BACKGROUND: Astrocytes participate in central nervous system-mediated physiological or pathological processes, such as pain. Activated dorsal horn astrocytes from the spinal cord produce nerve active substances and p...BACKGROUND: Astrocytes participate in central nervous system-mediated physiological or pathological processes, such as pain. Activated dorsal horn astrocytes from the spinal cord produce nerve active substances and proinflammatory cytokines, such as interleukin-lbeta (IL-1 β ), IL-6, and tumor necrosis factor- α (TNF-α ), which play important roles in pain transduction and regulation. OBJECTIVE: To investigate the effects of different doses of propofol on activation of cultured spinal cord dorsal horn astrocytes induced by glutamate, as well as changes in IL-1β, IL-6, and TNF- α, and 1L-10 (anti-inflammatory cytokine) expression in rats, and to explore the dose relationship of propofol. DESIGN, TIME AND SETTING: The cellular and molecular biology experiment was performed at the Central Laboratory of Yunyang Medical College between March 2006 and December 2007. MATERIALS: Forty healthy, Wistar rats, aged 2-3 days, were selected. Propofol was provided by Zeneca, UK; glutamate by Sigma, USA; EPICS XL flow cytometry by Beckman culture, USA; rabbit-anti-mouse glial fibrillary acidic protein (GFAP) antibody kit and inflammatory cytokine detection kit were provided by Zhongshan Biotechnology Company Ltd., Beijing; multimedia color pathologic image analysis system was a product of Nikon, Japan. METHODS: Astrocytes were harvested from T11- L6 spinal cord dorsal horn of Wistar rats and incubated for 3 weeks. The cells were divided into seven groups, according to various treatment conditions: control group was cells cultured in Hank's buffered saline solution; intralipid group was cells cultured in intralipid (0.2 mL/L); glutamate group was cells cultured with 100 u mol/L glutamate; propofol group was cells cultured with 250 u mol/L propofol; three glutamate plus propofol groups were cultured in 100 11 mol/L of glutamate, followed by 5, 25, and 250 u mol/L of propofol 10 minutes later. MAIN OUTCOME MEASURES: GFAP-labeled astrocytes were analyzed using a multimedia pathology imaging analysis system to detect area density (AD) and average optical density (AOD) of positive cells. The supernatant concentrations of IL-1β, TNF- α, IL-6, and IL-10 were determined using radioimmune assays. RESULTS: Compared with the control group, cells in the glutamate plus low-dose propofol group were activated and hypertrophic, and AD and AOD were significantly increased (P 〈 0.01 ). Concentrations of IL-1β, TNF- α, and IL-6 were also significantly increased (P 〈 0.01), while IL-10 levels remained unchanged (P 〉 0.05), but still higher than the control and glutamate groups (P 〉 0.05). Compared with the glutamate group, astrocyte activation was inhibited by moderate and high-dose propotol. In addition, with moderate and high-dose propofol, AD, AOD, IL-1β, TNF- α, and IL-6 concentrations were significantly decreased (P 〈 0.05-0.01), and IL-10 levels were increased (P 〈 0.01 ). CONCLUSION: Propofol can effectively inhibit glutamate-induced astrocyte activation in the spinal cord dorsal horn, significantly inhibit production of IL-1 β, TNF- α, and IL-6, and increase IL-10 synthesis and release in a dose-dependent manner.展开更多
OBJECTIVE:To investigate whether the Chinese massage system,Tuina,exerts analgesic effects in a rat model of chronic constriction injury(CCI)by remodeling the synaptic structure in the spinal cord dorsal horn(SCDH).ME...OBJECTIVE:To investigate whether the Chinese massage system,Tuina,exerts analgesic effects in a rat model of chronic constriction injury(CCI)by remodeling the synaptic structure in the spinal cord dorsal horn(SCDH).METHODS:Sixty-nine male Sprague–Dawley rats were randomly and evenly divided into the normal group,sham group,CCI group,CCI+Tuina group,CCI+MK-801[an N-methyl D-aspartate receptor subtype 2B(NR2B)antagonist]group,and CCI+MK-801+Tuina group.The neuropathic pain model was established using CCI with right sciatic nerve ligation.Tuina was administered 4 d after CCI surgery,using pressing manipulation for 10 min,once daily.Motor function was observed with the inclined plate test,and pain behaviors were observed by the Von Frey test and acetone spray test.At 19 d after surgery,the L3-L5 spinal cord segments were removed.Glutamate,interleukin 1β(IL-1β),and tumor necrosis factor-α(TNF-α)levels were detected by enzyme-linked immunosorbent assay.The protein expression levels of NR2B and postsynaptic density protein-95(PSD-95)were detected by Western blot,and the synaptic structure was observed by transmission electron microscopy(TEM).RESULTS:CCI reduced motor function and caused mechanical and cold allodynia in rats,increased glutamate concentration and TNF-αand IL-1βlevels,and increased expression of synapse-related proteins NR2B and PSD-95 in the SCDH.TEM revealed that the synaptic structure of SCDH neurons was altered.Most of these disease-induced changes were reversed by Tuina and intrathecal injection of MK-801(P<0.05 or<0.01).For the majority of experiments,no significant differences were found between the CCI+MK-801 and CCI+MK-801+Tuina groups.CONCLUSIONS:Chinese Tuina can alleviate pain by remodeling the synaptic structure,and NR2B and PSD-95 receptors in the SCDH may be among its targets.展开更多
High-frequency spinal cord stimulation(HF-SCS) has been established as an effective therapy for neuropathic pain. However, the analgesic mechanisms involved in HF-SCS remain to be clarified. In our study, adult rat ne...High-frequency spinal cord stimulation(HF-SCS) has been established as an effective therapy for neuropathic pain. However, the analgesic mechanisms involved in HF-SCS remain to be clarified. In our study, adult rat neuropathic pain was induced by spinal nerve ligation. Two days after modeling, the rats were subjected to 4 hours of HF-SCS(motor threshold 50%, frequency 10,000 Hz, and pulse width 0.024 ms) in the dorsal horn of the spinal cord. The results revealed that the tactile allodynia of spinal nerve-injured rats was markedly alleviated by HFSCS, and the effects were sustained for 3 hours after the stimulation had ceased. HF-SCS restored lysosomal function, increased the levels of lysosome-associated membrane protein 2(LAMP2) and the mature form of cathepsin D(matu-CTSD), and alleviated the abnormally elevated levels of microtubule-associated protein 1 A/B-light chain 3(LC3)-II and sequestosome 1(P62) in spinal nerve-injured rats. HF-SCS also mostly restored the immunoreactivity of LAMP2, which was localized in neurons in the superficial layers of the spinal dorsal horn in spinal nerve-injured rats. In addition, intraperitoneal administration of 15 mg/kg chloroquine for 60 minutes reversed the expression of the aforementioned proteins and shortened the timing of the analgesic effects of HF-SCS. These findings suggest that HF-SCS may exhibit longlasting analgesic effects on neuropathic pain in rats through improving lysosomal dysfunction and alleviating autophagic flux. This study was approved by the Laboratory Animal Ethics Committee of China Medical University, Shenyang, China(approval No. 2017 PS196 K) on March 1, 2017.展开更多
Tuina is a traditional Chinese treatment for sensory disturbances caused by peripheral nerve injury and related diseases. Our previous studies showed that tuina regulates relevant regions and indices of the spinal dor...Tuina is a traditional Chinese treatment for sensory disturbances caused by peripheral nerve injury and related diseases. Our previous studies showed that tuina regulates relevant regions and indices of the spinal dorsal horn using the Dian, Bo, and Rou method in Yinmen(BL37), Yanglingquan(GB34), and Weizhong(BL40). Treatment prevents muscle atrophy, protects spinal cord neurons, and promotes sciatic nerve repair. The mechanisms of action of tuina for treating peripheral nerve injury remain poorly understood. This study established rat models of sciatic nerve injury using the crushing method. Rats received Chinese tuina in accordance with the principle of "Three Methods and Three Points," once daily for 20 days. Tuina intervention reduced paw withdrawal latency and improved wet weight of the gastrocnemius muscle, as well as promoting morphological recovery of sciatic nerve fibers, Schwann cells, and axons. The protein expression levels of phospho-p38 mitogen-activated protein kinase, tumor necrosis factor-α, and interleukin-1β also decreased. These findings indicate that "Three Methods and Three Points" promoted morphological recovery and improved behavior of rats with peripheral nerve injury.展开更多
Antidromic and orthodromic responses of the projection neurons in the dorsal horn ofthe spinal cord have been recorded by a glass microelectrode in anesthetized and paralyz-ed cats. Furthermore, the effect of cervical...Antidromic and orthodromic responses of the projection neurons in the dorsal horn ofthe spinal cord have been recorded by a glass microelectrode in anesthetized and paralyz-ed cats. Furthermore, the effect of cervical segment antidromic stimulation to orthodromicresponse of the projection neurons has been observed by way of conditioning-test stimulation. Among all the spinocervical tract neurons (SCT), the dorsal column postsynaptic neu-rons (DCPS) and the spinocervical tract-dorsal column postsynaptic neurons (SCT-DCPS),which were identified by cervical segment antidromic stimulation, 46% are low-thresholdmechanoreceptive (LTM) and 54% are wide-dynamic-range (WDR) neurons. Most LTMneurons can evoke the same response to both 10 times (10 T) and 50 times (50 T) the thresh-old stimulation on the peroneal nerve. Most WDR neurons to 50 T intensity stimulation arestronger than the 10 T stimulation. Under the antidromic-cervical segment conditioningstimulation, the amount of orthodromic-discharging in most WDR and few LTM neuronsreduced significantly. The result shows that both LTM and WDR projection neurons in the spinal cord canrespond to all peripheral Aβ fibers and part of the Aδ fibers; there are some inhibitionaldescending fibers which affect the projection neurons in the cervical segment dorsal col-umn and dorsolateral funiculi.展开更多
BACKGROUND: It has been reported that activation and/or translocation of protein kinase C (PKC) is related to hyperalgesia, and changes in PKC expression in the dorsal horn of spinal cord take place during inflamma...BACKGROUND: It has been reported that activation and/or translocation of protein kinase C (PKC) is related to hyperalgesia, and changes in PKC expression in the dorsal horn of spinal cord take place during inflammatory pain. OBJECTIVE: To observe PKC changes in the dorsal horn of spinal cord using immunohistochemistry and to measure the time-course during persistent pain produced by chemical stimulation with a right hind-paw injection of formalin. DESIGN: Randomized controlled animal experiment. SETTING: Institute of Basic Medical Science, Hebei Medical University MATERIALS: The present experiment was performed at the Department of Pathophysiology, Institute of Basic Medical Science, Hebei Medical University between September 2000 and June 2002. Forty-two Sprague-Dawley rats, weighing 260-280 g, irrespective of gender, were provided by the Center of Animal Experimentation at Hebei Medical University. PKC antibody was provided by Sigma, USA. Immunohistochemistry kits were purchased from Zhongshan Biotechnology Company, Beijing. HPIAS-1000 definition multicolor system was provided by Qianping Wuxiang Project Company of Tongji Medical University. Animal use during experimentation was consistent with the standards of Animal Ethics Committee. METHODS: Sprague-Dawley rats were divided randomly into control (n = 6) and experimental groups (n = 36). Experimental rats were given an intracutaneous injection of 5% formalin into the planta surface of the right hind-paw. Animals with inflammatory pain were anesthetized and sacrificed to obtain the L5 spinal region at 1, 3, 12 hours, 1, 3, and 7 days after formalin treatment, with 6 rats in each time group. The spinal cords at the L5 region were collected from the control group following sodium chloride injections into the planta surface of the right hind-paw, identical to the experimental group. MAIN OUTCOME MEASURES: Pain reaction of experimental rats after formalin treatment. PKC-positive neurons, and distribution of PKC-immunoreactive particles, in the ipsi- and contralateral dorsal horn were investigated during different stages of inflammatory pain using immunohistochemistry. RESULTS: All 42 rats were included in the final analysis, without any loss. Pain reaction: consistent with previous findings, it was determined that a unilateral injection of formalin into the hind-paw resulted in significant edema and induced a series of nociceptive responses, such as licking, biting, or shaking the injected paw. The maximal inflammation change was observed 1 day after formalin injection and changes did not disappear until the day 7. Number of the PKC positive neurons: results demonstrated that the number of PKC immunoreactive neurons in the dorsal horn increased slightly after formalin injection at 1 hour, compared with the control group. PKC immunoreactivity was up-regulated at day 1, reduced at day 3, and appeared to recover at day 7. The number of PKC-positive neurons in the contralateral side was less than the ipsilateral side at each time sampled. Distribution of PKC immunoparticles over the neurons: PKC immunoreactivity was observed in the nucleus and cytoplasm, as well as on or near the membrane of neurons and synaptosomes in the spinal cord of the control group. PKC activated and translocated from nucleus to the membrane-associated site following formalin treatment. Significant changes were observed at 1 hour and 1 day. The intensity of staining was stronger in the ipsilateral side than the contralateral side at all time points following formalin injection (P 〈 0.01), whereas the expression patterns of PKC immunoreactivity in the nuclei were very similar in the right and left hemispheres. CONCLUSION: PKC expression in the dorsal horn of the spinal cord peaked at 1 hour and 24 hours, and was very obvious at 24 hours. Protein kinase C expression in the spinal cord increased bilaterally, although it was greater in the ipsilateral hemisphere. In addition, PKC expression at the neuronal membrane and synaptosome was significantly increased. These results indicate that PKC expression is activated in the dorsal horn of the spinal cord during hyperalgesia.展开更多
Subcutaneous injection of bee venom causes long-term neural activation and hypersensitization in the dorsal horn of the spinal cord,which contributes to the development and maintenance of various pain-related behavior...Subcutaneous injection of bee venom causes long-term neural activation and hypersensitization in the dorsal horn of the spinal cord,which contributes to the development and maintenance of various pain-related behaviors.The unique behavioral 'phenotypes' of nociception and hypersensitivity identified in the rodent bee venom test are believed to reflect a complex pathological state of inflammatory pain and might be appropriate to the study of phenotype-based mechanisms of pain and hyperalgesia.In this review,the spinal processing of the bee venom-induced different 'phenotypes' of pain and hyperalgesia will be described.The accumulative electrophysiological,pharmacological,and behavioral data strongly suggest that different 'phenotypes' of pain and hyperalgesia are mediated by different spinal signaling pathways.Unraveling the phenotype-based mechanisms of pain might be useful in development of novel therapeutic drugs against complex clinic pathological pain.展开更多
文摘BACKGROUND: Astrocytes participate in central nervous system-mediated physiological or pathological processes, such as pain. Activated dorsal horn astrocytes from the spinal cord produce nerve active substances and proinflammatory cytokines, such as interleukin-lbeta (IL-1 β ), IL-6, and tumor necrosis factor- α (TNF-α ), which play important roles in pain transduction and regulation. OBJECTIVE: To investigate the effects of different doses of propofol on activation of cultured spinal cord dorsal horn astrocytes induced by glutamate, as well as changes in IL-1β, IL-6, and TNF- α, and 1L-10 (anti-inflammatory cytokine) expression in rats, and to explore the dose relationship of propofol. DESIGN, TIME AND SETTING: The cellular and molecular biology experiment was performed at the Central Laboratory of Yunyang Medical College between March 2006 and December 2007. MATERIALS: Forty healthy, Wistar rats, aged 2-3 days, were selected. Propofol was provided by Zeneca, UK; glutamate by Sigma, USA; EPICS XL flow cytometry by Beckman culture, USA; rabbit-anti-mouse glial fibrillary acidic protein (GFAP) antibody kit and inflammatory cytokine detection kit were provided by Zhongshan Biotechnology Company Ltd., Beijing; multimedia color pathologic image analysis system was a product of Nikon, Japan. METHODS: Astrocytes were harvested from T11- L6 spinal cord dorsal horn of Wistar rats and incubated for 3 weeks. The cells were divided into seven groups, according to various treatment conditions: control group was cells cultured in Hank's buffered saline solution; intralipid group was cells cultured in intralipid (0.2 mL/L); glutamate group was cells cultured with 100 u mol/L glutamate; propofol group was cells cultured with 250 u mol/L propofol; three glutamate plus propofol groups were cultured in 100 11 mol/L of glutamate, followed by 5, 25, and 250 u mol/L of propofol 10 minutes later. MAIN OUTCOME MEASURES: GFAP-labeled astrocytes were analyzed using a multimedia pathology imaging analysis system to detect area density (AD) and average optical density (AOD) of positive cells. The supernatant concentrations of IL-1β, TNF- α, IL-6, and IL-10 were determined using radioimmune assays. RESULTS: Compared with the control group, cells in the glutamate plus low-dose propofol group were activated and hypertrophic, and AD and AOD were significantly increased (P 〈 0.01 ). Concentrations of IL-1β, TNF- α, and IL-6 were also significantly increased (P 〈 0.01), while IL-10 levels remained unchanged (P 〉 0.05), but still higher than the control and glutamate groups (P 〉 0.05). Compared with the glutamate group, astrocyte activation was inhibited by moderate and high-dose propotol. In addition, with moderate and high-dose propofol, AD, AOD, IL-1β, TNF- α, and IL-6 concentrations were significantly decreased (P 〈 0.05-0.01), and IL-10 levels were increased (P 〈 0.01 ). CONCLUSION: Propofol can effectively inhibit glutamate-induced astrocyte activation in the spinal cord dorsal horn, significantly inhibit production of IL-1 β, TNF- α, and IL-6, and increase IL-10 synthesis and release in a dose-dependent manner.
基金Natural Science Foundation-funded Project:Study on the Mechanism of Tuina and Tuina in Regulating the Synaptic Plasticity of Spinal Dorsal Horn in Lumbar Disc Herniation Based on LncRNA-HOTAIR/miR-219 Mediated NMDAR Pathway(No.82174523)Natural Science Foundation of Fujian Province:Study on the Mechanism of Tuina Regulating the Synaptic Plasticity of Spinal Dorsal Horn in Lumbar Disc Herniation based on NMDAR-CAMK2-CREB Pathway(No.2020J01757)+2 种基金Study on Analgesic Mechanism of Tuina on Neuropathic Pain in Spinal Dorsal Horn/ACC Brain Region based on PKA-NMDA-NR2B Pathway(No.2020J01758)Fujian Health Science and Technology Program:Study on the Analgesic Mechanism of Tuina Manipulation On Lumbar Disc Herniation from the Efficacy of miR-219/NR2B Mediated Synaptic Transmission(No.2020GGA070)Effects of Tuina Point Press on AMPA/NMDA Receptor Scaffold Protein and Synaptic Plasticity in Spinal Dorsal Horn of Rats with Neuropathic Pain(No.2020CXA052)。
文摘OBJECTIVE:To investigate whether the Chinese massage system,Tuina,exerts analgesic effects in a rat model of chronic constriction injury(CCI)by remodeling the synaptic structure in the spinal cord dorsal horn(SCDH).METHODS:Sixty-nine male Sprague–Dawley rats were randomly and evenly divided into the normal group,sham group,CCI group,CCI+Tuina group,CCI+MK-801[an N-methyl D-aspartate receptor subtype 2B(NR2B)antagonist]group,and CCI+MK-801+Tuina group.The neuropathic pain model was established using CCI with right sciatic nerve ligation.Tuina was administered 4 d after CCI surgery,using pressing manipulation for 10 min,once daily.Motor function was observed with the inclined plate test,and pain behaviors were observed by the Von Frey test and acetone spray test.At 19 d after surgery,the L3-L5 spinal cord segments were removed.Glutamate,interleukin 1β(IL-1β),and tumor necrosis factor-α(TNF-α)levels were detected by enzyme-linked immunosorbent assay.The protein expression levels of NR2B and postsynaptic density protein-95(PSD-95)were detected by Western blot,and the synaptic structure was observed by transmission electron microscopy(TEM).RESULTS:CCI reduced motor function and caused mechanical and cold allodynia in rats,increased glutamate concentration and TNF-αand IL-1βlevels,and increased expression of synapse-related proteins NR2B and PSD-95 in the SCDH.TEM revealed that the synaptic structure of SCDH neurons was altered.Most of these disease-induced changes were reversed by Tuina and intrathecal injection of MK-801(P<0.05 or<0.01).For the majority of experiments,no significant differences were found between the CCI+MK-801 and CCI+MK-801+Tuina groups.CONCLUSIONS:Chinese Tuina can alleviate pain by remodeling the synaptic structure,and NR2B and PSD-95 receptors in the SCDH may be among its targets.
基金supported by the National Nature Science Foundation of China,No.81870838Liaoning Province Distinguished Professor Support Program of China,No.XLYC1802096+1 种基金Shenyang Clinical Medicine Research Center of Anesthesiology of China,Nos.19-110-4-24,20-204-4-44the Outstanding Scientific Foundation of Shengjing Hospital of China,No.201708(all to PZ)。
文摘High-frequency spinal cord stimulation(HF-SCS) has been established as an effective therapy for neuropathic pain. However, the analgesic mechanisms involved in HF-SCS remain to be clarified. In our study, adult rat neuropathic pain was induced by spinal nerve ligation. Two days after modeling, the rats were subjected to 4 hours of HF-SCS(motor threshold 50%, frequency 10,000 Hz, and pulse width 0.024 ms) in the dorsal horn of the spinal cord. The results revealed that the tactile allodynia of spinal nerve-injured rats was markedly alleviated by HFSCS, and the effects were sustained for 3 hours after the stimulation had ceased. HF-SCS restored lysosomal function, increased the levels of lysosome-associated membrane protein 2(LAMP2) and the mature form of cathepsin D(matu-CTSD), and alleviated the abnormally elevated levels of microtubule-associated protein 1 A/B-light chain 3(LC3)-II and sequestosome 1(P62) in spinal nerve-injured rats. HF-SCS also mostly restored the immunoreactivity of LAMP2, which was localized in neurons in the superficial layers of the spinal dorsal horn in spinal nerve-injured rats. In addition, intraperitoneal administration of 15 mg/kg chloroquine for 60 minutes reversed the expression of the aforementioned proteins and shortened the timing of the analgesic effects of HF-SCS. These findings suggest that HF-SCS may exhibit longlasting analgesic effects on neuropathic pain in rats through improving lysosomal dysfunction and alleviating autophagic flux. This study was approved by the Laboratory Animal Ethics Committee of China Medical University, Shenyang, China(approval No. 2017 PS196 K) on March 1, 2017.
基金supported by the National Natural Science Foundation of China,No.81373759the Natural Science Foundation of Beijing of China,No.7142097
文摘Tuina is a traditional Chinese treatment for sensory disturbances caused by peripheral nerve injury and related diseases. Our previous studies showed that tuina regulates relevant regions and indices of the spinal dorsal horn using the Dian, Bo, and Rou method in Yinmen(BL37), Yanglingquan(GB34), and Weizhong(BL40). Treatment prevents muscle atrophy, protects spinal cord neurons, and promotes sciatic nerve repair. The mechanisms of action of tuina for treating peripheral nerve injury remain poorly understood. This study established rat models of sciatic nerve injury using the crushing method. Rats received Chinese tuina in accordance with the principle of "Three Methods and Three Points," once daily for 20 days. Tuina intervention reduced paw withdrawal latency and improved wet weight of the gastrocnemius muscle, as well as promoting morphological recovery of sciatic nerve fibers, Schwann cells, and axons. The protein expression levels of phospho-p38 mitogen-activated protein kinase, tumor necrosis factor-α, and interleukin-1β also decreased. These findings indicate that "Three Methods and Three Points" promoted morphological recovery and improved behavior of rats with peripheral nerve injury.
基金Project supported by the National Natural Science Foundation of China.
文摘Antidromic and orthodromic responses of the projection neurons in the dorsal horn ofthe spinal cord have been recorded by a glass microelectrode in anesthetized and paralyz-ed cats. Furthermore, the effect of cervical segment antidromic stimulation to orthodromicresponse of the projection neurons has been observed by way of conditioning-test stimulation. Among all the spinocervical tract neurons (SCT), the dorsal column postsynaptic neu-rons (DCPS) and the spinocervical tract-dorsal column postsynaptic neurons (SCT-DCPS),which were identified by cervical segment antidromic stimulation, 46% are low-thresholdmechanoreceptive (LTM) and 54% are wide-dynamic-range (WDR) neurons. Most LTMneurons can evoke the same response to both 10 times (10 T) and 50 times (50 T) the thresh-old stimulation on the peroneal nerve. Most WDR neurons to 50 T intensity stimulation arestronger than the 10 T stimulation. Under the antidromic-cervical segment conditioningstimulation, the amount of orthodromic-discharging in most WDR and few LTM neuronsreduced significantly. The result shows that both LTM and WDR projection neurons in the spinal cord canrespond to all peripheral Aβ fibers and part of the Aδ fibers; there are some inhibitionaldescending fibers which affect the projection neurons in the cervical segment dorsal col-umn and dorsolateral funiculi.
文摘BACKGROUND: It has been reported that activation and/or translocation of protein kinase C (PKC) is related to hyperalgesia, and changes in PKC expression in the dorsal horn of spinal cord take place during inflammatory pain. OBJECTIVE: To observe PKC changes in the dorsal horn of spinal cord using immunohistochemistry and to measure the time-course during persistent pain produced by chemical stimulation with a right hind-paw injection of formalin. DESIGN: Randomized controlled animal experiment. SETTING: Institute of Basic Medical Science, Hebei Medical University MATERIALS: The present experiment was performed at the Department of Pathophysiology, Institute of Basic Medical Science, Hebei Medical University between September 2000 and June 2002. Forty-two Sprague-Dawley rats, weighing 260-280 g, irrespective of gender, were provided by the Center of Animal Experimentation at Hebei Medical University. PKC antibody was provided by Sigma, USA. Immunohistochemistry kits were purchased from Zhongshan Biotechnology Company, Beijing. HPIAS-1000 definition multicolor system was provided by Qianping Wuxiang Project Company of Tongji Medical University. Animal use during experimentation was consistent with the standards of Animal Ethics Committee. METHODS: Sprague-Dawley rats were divided randomly into control (n = 6) and experimental groups (n = 36). Experimental rats were given an intracutaneous injection of 5% formalin into the planta surface of the right hind-paw. Animals with inflammatory pain were anesthetized and sacrificed to obtain the L5 spinal region at 1, 3, 12 hours, 1, 3, and 7 days after formalin treatment, with 6 rats in each time group. The spinal cords at the L5 region were collected from the control group following sodium chloride injections into the planta surface of the right hind-paw, identical to the experimental group. MAIN OUTCOME MEASURES: Pain reaction of experimental rats after formalin treatment. PKC-positive neurons, and distribution of PKC-immunoreactive particles, in the ipsi- and contralateral dorsal horn were investigated during different stages of inflammatory pain using immunohistochemistry. RESULTS: All 42 rats were included in the final analysis, without any loss. Pain reaction: consistent with previous findings, it was determined that a unilateral injection of formalin into the hind-paw resulted in significant edema and induced a series of nociceptive responses, such as licking, biting, or shaking the injected paw. The maximal inflammation change was observed 1 day after formalin injection and changes did not disappear until the day 7. Number of the PKC positive neurons: results demonstrated that the number of PKC immunoreactive neurons in the dorsal horn increased slightly after formalin injection at 1 hour, compared with the control group. PKC immunoreactivity was up-regulated at day 1, reduced at day 3, and appeared to recover at day 7. The number of PKC-positive neurons in the contralateral side was less than the ipsilateral side at each time sampled. Distribution of PKC immunoparticles over the neurons: PKC immunoreactivity was observed in the nucleus and cytoplasm, as well as on or near the membrane of neurons and synaptosomes in the spinal cord of the control group. PKC activated and translocated from nucleus to the membrane-associated site following formalin treatment. Significant changes were observed at 1 hour and 1 day. The intensity of staining was stronger in the ipsilateral side than the contralateral side at all time points following formalin injection (P 〈 0.01), whereas the expression patterns of PKC immunoreactivity in the nuclei were very similar in the right and left hemispheres. CONCLUSION: PKC expression in the dorsal horn of the spinal cord peaked at 1 hour and 24 hours, and was very obvious at 24 hours. Protein kinase C expression in the spinal cord increased bilaterally, although it was greater in the ipsilateral hemisphere. In addition, PKC expression at the neuronal membrane and synaptosome was significantly increased. These results indicate that PKC expression is activated in the dorsal horn of the spinal cord during hyperalgesia.
基金grants from National Natural Science Foundation of China(No.30325023,30670692)Natural Science Foundation of Beijing Education Committee(No.KZ200510025016)+1 种基金National Basic Research Development Program(973)of China(No.2006CB500808)Innovation Research Team Program of Ministry of Education,China(No.IRT0560)
文摘Subcutaneous injection of bee venom causes long-term neural activation and hypersensitization in the dorsal horn of the spinal cord,which contributes to the development and maintenance of various pain-related behaviors.The unique behavioral 'phenotypes' of nociception and hypersensitivity identified in the rodent bee venom test are believed to reflect a complex pathological state of inflammatory pain and might be appropriate to the study of phenotype-based mechanisms of pain and hyperalgesia.In this review,the spinal processing of the bee venom-induced different 'phenotypes' of pain and hyperalgesia will be described.The accumulative electrophysiological,pharmacological,and behavioral data strongly suggest that different 'phenotypes' of pain and hyperalgesia are mediated by different spinal signaling pathways.Unraveling the phenotype-based mechanisms of pain might be useful in development of novel therapeutic drugs against complex clinic pathological pain.