Appropriate drying process with optimized controlling of drying parameters plays a vital role in the improvement of the quality and performance of propellant products.However,few research on solvent transport dynamics...Appropriate drying process with optimized controlling of drying parameters plays a vital role in the improvement of the quality and performance of propellant products.However,few research on solvent transport dynamics within NC-based propellants was reported,and its effect on the evolution of mechanical properties was not interpreted yet.This study is conducted to gain a comprehensive understanding of hot-air drying for NC-based propellants and clarify the effect of temperature on solvent transport behavior and further the change of mechanical properties during drying.The drying kinetic curves show the drying time required is decreased but the steady solvent content is increased and the drying rate is obviously increased with the increase of hot-air temperatures,indicating hot-air temperatures have a significant effect on drying kinetics.A modified drying model was established,and results show it is more appropriate to describe solvent transport behavior within NC-based propellants.Moreover,two linear equations were established to exhibit the relationship between solvent content and its effect on the change of tensile properties,and the decrease of residual solvent content causes an obvious increase of tensile strength and tensile modulus of propellant products,indicating its mechanical properties can be partly improved by adjustment of residual solvent content.The outcomes can be used to clarify solvent transport mechanisms and optimize drying process parameters of double-based gun propellants.展开更多
We have studied the structural and atomic transport properties of liquid f-shell Yb in the temperature range 1123 K–1473 K. Pair interactions between atoms are derived using a local pseudopotential. The potential par...We have studied the structural and atomic transport properties of liquid f-shell Yb in the temperature range 1123 K–1473 K. Pair interactions between atoms are derived using a local pseudopotential. The potential parameters are fitted to the phonon dispersion curve at room temperature. The local pseudopotential used in the present study is computationally more efficient with only three parameters, and it is found to be transferable to the liquid phase without changing the parameters.Since the various computed properties agree with reported theoretical and experimental findings, the adopted fitting scheme is justified. As a significant outcome of the study, we find that(i) the melting in Yb is governed by the Lindemann's law,(ii)the mass transport mechanism obeys the Arrhenius law,(iii) the role of the three-particle correlation function in deriving the velocity autocorrelation function is small,(iv) the mean-square atomic displacement is more sensitive to the choice of interaction potential than the other bulk properties, and(v) liquid Yb does not show liquid–liquid phase transition within the studied temperature range. Further, due to the good description of the structural and mass transport properties, we propose that Yb remains divalent at reduced density.展开更多
TiNi-based shape memory alloys have been extensively investigated due to their significant applications,but a comprehensive understanding of the evolution of electronic structure and electrical transport in a system w...TiNi-based shape memory alloys have been extensively investigated due to their significant applications,but a comprehensive understanding of the evolution of electronic structure and electrical transport in a system with martensitic transformations(MT) is still lacking.In this work,we focused on the electronic transport behavior of three phases in Ni_(50-x)Fe_xTi_(50)across the MT.A phase diagram of Ni_(50-x)Fe_xTi_(50) was established based on x-ray diffraction,calorimetric,magnetic,and electrical measurements.To reveal the driving force of MT,phonon softening was revealed using first-principles calculations.Notably,the transverse and longitudinal transport behavior changed significantly across the phase transition,which can be attributed to the reconstruction of electronic structures.This work promotes the understanding of phase transitions and demonstrates the sensitivity of electron transport to phase transition.展开更多
With an extensive range of distinctive features at nano meter-scale thicknesses,two-dimensional(2D)materials drawn the attention of the scientific community.Despite tremendous advancements in exploratory research on 2...With an extensive range of distinctive features at nano meter-scale thicknesses,two-dimensional(2D)materials drawn the attention of the scientific community.Despite tremendous advancements in exploratory research on 2D materials,knowledge of 2D electrical transport and carrier dynamics still in its infancy.Thus,here we highlighted the electrical characteristics of 2D materials with electronic band structure,electronic transport,dielectric constant,carriers mobility.The atomic thinness of 2D materials makes substantially scaled field-effect transistors(FETs)with reduced short-channel effects conceivable,even though strong carrier mobility required for high performance,low-voltage device operations.We also discussed here about factors affecting 2D materials which easily enhanced the activity of those materials for various applications.Presently,Those 2D materials used in state-of-the-art electrical and optoelectronic devices because of the extensive nature of their electronic band structure.2D materials offer unprecedented freedom for the design of novel p-n junction device topologies in contrast to conventional bulk semiconductors.We also,describe the numerous 2D p-n junctions,such as homo junction and hetero junction including mixed dimensional junctions.Finally,we talked about the problems and potential for the future.展开更多
In this paper,we consider the high order method for solving the linear transport equations under diffusive scaling and with random inputs.To tackle the randomness in the problem,the stochastic Galerkin method of the g...In this paper,we consider the high order method for solving the linear transport equations under diffusive scaling and with random inputs.To tackle the randomness in the problem,the stochastic Galerkin method of the generalized polynomial chaos approach has been employed.Besides,the high order implicit-explicit scheme under the micro-macro decomposition framework and the discontinuous Galerkin method have been employed.We provide several numerical experiments to validate the accuracy and the stochastic asymptotic-preserving property.展开更多
Use of a flexible thermoelectric source is a feasible approach to realizing selfpowered wearable electronics and the Internet of Things.Inorganic thin films are promising candidates for fabricating flexible power supp...Use of a flexible thermoelectric source is a feasible approach to realizing selfpowered wearable electronics and the Internet of Things.Inorganic thin films are promising candidates for fabricating flexible power supply,but obtaining highthermoelectric‐performance thin films remains a big challenge.In the present work,a p‐type Bi_(x)Sb_(2−x)Te_(3)thin film is designed with a high figure of merit of 1.11 at 393 K and exceptional flexibility(less than 5%increase in resistance after 1000 cycles of bending at a radius of∼5 mm).The favorable comprehensive performance of the Bi_(x)Sb_(2−x)Te_(3)flexible thin film is due to its excellent crystallinity,optimized carrier concentration,and low elastic modulus,which have been verified by experiments and theoretical calculations.Further,a flexible device is fabricated using the prepared p‐type Bi_(x)Sb_(2−x)Te_(3)and n‐type Ag_(2)Se thin films.Consequently,an outstanding power density of∼1028μWcm^(−2)is achieved at a temperature difference of 25 K.This work extends a novel concept to the fabrication of highperformance flexible thin films and devices for wearable energy harvesting.展开更多
Based on the first-principles computational method and the elastic scattering Green's function theory, we have investigated the electronic transport properties of different oligothiophene molecular junctions theoreti...Based on the first-principles computational method and the elastic scattering Green's function theory, we have investigated the electronic transport properties of different oligothiophene molecular junctions theoretically. The numerical results show that the difference of geometric symmetries of the oligothiophene molecules leads to the difference of the contact configurations between the molecule and the electrodes, which results in the difference of the coupling parameters between the molecules and electrodes as well as the delocalization properties of the molecular orbitals. Hence, the series of oligothiophene molecular junctions display unusual conductive properties on the length dependence.展开更多
Magnetotransport properties of two-dimensional electron gases (2DEG) in AlxGa1-x N/GaN heterostructures with different Al compositions are investigated by magnetotransport measurements at low temperatures and in hig...Magnetotransport properties of two-dimensional electron gases (2DEG) in AlxGa1-x N/GaN heterostructures with different Al compositions are investigated by magnetotransport measurements at low temperatures and in high magnetic fields. It is found that heterostructures with a lower Al composition in the barrier have lower 2DEG concentration and higher 2DEG mobility.展开更多
The perovskite samples La1-x(Sr1-yKy)xMnO3 (y = 0.0, 0.2, 04, 0.6, 0.8) were prepared by the solid-state reaction method with comparatively low sintering tem- perature and with comparatively short sintering time, ...The perovskite samples La1-x(Sr1-yKy)xMnO3 (y = 0.0, 0.2, 04, 0.6, 0.8) were prepared by the solid-state reaction method with comparatively low sintering tem- perature and with comparatively short sintering time, and the electric transport property and temperature stability of MR of this system were studied. The p-T curves show the abnormal phenomenon that with the increase of K doping amount, resistivity increases, and the insulator-metal transition temperature decreases, which is because the influence of the occupation disorder degree of A-site ions σ2 on the electric transport property of perovskite manga- nites is larger than that of the radius of A-site ions (rA). In the temperature range below 225 K, MR increases contin- uously with the decrease of temperature, which is the characteristic of low-field magnetoresistance; in the com- paratively wide temperature range near 250 K, the MR- T curves of all the samples are comparatively fiat, and the value of MR almost does not change with temperature, which shows the temperature stability of magnetoresis- tance, and can be explained by the competition between the low-field magnetoresistance induced by spin-dependent tunneling of surface phase and the intrinsic magnetoresis- tance of grain phase. The magnetoresistance value of the sample with y = 0.8 keeps at (7.92 ±0.36) % in the very wide temperature range of 225-275 K, and this is a goodreference for the preparation of this kind of sample with practical application value in the future.展开更多
The samples ofLa8/9Sr1/45Na4/45MnO3 (LSNMO)/x/2(Sb2O3) were prepared by the solid-state reaction method. The electric transport properties and the temperature stabil-ity of magnetoresistance (MR) of the samples ...The samples ofLa8/9Sr1/45Na4/45MnO3 (LSNMO)/x/2(Sb2O3) were prepared by the solid-state reaction method. The electric transport properties and the temperature stabil-ity of magnetoresistance (MR) of the samples were studied through the measurements of X-ray diffraction patterns, resistivity-temperature (ρ-T) curves, mass magnetization-temperature (σ-T) curves, and magnetoresistance-temper-ature (MR-T) curves. The results indicate that the p-Tcurves of the original material LSNMO show two peaks, and the phenomenon of two peaks of ρ-T curves disappears for the composite samples, which can be explained by a competition between surface-phase resistivity induced by boundary-dependent scattering and body-phase resistivity induced by paramagnetism-ferromagnetism transition. For all the sam-ples in the low temperature range, MR increases continu-ously with the decrease of temperature, which shows a characteristic of low-field magnetoresistance. However, MR basically keeps the same in the high temperature range. The paramagnetism-ferromagnetism transition is observed in the high temperature range due to a composite between perov-skite manganite and insulator, which can enhance the tem-perature of MR appearance in the high temperature range and make it to appear near room temperature. For the sample with x = 0.12, MR remains constant at the value of 7.5 % in the temperature range of 300-260 K, which achieves a tem-perature stability of MR near room temperature. In addition,for the sample with x = 0.16, MR is above 6.8 % in the high temperature range of 318-252 K (△T = 66 K). MR almost remains constant in this temperature range, which favors the practical application of MR.展开更多
The free carrier density and mobility in n-type 4H-SiC substrates and epilayers were determined by accurately analysing the frequency shift and the full-shape of the longitudinal optic phono-plasmon coupled (LOPC) m...The free carrier density and mobility in n-type 4H-SiC substrates and epilayers were determined by accurately analysing the frequency shift and the full-shape of the longitudinal optic phono-plasmon coupled (LOPC) modes, and compared with those determined by Hall-effect measurement and that provided by the vendors. The transport properties of thick and thin 4H-SiC epilayers grown in both vertical and horizontal reactors were also studied. The free carrier density ranges between 2× 10^18 cm^-3 and 8× 10^18 cm^-3with a carrier mobility of 30-55 cm2/(V.s) for ntype 4H-SiC substrates and 1× 10^16 -3× 10^16 cm^-3 with mobility of 290-490 cm2/(V.s) for both thick and thin 4H-SiC epilayers grown in a horizontal reactor, while thick 4H-SiC epilayers grown in vertical reactor have a slightly higher carrier concentration of around 8.1×10^16 cm^-3 with mobility of 380 cm2/(V.s). It was shown that Raman spectroscopy is a potential technique for determining the transport properties of 4H-SiC wafers with the advantage of being able to probe very small volumes and also being non-destructive. This is especially useful for future mass production of 4H-SiC epi-wafers.展开更多
By finely controlling the deposition parameters in the pulsed electron deposition process, granular La 2/3 Ca 1/3 MnO 3 (LCMO) film was grown on silicon substrates. The substrate temperature, ambient pressure in the...By finely controlling the deposition parameters in the pulsed electron deposition process, granular La 2/3 Ca 1/3 MnO 3 (LCMO) film was grown on silicon substrates. The substrate temperature, ambient pressure in the deposition chamber and acceleration potential for the electron beam were all found to affect the grain size of the film, resulting in different morphologies of the samples. Transport properties of the obtained granular films, especially the magnetoresistance (MR), were studied. Prominent low-field MR was observed in all samples, indicating the forming of grain boundaries in the sample. The low-field MR show great sensitive to the morphology evolution, which reaches the highest value of about 40% for the sample with the grain size of about 250 nm. More interestingly, positive-MR (p-MR) was also detected above 300 K when low magnetic field applying, whereas it disappeared with higher magnetic field applied up to 1.5 and 2 Tesla. Instead of the spin- polarized tunneling process being commonly regarded as a responsible reason, lattice mismatch between LCMO film and silicon substrate appears to be the origin of the p-MR展开更多
Spin-crossover (SCO) magnets can act as one of the most possible building blocks in molec- ular spintronics due to their magnetic bistability between the high-spin (HS) and low-spin (LS) states. Here, the electr...Spin-crossover (SCO) magnets can act as one of the most possible building blocks in molec- ular spintronics due to their magnetic bistability between the high-spin (HS) and low-spin (LS) states. Here, the electronic structures and transport properties through SCO magnet Fe(II)-N4S2 complexes sandwiched between gold electrodes are explored by performing exten- sive density functional theory calculations combined with non-equilibrium Green's function formalism. The optimized Fe-N and Fe-S distances and predicted magnetic moment of the SCO magnet Fe(II)-N4S2 complexes agree well with the experimental results. The reversed spin transition between the HS and LS states can be realized by visible light irradiation according to the estimated SCO energy barriers. Based on the obtained transport results, we observe nearly perfect spin-filtering effect in this SCO magnet Fe(II)-N4S2 junction with the HS state, and the corresponding current under small bias voltage is mainly contributed by the spin-down electrons, which is obviously larger than that of the LS case. Clearly, these theoretical findings suggest that SCO magnet Fe(II)-N4S2 complexes hold potential applications in molecular spintronies.展开更多
Air plasma has been widely applied in industrial manufacture. In this paper, both dry and humid air plasmas' thermodynamic and transport properties are calculated in temperature 300 100000 K and pressure 0.1-100 atm....Air plasma has been widely applied in industrial manufacture. In this paper, both dry and humid air plasmas' thermodynamic and transport properties are calculated in temperature 300 100000 K and pressure 0.1-100 atm. To build a more precise model of real air plasma, over 70 species are considered for composition. Two different methods, the Gibbs free energy minimization method and the mass action law method, are used to deternfinate the composition of the air plasma in a different temperature range. For the transport coefficients, the simplified Chapman-Enskog method developed by Devoto has been applied using the most recent collision integrals. It is found that the presence of CO2 has almost no effect on the properties of air plasma. The influence of H2O can be ignored except in low pressure air plasma, in which the saturated vapor pressure is relatively high. The results will serve as credible inputs for computational simulation of air plasma.展开更多
Species composites of Ag-N2, Ag-H2 and Ag-He plasmas in the temperature range of 3,000-20,000 K and at 1 atmospheric pressure were calculated by using the minimization of Gibbs free energy. Thermodynamic properties an...Species composites of Ag-N2, Ag-H2 and Ag-He plasmas in the temperature range of 3,000-20,000 K and at 1 atmospheric pressure were calculated by using the minimization of Gibbs free energy. Thermodynamic properties and transport coefficients of nitrogen, hydrogen and helium plasmas mixed with a variety of silver vapor were then calculated based on the equilibrium composites and collision integral data. The calculation procedure was verified by comparing the results obtained in this paper with the published transport coefficients on the case of pure nitrogen plasma. The influences of the silver vapor concentration on composites, thermodynamic properties and transport coefficients were finally analyzed and summarized for all the three types of plasmas. Those physical properties were important for theoretical study and numerical calculation on arc plasma generated by silver-based electrodes in those gases in sealed electromagnetic relays and contacts.展开更多
Density, pH, viscosity, conductivity and the Raman spectra of aqueous NaB(OH)4 solutions precisely measured as functions of concentration at different temperatures (293.15, 298.15, 303.15, 313.15 and 323.15 K) are...Density, pH, viscosity, conductivity and the Raman spectra of aqueous NaB(OH)4 solutions precisely measured as functions of concentration at different temperatures (293.15, 298.15, 303.15, 313.15 and 323.15 K) are presented. Polyborate distributions in aqueous NaB(OH)4 solution were calculated, covering all the concentration range, B(OH)4 is the most dominant species, other polyborate anions are less than 5.0%. The volumetric and the transport properties were discussed in detail, both of these properties indicate that B(OH)4 behaves as a struc- ture-disordered anion.展开更多
Undoped (ND) semi-insulating (SI) liquid encapsulated Czochralski (LEC) GaAscrystals were investigated by photocurrent and temperature-dependent Hall measurements. It isindicated that strong nonuniformities in the dis...Undoped (ND) semi-insulating (SI) liquid encapsulated Czochralski (LEC) GaAscrystals were investigated by photocurrent and temperature-dependent Hall measurements. It isindicated that strong nonuniformities in the distributions of impurities and defects can occur forthe NDSILEC GaAs crystal grown under a condition with strong constitutional supercooling. In suchcase, the deep level that dominates Fermi level is spacial location dependent, and the GaAs crystalbecomes a composite consisting of a large number of elementary domains with differentconductivities. The sub-bandgap photocurrent response and the carrier transport properties for thiskind of composite are quite different from those for homogeneous NDSILEC GaAs.展开更多
The last several years have witnessed the rapid developments in the study and understanding of topological insulators. In this review, after a brief summary of the history of topological insulators, we focus on the re...The last several years have witnessed the rapid developments in the study and understanding of topological insulators. In this review, after a brief summary of the history of topological insulators, we focus on the recent progress made in transport experiments on topological insulator films and nanowires. Some quantum phenomena, including the weak antilocalization, the Aharonov-Bobm effect, and the Shubnikov-de Haas oscillations, observed in these nanostructures are described. In addition, the electronic transport evidence of the superconducting proximity effect as well as an anomalous resistance enhancement in topological insulator/superconductor hybrid structures is included.展开更多
We have performed density-functional calculations of the transport properties of the zigzag graphene nanoribbon (ZGNR) adsorbed with a single iron atom. Two adsorption configurations are considered, i.e., iron adsor...We have performed density-functional calculations of the transport properties of the zigzag graphene nanoribbon (ZGNR) adsorbed with a single iron atom. Two adsorption configurations are considered, i.e., iron adsorbed on the edge and on the interior of the nanoribbon. The results show that the transport features of the two configurations are similar. However, the transport properties are modified due to the scattering effects induced by coupling of the ZGNR band states to the localized 3d-orbital state of the iron atom. More importantly, one can find that several dips appear in the transmission curve, which is closely related to the above mentioned coupling. We expect that our results will have potential applications in graphene-based spintronic devices,展开更多
In recent years, two-dimensional boron sheets (borophene) have been experimentally synthesized and theoretically proposed as a promising conductor or transistor with novel thermal and electronic properties. We first...In recent years, two-dimensional boron sheets (borophene) have been experimentally synthesized and theoretically proposed as a promising conductor or transistor with novel thermal and electronic properties. We first give a general survey of some notable electronic properties of borophene, including the superconductivity and topological characters. We then mainly review the basic approaches, thermal transport, as well as the mechanical properties of borophene with different configurations. This review gives a general understanding of some of the crucial thermal transport and electronic properties of borophene, and also calls for further experimental investigations and applications on certain scientific community.展开更多
基金the National Natural Science Foundation of China(Grant No.22075146).
文摘Appropriate drying process with optimized controlling of drying parameters plays a vital role in the improvement of the quality and performance of propellant products.However,few research on solvent transport dynamics within NC-based propellants was reported,and its effect on the evolution of mechanical properties was not interpreted yet.This study is conducted to gain a comprehensive understanding of hot-air drying for NC-based propellants and clarify the effect of temperature on solvent transport behavior and further the change of mechanical properties during drying.The drying kinetic curves show the drying time required is decreased but the steady solvent content is increased and the drying rate is obviously increased with the increase of hot-air temperatures,indicating hot-air temperatures have a significant effect on drying kinetics.A modified drying model was established,and results show it is more appropriate to describe solvent transport behavior within NC-based propellants.Moreover,two linear equations were established to exhibit the relationship between solvent content and its effect on the change of tensile properties,and the decrease of residual solvent content causes an obvious increase of tensile strength and tensile modulus of propellant products,indicating its mechanical properties can be partly improved by adjustment of residual solvent content.The outcomes can be used to clarify solvent transport mechanisms and optimize drying process parameters of double-based gun propellants.
文摘We have studied the structural and atomic transport properties of liquid f-shell Yb in the temperature range 1123 K–1473 K. Pair interactions between atoms are derived using a local pseudopotential. The potential parameters are fitted to the phonon dispersion curve at room temperature. The local pseudopotential used in the present study is computationally more efficient with only three parameters, and it is found to be transferable to the liquid phase without changing the parameters.Since the various computed properties agree with reported theoretical and experimental findings, the adopted fitting scheme is justified. As a significant outcome of the study, we find that(i) the melting in Yb is governed by the Lindemann's law,(ii)the mass transport mechanism obeys the Arrhenius law,(iii) the role of the three-particle correlation function in deriving the velocity autocorrelation function is small,(iv) the mean-square atomic displacement is more sensitive to the choice of interaction potential than the other bulk properties, and(v) liquid Yb does not show liquid–liquid phase transition within the studied temperature range. Further, due to the good description of the structural and mass transport properties, we propose that Yb remains divalent at reduced density.
基金supported by the State Key Development Program for Basic Research of China(Grant Nos.2019YFA0704900 and 2022YFA1403800)the Fundamental Science Center of the National Natural Science Foundation of China(Grant No.52088101)+2 种基金the Strategic Priority Research Program(B)of the Chinese Academy of Sciences(CAS)(Grant No.XDB33000000)the Synergetic Extreme Condition User Facility(SECUF)the Scientific Instrument Developing Project of CAS(Grant No.ZDKYYQ20210003)。
文摘TiNi-based shape memory alloys have been extensively investigated due to their significant applications,but a comprehensive understanding of the evolution of electronic structure and electrical transport in a system with martensitic transformations(MT) is still lacking.In this work,we focused on the electronic transport behavior of three phases in Ni_(50-x)Fe_xTi_(50)across the MT.A phase diagram of Ni_(50-x)Fe_xTi_(50) was established based on x-ray diffraction,calorimetric,magnetic,and electrical measurements.To reveal the driving force of MT,phonon softening was revealed using first-principles calculations.Notably,the transverse and longitudinal transport behavior changed significantly across the phase transition,which can be attributed to the reconstruction of electronic structures.This work promotes the understanding of phase transitions and demonstrates the sensitivity of electron transport to phase transition.
文摘With an extensive range of distinctive features at nano meter-scale thicknesses,two-dimensional(2D)materials drawn the attention of the scientific community.Despite tremendous advancements in exploratory research on 2D materials,knowledge of 2D electrical transport and carrier dynamics still in its infancy.Thus,here we highlighted the electrical characteristics of 2D materials with electronic band structure,electronic transport,dielectric constant,carriers mobility.The atomic thinness of 2D materials makes substantially scaled field-effect transistors(FETs)with reduced short-channel effects conceivable,even though strong carrier mobility required for high performance,low-voltage device operations.We also discussed here about factors affecting 2D materials which easily enhanced the activity of those materials for various applications.Presently,Those 2D materials used in state-of-the-art electrical and optoelectronic devices because of the extensive nature of their electronic band structure.2D materials offer unprecedented freedom for the design of novel p-n junction device topologies in contrast to conventional bulk semiconductors.We also,describe the numerous 2D p-n junctions,such as homo junction and hetero junction including mixed dimensional junctions.Finally,we talked about the problems and potential for the future.
基金supported by the Simons Foundation:Collaboration Grantssupported by the AFOSR grant FA9550-18-1-0383.
文摘In this paper,we consider the high order method for solving the linear transport equations under diffusive scaling and with random inputs.To tackle the randomness in the problem,the stochastic Galerkin method of the generalized polynomial chaos approach has been employed.Besides,the high order implicit-explicit scheme under the micro-macro decomposition framework and the discontinuous Galerkin method have been employed.We provide several numerical experiments to validate the accuracy and the stochastic asymptotic-preserving property.
基金National Natural Science Foundation of China,Grant/Award Number:62274112Guangdong Basic and Applied Basic Research Foundation,Grant/Award Number:2022A1515010929Science and Technology Plan project of Shenzhen,Grant/Award Numbers:JCYJ20220531103601003,20220810154601001。
文摘Use of a flexible thermoelectric source is a feasible approach to realizing selfpowered wearable electronics and the Internet of Things.Inorganic thin films are promising candidates for fabricating flexible power supply,but obtaining highthermoelectric‐performance thin films remains a big challenge.In the present work,a p‐type Bi_(x)Sb_(2−x)Te_(3)thin film is designed with a high figure of merit of 1.11 at 393 K and exceptional flexibility(less than 5%increase in resistance after 1000 cycles of bending at a radius of∼5 mm).The favorable comprehensive performance of the Bi_(x)Sb_(2−x)Te_(3)flexible thin film is due to its excellent crystallinity,optimized carrier concentration,and low elastic modulus,which have been verified by experiments and theoretical calculations.Further,a flexible device is fabricated using the prepared p‐type Bi_(x)Sb_(2−x)Te_(3)and n‐type Ag_(2)Se thin films.Consequently,an outstanding power density of∼1028μWcm^(−2)is achieved at a temperature difference of 25 K.This work extends a novel concept to the fabrication of highperformance flexible thin films and devices for wearable energy harvesting.
基金ACKNOWLEDGMENTS This work was supported by the National Natural Science Foundation of China (No.10804064 and No.10974121). The author would like to thank professor Chuan-Kui Wang for his helpful discussions.
文摘Based on the first-principles computational method and the elastic scattering Green's function theory, we have investigated the electronic transport properties of different oligothiophene molecular junctions theoretically. The numerical results show that the difference of geometric symmetries of the oligothiophene molecules leads to the difference of the contact configurations between the molecule and the electrodes, which results in the difference of the coupling parameters between the molecules and electrodes as well as the delocalization properties of the molecular orbitals. Hence, the series of oligothiophene molecular junctions display unusual conductive properties on the length dependence.
文摘Magnetotransport properties of two-dimensional electron gases (2DEG) in AlxGa1-x N/GaN heterostructures with different Al compositions are investigated by magnetotransport measurements at low temperatures and in high magnetic fields. It is found that heterostructures with a lower Al composition in the barrier have lower 2DEG concentration and higher 2DEG mobility.
基金financially supported by the National Natural Science Foundation of China (No. 19934003)the Key Program of Natural Science Foundation of Anhui Province (Nos. KJ2011A259 and KJ2013A245)+1 种基金the Program of Professors and Doctors' Research Startup Foundation of Suzhou College (Nos. 2011jb01 and 2011jb02)the Program of Cultivating Base of Anhui Key Laboratory of Spintronics and Nano-materials Research (No. 2012YKF09)
文摘The perovskite samples La1-x(Sr1-yKy)xMnO3 (y = 0.0, 0.2, 04, 0.6, 0.8) were prepared by the solid-state reaction method with comparatively low sintering tem- perature and with comparatively short sintering time, and the electric transport property and temperature stability of MR of this system were studied. The p-T curves show the abnormal phenomenon that with the increase of K doping amount, resistivity increases, and the insulator-metal transition temperature decreases, which is because the influence of the occupation disorder degree of A-site ions σ2 on the electric transport property of perovskite manga- nites is larger than that of the radius of A-site ions (rA). In the temperature range below 225 K, MR increases contin- uously with the decrease of temperature, which is the characteristic of low-field magnetoresistance; in the com- paratively wide temperature range near 250 K, the MR- T curves of all the samples are comparatively fiat, and the value of MR almost does not change with temperature, which shows the temperature stability of magnetoresis- tance, and can be explained by the competition between the low-field magnetoresistance induced by spin-dependent tunneling of surface phase and the intrinsic magnetoresis- tance of grain phase. The magnetoresistance value of the sample with y = 0.8 keeps at (7.92 ±0.36) % in the very wide temperature range of 225-275 K, and this is a goodreference for the preparation of this kind of sample with practical application value in the future.
基金financially supported by the National Natural Science Foundation of China(No.19934003)the Natural Science Foundation of the Education Bureau of Anhui Province,China(Nos.KJ2011A259 and KJ2012Z404)+1 种基金Anhui Key Laboratory of Spintronics and Nano-materials Program(Nos.2010YKF01 and 2010YKF04)the Professors’and Doctors’ Research Startup Foundation of Suzhou University(Nos.2011jb01 and 2010jb02)
文摘The samples ofLa8/9Sr1/45Na4/45MnO3 (LSNMO)/x/2(Sb2O3) were prepared by the solid-state reaction method. The electric transport properties and the temperature stabil-ity of magnetoresistance (MR) of the samples were studied through the measurements of X-ray diffraction patterns, resistivity-temperature (ρ-T) curves, mass magnetization-temperature (σ-T) curves, and magnetoresistance-temper-ature (MR-T) curves. The results indicate that the p-Tcurves of the original material LSNMO show two peaks, and the phenomenon of two peaks of ρ-T curves disappears for the composite samples, which can be explained by a competition between surface-phase resistivity induced by boundary-dependent scattering and body-phase resistivity induced by paramagnetism-ferromagnetism transition. For all the sam-ples in the low temperature range, MR increases continu-ously with the decrease of temperature, which shows a characteristic of low-field magnetoresistance. However, MR basically keeps the same in the high temperature range. The paramagnetism-ferromagnetism transition is observed in the high temperature range due to a composite between perov-skite manganite and insulator, which can enhance the tem-perature of MR appearance in the high temperature range and make it to appear near room temperature. For the sample with x = 0.12, MR remains constant at the value of 7.5 % in the temperature range of 300-260 K, which achieves a tem-perature stability of MR near room temperature. In addition,for the sample with x = 0.16, MR is above 6.8 % in the high temperature range of 318-252 K (△T = 66 K). MR almost remains constant in this temperature range, which favors the practical application of MR.
基金supported by the National Natural Science Foundation of China (Grant No. 60876003)the Knowledge Innovation Project of Chinese Academy of Sciences (Grant Nos. Y072011000 and ISCAS2008T04)the Science and Technology Projects of the State Grid Corporation of China (ZL71-09-001)
文摘The free carrier density and mobility in n-type 4H-SiC substrates and epilayers were determined by accurately analysing the frequency shift and the full-shape of the longitudinal optic phono-plasmon coupled (LOPC) modes, and compared with those determined by Hall-effect measurement and that provided by the vendors. The transport properties of thick and thin 4H-SiC epilayers grown in both vertical and horizontal reactors were also studied. The free carrier density ranges between 2× 10^18 cm^-3 and 8× 10^18 cm^-3with a carrier mobility of 30-55 cm2/(V.s) for ntype 4H-SiC substrates and 1× 10^16 -3× 10^16 cm^-3 with mobility of 290-490 cm2/(V.s) for both thick and thin 4H-SiC epilayers grown in a horizontal reactor, while thick 4H-SiC epilayers grown in vertical reactor have a slightly higher carrier concentration of around 8.1×10^16 cm^-3 with mobility of 380 cm2/(V.s). It was shown that Raman spectroscopy is a potential technique for determining the transport properties of 4H-SiC wafers with the advantage of being able to probe very small volumes and also being non-destructive. This is especially useful for future mass production of 4H-SiC epi-wafers.
基金Funded by the National Natural Science Foundation of China(No.10875107)the Aeronautical Science Foundation(No.2010ZF55013)+1 种基金the Basic and Advanced Technology Program of Henan Province (No.112300410229)the Foundation for University Young Key Teacher by Henan Province (No. 2010GGJS-146)
文摘By finely controlling the deposition parameters in the pulsed electron deposition process, granular La 2/3 Ca 1/3 MnO 3 (LCMO) film was grown on silicon substrates. The substrate temperature, ambient pressure in the deposition chamber and acceleration potential for the electron beam were all found to affect the grain size of the film, resulting in different morphologies of the samples. Transport properties of the obtained granular films, especially the magnetoresistance (MR), were studied. Prominent low-field MR was observed in all samples, indicating the forming of grain boundaries in the sample. The low-field MR show great sensitive to the morphology evolution, which reaches the highest value of about 40% for the sample with the grain size of about 250 nm. More interestingly, positive-MR (p-MR) was also detected above 300 K when low magnetic field applying, whereas it disappeared with higher magnetic field applied up to 1.5 and 2 Tesla. Instead of the spin- polarized tunneling process being commonly regarded as a responsible reason, lattice mismatch between LCMO film and silicon substrate appears to be the origin of the p-MR
基金supported by the National Natural Science Foundation of China(No.21473168 and No.11634011)the Innovative Program of Development Foundation of Hefei Center for Physical Science and Technology
文摘Spin-crossover (SCO) magnets can act as one of the most possible building blocks in molec- ular spintronics due to their magnetic bistability between the high-spin (HS) and low-spin (LS) states. Here, the electronic structures and transport properties through SCO magnet Fe(II)-N4S2 complexes sandwiched between gold electrodes are explored by performing exten- sive density functional theory calculations combined with non-equilibrium Green's function formalism. The optimized Fe-N and Fe-S distances and predicted magnetic moment of the SCO magnet Fe(II)-N4S2 complexes agree well with the experimental results. The reversed spin transition between the HS and LS states can be realized by visible light irradiation according to the estimated SCO energy barriers. Based on the obtained transport results, we observe nearly perfect spin-filtering effect in this SCO magnet Fe(II)-N4S2 junction with the HS state, and the corresponding current under small bias voltage is mainly contributed by the spin-down electrons, which is obviously larger than that of the LS case. Clearly, these theoretical findings suggest that SCO magnet Fe(II)-N4S2 complexes hold potential applications in molecular spintronies.
基金supported by the National Key Basic Research Program of China(973 Program)(No.2015CB251002)National Natural Science Foundation of China(Nos.51521065,51577145)+2 种基金the Science and Technology Project Funds of the Grid State Corporation(SGTYHT/13-JS-177)the Fundamental Research Funds for the Central UniversitiesState Grid Corporation Project(GY71-14-004)
文摘Air plasma has been widely applied in industrial manufacture. In this paper, both dry and humid air plasmas' thermodynamic and transport properties are calculated in temperature 300 100000 K and pressure 0.1-100 atm. To build a more precise model of real air plasma, over 70 species are considered for composition. Two different methods, the Gibbs free energy minimization method and the mass action law method, are used to deternfinate the composition of the air plasma in a different temperature range. For the transport coefficients, the simplified Chapman-Enskog method developed by Devoto has been applied using the most recent collision integrals. It is found that the presence of CO2 has almost no effect on the properties of air plasma. The influence of H2O can be ignored except in low pressure air plasma, in which the saturated vapor pressure is relatively high. The results will serve as credible inputs for computational simulation of air plasma.
基金supported by National Natural Science Foundation of China(Nos.51277038 and 51307030)
文摘Species composites of Ag-N2, Ag-H2 and Ag-He plasmas in the temperature range of 3,000-20,000 K and at 1 atmospheric pressure were calculated by using the minimization of Gibbs free energy. Thermodynamic properties and transport coefficients of nitrogen, hydrogen and helium plasmas mixed with a variety of silver vapor were then calculated based on the equilibrium composites and collision integral data. The calculation procedure was verified by comparing the results obtained in this paper with the published transport coefficients on the case of pure nitrogen plasma. The influences of the silver vapor concentration on composites, thermodynamic properties and transport coefficients were finally analyzed and summarized for all the three types of plasmas. Those physical properties were important for theoretical study and numerical calculation on arc plasma generated by silver-based electrodes in those gases in sealed electromagnetic relays and contacts.
基金Supported by the National Natural Science Foundation of China (20873172) and Main Direction Program of Knowledge In- novation of Chinese Academy of Sciences (KZCX2-EW-307).
文摘Density, pH, viscosity, conductivity and the Raman spectra of aqueous NaB(OH)4 solutions precisely measured as functions of concentration at different temperatures (293.15, 298.15, 303.15, 313.15 and 323.15 K) are presented. Polyborate distributions in aqueous NaB(OH)4 solution were calculated, covering all the concentration range, B(OH)4 is the most dominant species, other polyborate anions are less than 5.0%. The volumetric and the transport properties were discussed in detail, both of these properties indicate that B(OH)4 behaves as a struc- ture-disordered anion.
基金This work was financially supported by the Natural Science Foundation of Tianjin (No. 02380411)the Natural Science Foundation of Hebei Province (No. 601048)
文摘Undoped (ND) semi-insulating (SI) liquid encapsulated Czochralski (LEC) GaAscrystals were investigated by photocurrent and temperature-dependent Hall measurements. It isindicated that strong nonuniformities in the distributions of impurities and defects can occur forthe NDSILEC GaAs crystal grown under a condition with strong constitutional supercooling. In suchcase, the deep level that dominates Fermi level is spacial location dependent, and the GaAs crystalbecomes a composite consisting of a large number of elementary domains with differentconductivities. The sub-bandgap photocurrent response and the carrier transport properties for thiskind of composite are quite different from those for homogeneous NDSILEC GaAs.
基金supported by the National Basic Research Program of China (Grant Nos. 2013CB934600 and 2012CB921300)the National Natural Science Foundation of China (Grant Nos. 11222434 and 11174007)the Pennsylvania State University Materials Research Science and Engineering Center under National Science Foundation (Grant No. DMR-0820404)
文摘The last several years have witnessed the rapid developments in the study and understanding of topological insulators. In this review, after a brief summary of the history of topological insulators, we focus on the recent progress made in transport experiments on topological insulator films and nanowires. Some quantum phenomena, including the weak antilocalization, the Aharonov-Bobm effect, and the Shubnikov-de Haas oscillations, observed in these nanostructures are described. In addition, the electronic transport evidence of the superconducting proximity effect as well as an anomalous resistance enhancement in topological insulator/superconductor hybrid structures is included.
基金supported by the National Natural Science Foundation of China(Grant Nos.11374162 and 51032002)the Key Project of the National High Technology Research and Development Program of China(Grant No.2011AA050526)
文摘We have performed density-functional calculations of the transport properties of the zigzag graphene nanoribbon (ZGNR) adsorbed with a single iron atom. Two adsorption configurations are considered, i.e., iron adsorbed on the edge and on the interior of the nanoribbon. The results show that the transport features of the two configurations are similar. However, the transport properties are modified due to the scattering effects induced by coupling of the ZGNR band states to the localized 3d-orbital state of the iron atom. More importantly, one can find that several dips appear in the transmission curve, which is closely related to the above mentioned coupling. We expect that our results will have potential applications in graphene-based spintronic devices,
文摘In recent years, two-dimensional boron sheets (borophene) have been experimentally synthesized and theoretically proposed as a promising conductor or transistor with novel thermal and electronic properties. We first give a general survey of some notable electronic properties of borophene, including the superconductivity and topological characters. We then mainly review the basic approaches, thermal transport, as well as the mechanical properties of borophene with different configurations. This review gives a general understanding of some of the crucial thermal transport and electronic properties of borophene, and also calls for further experimental investigations and applications on certain scientific community.