Flight stabilITY
下载PDF
A review of dual-spin projectile stability 被引量:2
4
作者 James Norris Amer Hameed +1 位作者 John Economou Simon Parker 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2020年第1期1-9,共9页
This paper gives a succinct review of dual-spinprojectile stability and some technologies relating to them.It describes how the traditional stability factors from linear projectile theory are modified to better descri... This paper gives a succinct review of dual-spinprojectile stability and some technologies relating to them.It describes how the traditional stability factors from linear projectile theory are modified to better describe a controlled dual-spin projectile.Finally,it reviews works which have investigated how different aspects of a controlled dual-spin design can affect flight stability,primarily airframe structure and canard properties.A conclusion is given,highlighting important guidelines from the enclosed discussions. 展开更多
关键词 Guided projectileS Dual-spin Gyroscopic Dynamic stabilITY CANARDS
下载PDF
Modeling and Stability Analysis for Dual-Spinning Projectiles with Canards
5
作者 管军 李新华 +1 位作者 易文俊 常思江 《Journal of Donghua University(English Edition)》 EI CAS 2017年第5期670-676,共7页
To develop the guided spin-stabilized projectiles with high hit precision,a class of dual-spinning stabilized projectile equipped with canards in atmospheric is studied.The 7 degrees of freedom(DOF) nonlinear equation... To develop the guided spin-stabilized projectiles with high hit precision,a class of dual-spinning stabilized projectile equipped with canards in atmospheric is studied.The 7 degrees of freedom(DOF) nonlinear equations are written in a non-rolling body frame.The work reported here focuses on the ballistic property analysis including the spin rates,incidence angle,ballistic drift and lateral velocity.The dual-spinning projectiles are fundamentally less stable than conventional spin-stabilized projectiles.Hence,the gyroscopic stability is also studied in this paper.Theoretical models are given in this work,and the results of numerical analysis are discussed. 展开更多
关键词 dual-spinning projectiles 7 degrees of freedom(DOF) nonlinear modeling stability analysis
下载PDF
Investigation on the flow control of micro-vanes on a supersonic spinning projectile 被引量:2
6
作者 Jie MA Zhi-hua CHEN +2 位作者 Zhen-gui HUANG Jian-guo GAO Qiang ZHAO 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2016年第3期227-233,共7页
Studies have shown that micro-wedge vortex generators(MVG)can effectively control the flow separation of supersonic boundary layer.In order to improve the flight stability of spinning projectile,the original standard ... Studies have shown that micro-wedge vortex generators(MVG)can effectively control the flow separation of supersonic boundary layer.In order to improve the flight stability of spinning projectile,the original standard 155 mm projectile was taken as an example,and the micro-vanes were mounted at the projectile shoulder to investigate the separation control on the aerodynamic characteristics of projectile.Numerical simulations were performed with the use of DES method for the flow fields of projectiles with and without micro-vanes,and the characteristics of the boundary layer structures and aerodynamic data were compared and discussed.Numerical results show that the micro-vanes can be used to inhibit separation of fluid on projectile surface,and improve the flight stability and firing dispersion of projectile. 展开更多
关键词 spinNING projectile Micro-vane stability Aerodynamic characteristics FLUID control
下载PDF
Stability analysis of magnetization in a perpendicular magnetic layer driven by spin Hall effect
7
作者 李再东 赵欣欣 徐天赋 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第5期662-667,共6页
We investigate the stability of magnetization in free layer where the spin torque is induced by the spin Hall effect.In terms of the Landau–Liftshitz–Gilbert equation,we find the low-energy and high-energy equilibri... We investigate the stability of magnetization in free layer where the spin torque is induced by the spin Hall effect.In terms of the Landau–Liftshitz–Gilbert equation,we find the low-energy and high-energy equilibrium states,as well as the saddle points.The stability region is defined in the phase diagram spanned by the current density and the spin Hall angle.The spin Hall effect makes the previous saddle point into a stable state above a critical current.However,in the presence of magnetic field,the spin Hall effect leads to the opposite changes in the stable regions of the two low-energy states. 展开更多
关键词 stabilITY spin Hall effect equilibrium states
下载PDF
Influence of yawing force frequency on angular motion and ballistic characteristics of a dual-spin projectile 被引量:2
8
作者 Yu WANG Jie CHENG +1 位作者 Ji-yan YU Xiao-ming WANG 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2016年第2期124-128,共5页
A roll-decoupled course correction fuze with canards can improve the hit accuracy of conventional unguided ammunitions. The fuze increases accuracy by reducing the effect of angular and translational motion produced b... A roll-decoupled course correction fuze with canards can improve the hit accuracy of conventional unguided ammunitions. The fuze increases accuracy by reducing the effect of angular and translational motion produced by the cyclical yawing forces applied on the projectile. In order to investigate the influence of yawing forces on angular motion, a theoretical solution of the total yaw angle function with the cyclical yawing forces is deduced utilizing the 7 degrees of freedom(7-DOF) model designed for this calculation. Furthermore, a detailed simulation is carried out to determine the influence rules of yawing force on angular motion. The calculated results illustrate that, when the rotational speed of the forward part is close to the initial turning rate, the total yaw angle increases and the flight range decreases sharply. Moreover, a yawing force at an appropriate frequency is able to correct the gun azimuth and elevation perturbation to some extent. 展开更多
关键词 偏航角 角运动 弹道特性 弹丸 频率 双自旋 弹道修正引信 6-DOF
下载PDF
Research on dynamic stabilityrotational speed range of rolling projectiles with different characteristics
9
作者 王亚飞 于剑桥 +1 位作者 苏晓龙 王林林 《Journal of Beijing Institute of Technology》 EI CAS 2014年第3期285-291,共7页
Traditional dynamic stability analyses of the rolling projectiles are mainly based on solving the systems' transfer functions or angular motion' s homogeneous equations to obtain their charac- teristic roots. The so... Traditional dynamic stability analyses of the rolling projectiles are mainly based on solving the systems' transfer functions or angular motion' s homogeneous equations to obtain their charac- teristic roots. The solving processes of these methods are complex and lacking further analysis of the results. To solve this problem, Routh stability criterion is introduced to determine the stability of rolling missiles based on the transfer function model, and an important advantage of this method is that it is unnecessary to solve the system' s characteristic equation. Rotational speed ranges satisfy- ing the dynamic stability of rolling projectiles with four different characteristics are acquired, and the correctness of analysis results is verified by computing the system' s root locus. The analysis results show that the relation between stability and rotational speed for static stable missiles is opposite to that for spin-stabilized projectiles, and the relative size of gyroscopic effect and Magnus effect has an extremely important influence on the trend of the stability of the system with increasing rotational speed. 展开更多
关键词 rolling projectiles dynamic stability rotational speed boundary Routh criterion
下载PDF
Stability Analysis for Projectile with Wrap-Around Fins
10
作者 王成 宁建国 《Journal of Beijing Institute of Technology》 EI CAS 2007年第4期388-392,共5页
Based on the stability theory, numerical simulations and theoretical calculations are performed for a projectile with wrap-around fins. Its stability is analyzed and the flow field is simulated with computational flui... Based on the stability theory, numerical simulations and theoretical calculations are performed for a projectile with wrap-around fins. Its stability is analyzed and the flow field is simulated with computational fluid dynamics method. Consequently, the pitching moment coefficient of the projectile is further investigated under the conditions of Mach number ranging from 0.3 to 0.8, attack angle from 0 to 8° and yaw angle from 0 to 4°. A trajectory equation is established and its trajectory characteristics are also explored. All the results of theoretical analysis, numerical simulation and trajectory equation agree well with each other, which indicates the projectile is flying steadily at the given conditions. These results provide an effective way for judging the stability of the projectile with wrap-around fins. 展开更多
关键词 projectile with wrap-around fins stabilITY pitching moment coefficient numerical simulation trajectory equation
下载PDF
A new calibration algorithms of spinning projectile aerodynamic parameters
11
作者 丛明煜 张伟 王丽萍 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2005年第4期440-445,共6页
This paper demonstrates that the application of calibration algorithms of aerodynamic parameters for the trajectory of spinning projectile is successful. First, from the point of view of the trajectory simulation, a g... This paper demonstrates that the application of calibration algorithms of aerodynamic parameters for the trajectory of spinning projectile is successful. First, from the point of view of the trajectory simulation, a general summary of well-known trajectory models is given. A five degrees of freedom (5 DOF) model is developed that can match the projectile motion essentially in the vertex region, and the results obtained by 5 DOF model are in close agreement with those of a more sophisticated 6 DOF model for elevation angles above 45 degrees. Secondly, the calibration algorithms have been developed and are summarized. The methods of calibrating the flight trajectory models are compared, and these methods are shown to be effective in the representative cases. In addition, the method of Mach number calibration (MNC) is presented; some possible areas in MNC for further investigation are indicated together with benefits to be gained. The utilization of MNC schemes not only allow a worthwhile reduction of calibration rounds firing in range and accuracy (R&A) trial and production of firing tables (PFT) test, but also make PFT and fire control data (FCD) more cost effective. 展开更多
关键词 校准算法 轨道模型 轨道仿真 旋转发射 空气动力学
下载PDF
Method of Time-Delay Calculating and Correcting to Control Spin-Stabilized Satellite Synchronously 被引量:1
12
作者 YangTianshe LiJisheng HuangYongxuan 《工程科学(英文版)》 2005年第2期91-94,共4页
The key to control Spin-Stabilized Satellites Synchronously is to determine the models for calculating and correcting of time-delay at the different situations. Based on the principle of Synchronous-Control mode, the ... The key to control Spin-Stabilized Satellites Synchronously is to determine the models for calculating and correcting of time-delay at the different situations. Based on the principle of Synchronous-Control mode, the methods of determining the models of calculating and correcting of time-delay are proposed. The methods have been proved to be effective in real satellite control engineering. 展开更多
关键词 延时计算 同步控制 人造卫星 自旋稳定
下载PDF
Method of ballistic control and projectile rotation in a novel railgun 被引量:5
13
作者 Bo Tang Ying-tao Xu +3 位作者 Gang Wan Jiang Yue Yong Jin Hai-yuan Li 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2018年第5期628-634,共7页
In order to realize the ballistic control of the railgun and the flight stability of the projectile, a new type of railgun is designed, which can control the muzzle velocity and rotation rate. The method of the muzzle... In order to realize the ballistic control of the railgun and the flight stability of the projectile, a new type of railgun is designed, which can control the muzzle velocity and rotation rate. The method of the muzzle velocity and overload control is to adjust the voltage or other parameters of pulse power supply. It would be easy to change velocity accurately in large wide. Another widespread concern problem is launching the spinning stability projectile by railgun. This paper designed a new structure of additional rails to generate an unsymmetrical magnetic field to produce rotational torque in armature. The structure is simple and can control the rotation rate by linear changing the barrel parameters. The calculation formulas of interior ballistic are derived by Biot-Safar law. The important parameter is the deflection angle of the additional rails relative to the symmetry plane of main rail. The larger the angle, the greater the rotation torque generated in the armature. To maintain the flight stability of the projectile, the barrel structural parameters should be proportional to the projectile structural parameters. When changing the muzzle velocity, the rotation rate will also be the equal proportion change. So that the gyro stability is the same. The experiment proves that the railgun designed in this paper can launch the projectile to rotate. And the rotational projectile may not cause the transition or much arcs. This method expands the application of the railgun. 展开更多
关键词 BALLISTIC CONTROL RAILGUN ROTATION spin-stabilized projectile
下载PDF
Stability of the Konjac Glucomannan Topological Chain Based on Quantum Spin Model 被引量:2
14
作者 倪永升 穆若郡 +4 位作者 谭小丹 黄荣勋 袁毅 陈慧斌 庞杰 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2017年第6期1043-1048,共6页
In this paper we investigated the stability of konjac glucomnnan(KGM) chain hydrogen networks based on the quantum spin model. Dissipative particle dynamics method was applied in the structure simulation of KGM. The... In this paper we investigated the stability of konjac glucomnnan(KGM) chain hydrogen networks based on the quantum spin model. Dissipative particle dynamics method was applied in the structure simulation of KGM. The results reveled that acetyl residues of KGM were bonded with water molecules in aqueous solutions. Increasing the hydrogen bond formation decreases the energy in acetyl system. The expect-valuation of the thermal state with respect to the Hamiltonian is negative. Hence, the total energy of konjac glucomnnan chain with the acetyl groups decreases, which indicates the increasing stability of konjac glucomnnan chain. Our approach could provide a new insight into the investigation on the stability of konjac glucomnnan chain. 展开更多
关键词 konjac glucanmannan glycan chains quantum spin model hydrogen networks stability
下载PDF
Stability margin of the quadruped bionic robot with spinning gait 被引量:2
15
作者 雷静桃 Jiang Yunqi Ren Mingming 《High Technology Letters》 EI CAS 2017年第3期229-237,共9页
Spinning gait is valuable for quadruped robot,which can be used to avoid obstacles quickly for robot walking in unstructured environment. A kind of bionic flexible body is presented for quadruped robot to perform the ... Spinning gait is valuable for quadruped robot,which can be used to avoid obstacles quickly for robot walking in unstructured environment. A kind of bionic flexible body is presented for quadruped robot to perform the spinning gait. The spinning gait can be achieved by coordinated movement of body laterally bending and legs swing,which can improve the mobility of robot walking in the unstructured environments. The coordinated movement relationship between the body and the leg mechanism is presented. The stability of quadruped robot with spinning gait is analyzed based on the center of gravity( COG) projection method. The effect of different body bending angle on the stability of quadruped robot with spinning gait is mainly studied. For the quadruped robot walking with spinning gait,during one spinning gait cycle,the supporting polygon and the trajectory of COG projection point under different body bending angle are calculated. Finally,the stability margin of quadruped robot with spinning gait under different body bending angle is determined,which can be used to evaluate reasonableness of spinning gait parameters. 展开更多
关键词 步行机器人 稳定裕度 仿生 四足机器人 非结构化环境 弯曲角度 行旋转 协调运动
下载PDF
DYNAMIC STABILITY OF SPINDLE BLADE IN RING SPINNING Zhou Bingrong(Department of Mechanical Engineering)
16
作者 周炳荣 《Journal of Donghua University(English Edition)》 EI CAS 1989年第Z1期55-61,共7页
It is discussed that a tangential force T induces a self-excited vibration in the motion ofspindle blades of a ring spinning frame.Depending on the relative magnitude of the tangentialforce compared with the tangentia... It is discussed that a tangential force T induces a self-excited vibration in the motion ofspindle blades of a ring spinning frame.Depending on the relative magnitude of the tangentialforce compared with the tangential damping force the motion of blade is either stable orunstable.The chief factors causing the self-excited vibration can also be traced from the charac-ter of the experimental locus. 展开更多
关键词 dynamic stability ring spinNING spinDLES vibration self EXCITATION stablity theory of motion
下载PDF
Effects of residual stress and viscous and hysteretic dampings on the stability of a spinning micro-shaft
17
作者 A.A.MONAJEMI M.MOHAMMADIMEHR 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2020年第8期1251-1268,共18页
This study examines the effects of the residual stress and viscous and hysteretic dampings on the vibrational behavior and stability of a spinning Timoshenko micro-shaft.A modified couple stress theory(MCST)is used to... This study examines the effects of the residual stress and viscous and hysteretic dampings on the vibrational behavior and stability of a spinning Timoshenko micro-shaft.A modified couple stress theory(MCST)is used to elucidate the sizedependency of the micro-shaft spinning stability,and the equations of motion are derived by employing Hamilton’s principle and a spatial beam for spinning micro-shafts.Moreover,a differential quadrature method(DQM)is presented,along with the exact solution for the forward and backward(FW-BW)complex frequencies and normal modes.The effects of the material length scale parameter(MLSP),the spinning speed,the viscous damping coefficient,the hysteretic damping,and the residual stress on the stability of the spinning micro-shafts are investigated.The results indicate that the MLSP,the internal dampings(viscous and hysteretic),and the residual stress have significant effects on the complex frequency and stability of the spinning micro-shafts.Therefore,it is crucial to take these factors into account while these systems are designed and analyzed.The results show that an increase in the MLSP leads to stiffening of the spinning micro-shaft,increases the FW-BW dimensionless complex frequencies of the system,and enhances the stability of the system.Additionally,a rise in the tensile residual stresses causes an increase in the FW-BW dimensionless complex frequencies and stability of the micro-shafts,while the opposite is true for the compressive residual stresses.The results of this research can be employed for designing spinning structures and controlling their vibrations,thus forestalling resonance. 展开更多
关键词 residual stress viscous and hysteretic dampings stabilITY spinning microshaft
下载PDF
平头射弹前体参数对弹道稳定性及射程的影响
18
作者 许云涛 檀大林 +3 位作者 杨超 戴玉婷 王震霄 周鹏 《兵工学报》 EI CAS CSCD 北大核心 2024年第6期1933-1941,共9页
为研究超空泡射弹前体参数对弹道稳定性和射程的影响规律,建立一种基于模态动力学的流场与弹道高效耦合仿真方法,提出超空泡射弹尾拍过程稳定度和有效射程的量化评价方法,完成针对泡型计算方法和尾拍弹道求解方法的合理性验证。在此基础... 为研究超空泡射弹前体参数对弹道稳定性和射程的影响规律,建立一种基于模态动力学的流场与弹道高效耦合仿真方法,提出超空泡射弹尾拍过程稳定度和有效射程的量化评价方法,完成针对泡型计算方法和尾拍弹道求解方法的合理性验证。在此基础上,分析射弹不同前体头径和锥段长度组合条件下的弹道稳定性和有效射程变化规律。研究结果表明:随着前体头径和锥段长度的增大,射弹稳定性越来越高,失稳弹道存在“直接失稳”和“振荡失稳”两种模式;射弹各头径对应的最大射程随着头径的增大先增加后减小,设计域内最大射程和最小射程相差3.8倍,前体参数对弹道有效射程有较大影响。 展开更多
关键词 超空泡射弹 前体参数 弹道 稳定性 射程
下载PDF
鸭舵转速对双旋弹追随稳定性影响研究
19
作者 王刚 张润桐 +1 位作者 林海珍 席柯 《航空兵器》 CSCD 北大核心 2024年第2期71-78,共8页
发展了适合双旋弹虚拟飞行仿真的高保真计算流体力学和刚体动力学耦合平台,以此为基础研究了旋转鸭舵对双旋弹弹道追随稳定性的影响。为了准确刻画双旋弹前后体的差动旋转效应,将滑移网格算法引入自研非结构混合网格流场数值模拟程序HUN... 发展了适合双旋弹虚拟飞行仿真的高保真计算流体力学和刚体动力学耦合平台,以此为基础研究了旋转鸭舵对双旋弹弹道追随稳定性的影响。为了准确刻画双旋弹前后体的差动旋转效应,将滑移网格算法引入自研非结构混合网格流场数值模拟程序HUND3D。通过对双旋弹进行定轴转动非定常模拟,考察了不同鸭舵转速下双旋弹的流动特征与气动特性。通过耦合求解非定常雷诺平均NS方程和七自由度刚体动力学方程,实现了双旋弹不同弯度弹道的虚拟飞行仿真,分析了弹道追随过程的动力学机理,并结合气动特性分析结果研究了控制鸭舵转速改善弹道追随稳定性的策略。研究结果表明:鸭舵旋转所产生的气动干扰,能够显著影响弹体的侧向力与偏航力矩。通过控制前体鸭舵转速以产生有利于弹道追随的偏航力矩,能够在一定程度上改善弹道追随稳定性。 展开更多
关键词 双旋弹 虚拟飞行仿真 计算流体力学 滑移网格 侧向力 偏航力矩 追随稳定性
下载PDF
高旋弹二维修正引信双旋结构气动特性及气动力表征
20
作者 申强 仇李良 +1 位作者 蒲文洋 李红云 《北京理工大学学报》 EI CAS CSCD 北大核心 2024年第4期359-368,共10页
针对配二维弹道修正引信高旋弹具有弹体气动参数非对称、纵向和横向修正紧密耦合等问题,为了准确表征高旋弹气动参数、明确修正弹丸气动特性和产生机理,提出了基于CFD(computational fluid dynamics)仿真的双旋结构气动力计算分析方法.... 针对配二维弹道修正引信高旋弹具有弹体气动参数非对称、纵向和横向修正紧密耦合等问题,为了准确表征高旋弹气动参数、明确修正弹丸气动特性和产生机理,提出了基于CFD(computational fluid dynamics)仿真的双旋结构气动力计算分析方法.在构建双滚转域流场仿真模型的基础上,对比了二维修正引信不同控制状态下的弹丸受力情况;明确了高旋弹固有气动力和二维修正引信所引起的气动力;建立并推导了攻角与滚转角耦合情况下的舵片受力模型.研究表明:针对二维修正组件,需要考虑合攻角与舵滚转角的相对位置关系以计算诱导阻力;受迎背风和舵片绕流影响,舵片受力模型和弹体的横、纵向气动力均随攻角、滚转角及马赫数变化. 展开更多
关键词 高旋弹 二维弹道修正 CDF仿真计算 固定舵 双旋体
下载PDF
上一页 1 2 28 下一页 到第
使用帮助 返回顶部