期刊文献+
共找到448篇文章
< 1 2 23 >
每页显示 20 50 100
miR-124 and miR-128 differential expression in bone marrow stromal cells and spinal cord-derived neural stem cells 被引量:1
1
作者 Chunfang Wang Hongen Wei +3 位作者 Chuansen Zhang Pengfei Li Fei Wang Shufeng Han 《Neural Regeneration Research》 SCIE CAS CSCD 2010年第11期820-824,共5页
BACKGROUND: MicroRNA (miRNA) expression in stem cells provides important clues for the molecular mechanisms of stem cell proliferation and differentiation. Bone marrow stromal cells and spinal cord-derived neural s... BACKGROUND: MicroRNA (miRNA) expression in stem cells provides important clues for the molecular mechanisms of stem cell proliferation and differentiation. Bone marrow stromal cells and spinal cord-derived neural stem cells exhibit potential for neural regeneration. However, miRNA expression in these cells has been rarely reported. OBJECTIVE: To explore differential expression of two nervous system-specific miRNAs, miR-124 and miR-128, in bone marrow stromal cells and spinal cord-derived neural stem cells. DESIGN, TIME AND SETTING: An In vitro, cell biology experiment was performed at the Department of Biotechnology, Shanxi Medical University from June 2008 to June 2009. MATERIALS: TaqMan miRNA assays were purchased from Applied Biosystems. METHODS: Rat bone marrow stromal cells were isolated and cultured using the whole-bone marrow method, and rat spinal cord-derived neural stem cells were obtained through neurosphere formation. TaqMan miRNA assays were used to measure miR-124 and miR-128 expression in bone marrow stromal cells and spinal cord-derived neural stem cells. MAIN OUTCOME MEASURES: Morphology of bone marrow stromal cells and spinal cord-derived neural stem cells were observed by inverted microscopy. Expression of the neural stem cell-specific marker, nestin, the bone marrow stromal cell surface marker, CD71, and expression of miR-124 and miR-128, were detected by real-time polymerase chain reaction. RESULTS: Cultured bone marrow stromal cells displayed a short fusiform shape. Flow cytometry revealed a large number of CD71-positive cells (〉 95%). Cultured spinal cord-derived neural stem cells formed nestin-positive neurospheres, and quantitative detection of miRNA demonstrated that less miR-124 and miR-128 was expressed in bone marrow stromal cells compared to spinal cord-derived neural stem cells (P 〈 0.05). CONCLUSION: Bone marrow stromal cells and spinal cord-derived neural stem cells exhibited differential expression of miR-124 and miR-128, which suggested different characteristics in miRNA expression. 展开更多
关键词 bone marrow stromal cells spinal cord-derived neural stem cells miR-124 miR-128 spinal cord injury
下载PDF
Transplantation of fibrin-thrombin encapsulated human induced neural stem cells promotes functional recovery of spinal cord injury rats through modulation of the microenvironment 被引量:2
2
作者 Sumei Liu Baoguo Liu +4 位作者 Qian Li Tianqi Zheng Bochao Liu Mo Li Zhiguo Chen 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第2期440-446,共7页
Recent studies have mostly focused on engraftment of cells at the lesioned spinal cord,with the expectation that differentiated neurons facilitate recovery.Only a few studies have attempted to use transplanted cells a... Recent studies have mostly focused on engraftment of cells at the lesioned spinal cord,with the expectation that differentiated neurons facilitate recovery.Only a few studies have attempted to use transplanted cells and/or biomaterials as major modulators of the spinal cord injury microenvironment.Here,we aimed to investigate the role of microenvironment modulation by cell graft on functional recovery after spinal cord injury.Induced neural stem cells reprogrammed from human peripheral blood mononuclear cells,and/or thrombin plus fibrinogen,were transplanted into the lesion site of an immunosuppressed rat spinal cord injury model.Basso,Beattie and Bresnahan score,electrophysiological function,and immunofluorescence/histological analyses showed that transplantation facilitates motor and electrophysiological function,reduces lesion volume,and promotes axonal neurofilament expression at the lesion core.Examination of the graft and niche components revealed that although the graft only survived for a relatively short period(up to 15 days),it still had a crucial impact on the microenvironment.Altogether,induced neural stem cells and human fibrin reduced the number of infiltrated immune cells,biased microglia towards a regenerative M2 phenotype,and changed the cytokine expression profile at the lesion site.Graft-induced changes of the microenvironment during the acute and subacute stages might have disrupted the inflammatory cascade chain reactions,which may have exerted a long-term impact on the functional recovery of spinal cord injury rats. 展开更多
关键词 biomaterial FIBRINOGEN functional recovery induced neural stem cell transplantation MICROENVIRONMENT MICROGLIA spinal cord injury THROMBIN
下载PDF
Oscillating field stimulation promotes neurogenesis of neural stem cells through miR-124/Tal1 axis to repair spinal cord injury in rats 被引量:1
3
作者 Chao Fang Jian Sun +1 位作者 Jun Qian Cai-Liang Shen 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第4期895-900,共6页
Spinal cord injury often leads to severe motor and sensory deficits,and prognosis using the currently available therapies remains poor.Therefore,we aimed to explore a novel therapeutic approach for improving the progn... Spinal cord injury often leads to severe motor and sensory deficits,and prognosis using the currently available therapies remains poor.Therefore,we aimed to explore a novel therapeutic approach for improving the prognosis of spinal cord injury.In this study,we implanted oscillating field stimulation devices and transplanted neural stem cells into the thoracic region(T9–T10)of rats with a spinal cord contusion.Basso-Beattie-Bresnahan scoring revealed that oscillating field stimulation combined with neural stem cells transplantation promoted motor function recovery following spinal cord injury.In addition,we investigated the regulation of oscillating field stimulation on the miR-124/Tal1 axis in neural stem cells.Transfection of lentivirus was performed to investigate the role of Tal1 in neurogenesis of neural stem cells induced by oscillating field stimulation.Quantitative reverse transcription-polymerase chain reaction,immunofluorescence and western blotting showed that oscillating field stimulation promoted neurogenesis of neural stem cells in vitro and in vivo.Hematoxylin and eosin staining showed that oscillating field stimulation combined with neural stem cells transplantation alleviated cavities formation after spinal cord injury.Taking the results together,we concluded that oscillating field stimulation decreased miR-124 expression and increased Tal1 content,thereby promoting the neurogenesis of neural stem cells.The combination of oscillating field stimulation and neural stem cells transplantation improved neurogenesis,and thereby promoted structural and functional recovery after spinal cord injury. 展开更多
关键词 miR-124 neural stem cell NEUROGENESIS oscillating field stimulation recovery spinal cord injury Tal1 tissue repair TRANSPLANTATION
下载PDF
Autophagy regulation combined with stem cell therapy for treatment of spinal cord injury 被引量:4
4
作者 Yao Shen Yi-Piao Wang +2 位作者 Xin Cheng Xuesong Yang Guang Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第8期1629-1636,共8页
Stem cells are a group of cells with unique self-renewal and differentiation abilities that have great prospects in the repair of spinal cord injury. However, stem cell renewal and differentiation require strict contr... Stem cells are a group of cells with unique self-renewal and differentiation abilities that have great prospects in the repair of spinal cord injury. However, stem cell renewal and differentiation require strict control of protein turnover in the stem cells to achieve cell remodeling. As a highly conserved “gatekeeper” of cell homeostasis, autophagy can regulate cell remodeling by precisely controlling protein turnover in cells. Recently, it has been found that the expression of autophagy markers changes in animal models of spinal cord injury. Therefore, understanding whether autophagy can affect the fate of stem cells and promote the repair of spinal cord injury is of considerable clinical value. This review expounds the importance of autophagy homeostasis control for the repair of spinal cord injury from three aspects—pathophysiology of spinal cord injury, autophagy and stem cell function, and autophagy and stem cell function in spinal cord injury—and proposes the synergistic therapeutic effect of autophagy and stem cells in spinal cord injury. 展开更多
关键词 AUTOPHAGY chaperone-mediated autophagy embryonic stem cells induced pluripotent stem cells INFLAMMATION mesenchymal stem cells neural stem cells oxidative stress spinal cord injury
下载PDF
New insights into the biological roles of immune cells in neural stem cells in post-traumatic injury of the central nervous system 被引量:3
5
作者 Ning He Xing-Jia Mao +3 位作者 Yue-Min Ding Tong Zuo Ying-Ying Chen Lin-Lin Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第9期1908-1916,共9页
Traumatic injuries in the central nervous system,such as traumatic brain injury and spinal cord injury,are associated with tissue inflammation and the infiltration of immune cells,which simultaneously affect the self-... Traumatic injuries in the central nervous system,such as traumatic brain injury and spinal cord injury,are associated with tissue inflammation and the infiltration of immune cells,which simultaneously affect the self-renewal and differentiation of neural stem cells.Howeve r,the tissue repair process instigated by endogenous neural stem cells is incapable of restoring central nervous system injuries without external intervention.Recently,resident/peripheral immune cells have been demonstrated to exert significant effects on neural stem cells.Thus,the resto ration of traumatic injuries in the central nervous system by the immune intervention in neural stem cells represents a potential therapeutic method.In this review,we discuss the roles and possible mechanisms of immune cells on the selfrenewal and differentiation of neural stem cells along with the prognosis of central nervous system injuries based on immune intervention.Finally,we discuss remaining research challenges that need to be considered in the future.Further elucidation of these challenges will fa cilitate the successful application of neural stem cells in central nervous system injuries. 展开更多
关键词 B cells central nervous system injury MACROPHAGES MICROGLIA neural stem cells spinal cord injury T cells traumatic brain injury
下载PDF
Superparamagnetic Iron Oxide Labeling of Spinal Cord Neural Stem Cells Genetically Modified by Nerve Growth Factor-β
6
作者 雷德强 赵洪洋 +3 位作者 邓兴力 刘如恩 张方成 姚东晓 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2009年第2期235-238,共4页
This study established superparamagnetic iron oxide (SPIO)-labeled nerve growth fac-tor-β (NGF-β) gene-modified spinal cord-derived neural stem cells (NSCs). The El4 rat embryonic spinal cord-derived NSCs were... This study established superparamagnetic iron oxide (SPIO)-labeled nerve growth fac-tor-β (NGF-β) gene-modified spinal cord-derived neural stem cells (NSCs). The El4 rat embryonic spinal cord-derived NSCs were isolated and cultured. The cells of the third passage were transfected with plasmid pcDNA3-hNGFβ by using FuGENE HD transfection reagent. The expression of NGFβ was measured by immunocytochemistry and Western blotting. The positive clones were selected, allowed to proliferate and then labeled with SPIO, which was mediated by FuGENE HD transfection reagent. Prussian blue staining and transmission electron microscopy (TEM) were used to identify the SPIO particles in the cells. The distinctive markers for stem cells (nestin), neuron (β-Ⅲ-tubulin), oligodendrocyte (CNPase) and astrocyte (GFAP) were employed to evaluate the differentiation ability of the labeled cells. The immunocytochemistry and western blotting showed that NGF-β was expressed in spinal cord-derived NSCs. Prussian blue staining indicated that numerous blue-stained particles appeared in the cytoplasma of the labeled cells. TEM showed that SPIO particles were found in vacuolar structures of different sizes and the cytoplasma. The immunocytochemistry demonstrated that the labeled cells were nestin-positive. After differentiation, the cells expressed β-Ⅲ-tubulin, CNPase and GFAP. It was concluded that the SPIO-labeled NGF-β gene-modified spinal cord-derived NSC were successfully established, which are multipotent and capable of self-renewal. 展开更多
关键词 superparamagnetic iron oxide nerve growth factor spinal cord-derived neural stem cells
下载PDF
Electroacupuncture in the repair of spinal cord injury:inhibiting the Notch signaling pathway and promoting neural stem cell proliferation 被引量:33
7
作者 Xin Geng Tao Sun +3 位作者 Jing-hui Li Ning Zhao Yong Wang Hua-lin Yu 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第3期394-403,共10页
Electroacupuncture for the treatment of spinal cord iniury has a good dinical curative effect, but the underlying mechanism is unclear. In our experiments, the spinal cord of adult Sprague-Daw- ley rats was clamped fo... Electroacupuncture for the treatment of spinal cord iniury has a good dinical curative effect, but the underlying mechanism is unclear. In our experiments, the spinal cord of adult Sprague-Daw- ley rats was clamped for 60 seconds. Dazhui (GV14) and Mingmen (GV4) acupoints of rats were subjected to electroacupuncture. Enzyme-linked immunosorbent assay revealed that the expres- sion of serum inflammatory factors was apparently downregulated in rat models of spinal cord injury after electroacupuncture. Hematoxylin-eosin staining and immunohistochemistry results demonstrated that electroacupuncture contributed to the proliferation of neural stem cells in rat injured spinal cord, and suppressed their differentiation into astrocytes. Real-time quantitative PCR and western blot assays showed that electroacupuncture inhibited activation of the Notch signaling pathway induced by spinal cord injury. These findings indicate that electroacupuncture repaired the injured spinal cord by suppressing the Notch signaling pathway and promoting the proliferation of endogenous neural stem ceils. 展开更多
关键词 nerve regeneration spinal cord electroacupuncture therapy neural stem cells notchsignaling pathway ASTROCYTES inflammation survival curve PROLIFERATION differentiation real-timequantitative PCR western blot assay neural regeneration
下载PDF
Induction of Functional Recovery by Co-transplantation of Neural Stem Cells and Schwann Cells in a Rat Spinal Cord Contusion Injury Model 被引量:22
8
作者 JIN LI CHONG-RAN SUNN +4 位作者 HAN ZHANG KAM-SZE TSANG JUN-HUA LI SHAO-DONG ZHANG YI-HuA AN 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2007年第3期242-249,共8页
Objective To study the transplantation efficacy of neural stem cells (NSCs) and Schwann cells (SC) in a rat model of spinal cord contusion injury. Methods Multipotent neural stem cells (NSCs) and Schwann cells w... Objective To study the transplantation efficacy of neural stem cells (NSCs) and Schwann cells (SC) in a rat model of spinal cord contusion injury. Methods Multipotent neural stem cells (NSCs) and Schwann cells were harvested from the spinal cords of embryonic rats at 16 days post coitus and sciatic nerves of newborn rats, respectively. The differential characteristics of NSCs in vitro induced by either serum-based culture or co-culture with SC were analyzed by immunofluorescence. NSCs and SCs were co-transplanted into adult rats having undergone spinal cord contusion at T9 level. The animals were weekly monitored using the Basso-Beattie-Bresnahan locomotor rating system to evaluate functional recovery from contusion-induced spinal cord injury. Migration and differentiation of transplanted NSCs were studied in tissue sections using immunohistochemical staining. Results Embryonic spinal cord-derived NSCs differentiated into a large number of oligodendrocytes in serum-based culture upon the withdrawal of mitogens. In cocultures with SCs, NSCs differentiated into neuron more readily. Rats with spinal cord contusion injury which had undergone transplantation of NSCs and SCs into the intraspinal cavity demonstrated a moderate improvement in motor functions. Conclusions SC may contribute to neuronal differentiation of NSCs in vitro and in vivo. Transplantation of NSCs and SCs into the affected area may be a feasible approach to promoting motor recovery in patients after spinal cord injury. 展开更多
关键词 spinal cord injury TRANSPLANTATION neural stem cells Schwann cells cell differentiation
下载PDF
Transplantation of placenta-derived mesenchymal stem cell-induced neural stem cells to treat spinal cord injury 被引量:13
9
作者 Zhi Li Wei Zhao +3 位作者 Wei Liu Ye Zhou Jingqiao Jia Lifeng Yang 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第24期2197-2204,共8页
Because of their strong proliferative capacity and multi-potency, placenta-derived mesenchymal stem cells have gained interest as a cell source in the field of nerve damage repair. In the present study, human placenta... Because of their strong proliferative capacity and multi-potency, placenta-derived mesenchymal stem cells have gained interest as a cell source in the field of nerve damage repair. In the present study, human placenta-derived mesenchymal stem ceils were induced to differentiate into neural stem cells, which were then transplanted into the spinal cord after local spinal cord injury in rats. The motor functional recovery and pathological changes in the injured spinal cord were observed for 3 successive weeks. The results showed that human placenta-derived mesenchymal stem cells can differentiate into neuron-like cells and that induced neural stem cells contribute to the restoration of injured spinal cord without causing transplant rejection. Thus, these cells promote the recovery of motor and sensory functions in a rat model of spinal cord injury. Therefore, human placenta-derived mesenchymal stem cells may be useful as seed cells during the repair of spinal cord injury. 展开更多
关键词 nerve regeneration stem cells placenta-derived mesenchymal stem cells spinal cord injury neural stern cells nerve-like cells motor function sensory function neural regeneration
下载PDF
Three-dimensional bioprinting collagen/silk fibroin scaffold combined with neural stem cells promotes nerve regeneration after spinal cord injury 被引量:16
10
作者 Ji-Peng Jiang Xiao-Yin Liu +9 位作者 Fei Zhao Xiang Zhu Xiao-Yin Li Xue-Gang Niu Zi-Tong Yao Chen Dai Hui-You Xu Ke Ma Xu-Yi Chen Sai Zhang 《Neural Regeneration Research》 SCIE CAS CSCD 2020年第5期959-968,共10页
Many studies have shown that bio-scaffolds have important value for promoting axonal regeneration of injured spinal cord.Indeed,cell transplantation and bio-scaffold implantation are considered to be effective methods... Many studies have shown that bio-scaffolds have important value for promoting axonal regeneration of injured spinal cord.Indeed,cell transplantation and bio-scaffold implantation are considered to be effective methods for neural regeneration.This study was designed to fabricate a type of three-dimensional collagen/silk fibroin scaffold (3D-CF) with cavities that simulate the anatomy of normal spinal cord.This scaffold allows cell growth in vitro and in vivo.To observe the effects of combined transplantation of neural stem cells (NSCs) and 3D-CF on the repair of spinal cord injury.Forty Sprague-Dawley rats were divided into four groups: sham (only laminectomy was performed),spinal cord injury (transection injury of T10 spinal cord without any transplantation),3D-CF (3D scaffold was transplanted into the local injured cavity),and 3D-CF + NSCs (3D scaffold co-cultured with NSCs was transplanted into the local injured cavity.Neuroelectrophysiology,imaging,hematoxylin-eosin staining,argentaffin staining,immunofluorescence staining,and western blot assay were performed.Apart from the sham group,neurological scores were significantly higher in the 3D-CF + NSCs group compared with other groups.Moreover,latency of the 3D-CF + NSCs group was significantly reduced,while the amplitude was significantly increased in motor evoked potential tests.The results of magnetic resonance imaging and diffusion tensor imaging showed that both spinal cord continuity and the filling of injury cavity were the best in the 3D-CF + NSCs group.Moreover,regenerative axons were abundant and glial scarring was reduced in the 3D-CF + NSCs group compared with other groups.These results confirm that implantation of 3D-CF combined with NSCs can promote the repair of injured spinal cord.This study was approved by the Institutional Animal Care and Use Committee of People’s Armed Police Force Medical Center in 2017 (approval No.2017-0007.2). 展开更多
关键词 3D BIOPRINTING COLLAGEN diffusion tensor IMAGING functional recovery magnetic resonance IMAGING nerve REGENERATION neural REGENERATION neural stem cell SCAFFOLD silk fibroin spinal cord injury
下载PDF
Mild hypothermia combined with a scaffold of Ng Rsilenced neural stem cells/Schwann cells to treat spinal cord injury 被引量:12
11
作者 Dong Wang Jinhua Liang +2 位作者 Jianjun Zhang Shuhong Liu Wenwen Sun 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第24期2189-2196,共8页
Because the inhibition of Nogo proteins can promote neurite growth and nerve cell differentiation, a cell-scaffold complex seeded with Nogo receptor (NgR)-silenced neural stem cells and Schwann cells may be able to ... Because the inhibition of Nogo proteins can promote neurite growth and nerve cell differentiation, a cell-scaffold complex seeded with Nogo receptor (NgR)-silenced neural stem cells and Schwann cells may be able to improve the microenvironment for spinal cord injury repair. Previous studies have found that mild hypothermia helps to attenuate secondary damage in the spinal cord and exerts a neuroprotective effect. Here, we constructed a cell-scaffold complex consisting of a poly(D,L-lactide-co-glycolic acid) (PLGA) scaffold seeded with NgR-silenced neural stem cells and Schwann cells, and determined the effects of mild hypothermia combined with the cell-scaffold complexes on the spinal cord hemi-transection injury in the T9 segment in rats. Compared with the PLGA group and the NgR-silencing cells + PLGA group, hindlimb motor function and nerve electrophysiological function were dearly improved, pathological changes in the injured spinal cord were attenuated, and the number of surviving cells and nerve fibers were increased in the group treated with the NgR-silenced cell scaffold + mild hypothermia at 34℃ for 6 hours. Furthermore, fewer pathological changes to the injured spinal cord and more surviving cells and nerve fibers were found after mild hypothermia therapy than in injuries not treated with mild hypothermia. These experimental results indicate that mild hypothermia combined with NgR gene-silenced cells in a PLGA scaffold may be an effective therapy for treating spinal cord injury. 展开更多
关键词 nerve regeneration spinal cord injury neural stem cells Schwann cells mild hypothermia cell scaffold poly(D L-lactide-co-glycolic acid) neurological function neural regeneration
下载PDF
Survival of transplanted neurotrophin-3 expressing human neural stem cells and motor function in a rat model of spinal cord injury 被引量:18
12
作者 Peiqiang Cai Guangyun Sun +9 位作者 Peishu Cai Martin Oudega Rui Xiao Xuewen Wang Wei Li Yunbing Shu Cheng Cai Haihao Yang Xuebing Shan Wuhua Luo 《Neural Regeneration Research》 SCIE CAS CSCD 2009年第7期485-491,共7页
BACKGROUND: Many methods have been attempted to repair nerves following spinal cord injury, including peripheral nerve transplantation, Schwann cell transplantation, olfactory ensheathing cell transplantation, and em... BACKGROUND: Many methods have been attempted to repair nerves following spinal cord injury, including peripheral nerve transplantation, Schwann cell transplantation, olfactory ensheathing cell transplantation, and embryonic neural tissue transplantation. However, there is a need for improved outcomes. OBJECTIVE: To investigate the repair feasibility for rat spinal cord injury using human neural stem cells (hNSCs) genetically modified by lentivirus to express neurotrophin-3. DESIGN, TIME AND SETTING: In vitro cell biological experiment and in vivo randomized, controlled genetic engineering experiment were performed at the Third Military Medical University of Chinese PLA and First People's Hospital of Yibin, China from March 2006 to December 2007. MATERIALS: A total of 64 adult, female, Wistar rats were used for the in vivo study. Of them, 48 rats were used to establish models of spinal cord hemisection, and were subsequently equally and randomly assigned to model, genetically modified hNSC, and normal hNSC groups. The remaining 16 rats served as normal controls. METHODS: hNSCs were in vitro genetically modified by lentivirus to secrete both green fluorescence protein and neurotrophin-3. Neurotrophin-3 expression was measured by Western blot. Genetically modified hNSC or normal hNSC suspension (5 × 10^5) was injected into the rat spinal cord following T10 spinal cord hemisection. A total of 5μL Dulbecco's-modified Eagle's medium was infused into the rat spinal cord in the model grop. Transgene expression and survival of transplanted hNSCs were determined by immunohistochemistry. Motor function was evaluated using the Basso, Beattie, and Bresnahan (BBB) scale. MAIN OUTCOME MEASURES: The following parameters were measured: expression of neurotrophin-3 produced by genetically modified hNSCs, transgene expression and survival of hNSCs in rats, motor function in rats. RESULTS: hNSCs were successfully genetically modified by lentivirus to stably express neurotrophin-3. The transplanted hNSCs primarily gathered at, or around, the injection site two weeks following transplantation, and gradually migrated towards the surrounding tissue. Transplanted hNSCs were observed 7.0-8.0 mm away from the injection site. In addition, hNSCs were observed 10 weeks after transplantation. At week 4, BBB locomotor scores were significantly greater in the genetically modified hNSC and normal hNSC groups, compared with the model group (P 〈 0.05), and scores were significantly greater in the genetically modified hNSC group compared with the normal hNSC group (P 〈 0.05). CONCLUSION: hNSCs were genetically modified with lentivirus to stably secrete neurotrophin-3. hNSCs improved motor function recovery in rats following spinal cord injury. 展开更多
关键词 LENTIVIRUS spinal cord injuryi human neural stem cells genetic engineering NEUROTROPHIN-3 clreen fluorescence protein
下载PDF
Effect of spinal cord extracts after spinal cord injury on proliferation of rat embryonic neural stem cells and Notch signal pathway in vitro 被引量:9
13
作者 Qing-Zhong Zhou Ge Zhang +6 位作者 Hai-Bo Long Fei Lei Fei Ye Xu-Feng Jia Yun-Long Zhou Jian-Ping Kang Da-Xiong Feng 《Asian Pacific Journal of Tropical Medicine》 SCIE CAS 2014年第7期562-567,共6页
Objective:To investigate the effect of the spinal cord extracts(SCE)after spinal cord injuries(SCIs)on the proliferation of rat embryonic neural stem cells(NSCs)and the expressions of mRNA of Notch1 as well as of Hes1... Objective:To investigate the effect of the spinal cord extracts(SCE)after spinal cord injuries(SCIs)on the proliferation of rat embryonic neural stem cells(NSCs)and the expressions of mRNA of Notch1 as well as of Hes1 in this process in vitro.Methods:The experiment was conducted in 4 different mediums:NSCs+PBS(Group A-blank control group),NSCs+SCE with healthy SD rats(Croup B-normal control group),NSCs+SCE with SD rats receiving sham-operation treatment(Croup C-sham-operation group)and NSCs+SCE with SCIs rats(Group D-paraplegic group).Proliferative abilities of 4 different groups were analyzed by MTT chromatometry after co-culture for 1,2,3,4 and 5 d,respectively.The expressions of Notch 1 and Hes1 mRNA were also detected with RT-PCR after co-culture for 24 and 48 h,respectively.Results:After co-culture for 1,2,3,4 and 5 d respectively,the MTT values of group D were significantly higher than those of group A,group B and group C(P<0.05).However,there were no significantly differences regarding MTT values between group A,group B and group C after co-culture for 1,2,3,4 and 5 d,respectively(P>0.05).Both the expressions of Notch1 and Hes1 mRNA of group D were significantly higher than those of other 3 groups after co-culture for 24 h and 48 h as well(P<0.05).But there was no difference oin expressions of Notch1 and Hes1 mRNA among group A,group B and group C after co-culture for 24 h and 48 h(P>0.05).There was no difference in expressions of Notch1and Hes1 mRNA between 24 h and 48 h treatment in group D.Conclusions:SCE could promote the proliferation of NSCs.It is demonstrated that the microenvironment of SCI may promote the proliferation of NSCs.Besides,SCE could increase the expression of Notch1 and Hes1 mRNA of NSC.It can be concluded that the Notch signaling pathway activation is one of the mechanisms that locally injured microenvironment contributes to the proliferation of ENSC after SCIs.This process may be performed by up-regulating the expressions of Notch1 and Hes1 gene. 展开更多
关键词 neural stem cell cell culture spinal CORD extract NOTCH signal pathway
下载PDF
Transplantation of erythropoietin gene-modified neural stem cells improves the repair of injured spinal cord 被引量:8
14
作者 Min-fei Wu Shu-quan Zhang +3 位作者 Rui Gu Jia-bei Liu Ye Li Qing-san Zhu 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第9期1483-1490,共8页
The protective effects of erythropoietin on spinal Here, the eukaryotic expression plasmid pcDNA3.1 cord injury have not been well described. human erythropoietin was transfected into rat neural stem cells cultured in... The protective effects of erythropoietin on spinal Here, the eukaryotic expression plasmid pcDNA3.1 cord injury have not been well described. human erythropoietin was transfected into rat neural stem cells cultured in vitro. A rat model of spinal cord injury was established using a free falling object. In the human erythropoietin-neural stem cells group, transfected neural stem cells were injected into the rat subarachnoid cavity, while the neural stem cells group was inject- ed with non-transfected neural stem cells. Dulbecco's modified Eagle's medium/F12 medium was injected into the rats in the spinal cord injury group as a control. At 1-4 weeks post injury, the motor function in the rat lower limbs was best in the human erythropoietin-neural stem ceils group, followed by the neural stem cells group, and lastly the spinal cord injury group. At 72 hours, compared with the spinal cord injury group, the apoptotic index and Caspase-3 gene and protein expressions were apparently decreased, and the bd-2 gene and protein expressions were noticeably increased, in the tissues surrounding the injured region in the human erythro- poietin-neural stem cells group. At 4 weeks, the somatosensory evoked potential latencies were cavities were clearly smaller and the motor and remarkably shorter in the human erythropoi- etin-neural stem cells group and neural stem cells group than those in the spinal cord injury group. These differences were particularly obvious in the human erythropoietin-neural stem cells group. More CM-Dil-positive cells and horseradish peroxidase-positive nerve fibers and larger amplitude motor and somatosensory evoked potentials were found in the human erythro- poietin-neural stem cells group and neural stem cells group than in the spinal cord injury group. Again, these differences were particularly obvious in the human erythropoietin-neural stem cells group. These data indicate that transplantation of erythropoietin gene-modified neural stem cells into the subarachnoid cavity to help repair spinal cord injury and promote the recovery of spinal cord function better than neural stem cell transplantation alone. These findings may lead to significant improvements in the clinical treatment of spinal cord injuries. 展开更多
关键词 nerve regeneration spinal cord injury neural stem cells ERYTHROPOIETIN motor function subarachnoid cavity TRANSPLANTATION injury recovery neural regeneration
下载PDF
Repair of spinal cord injury by neural stem cells modified with BDNF gene in rats 被引量:13
15
作者 Wei LI Wen-Qin CAI Cheng-Ren LI 《Neuroscience Bulletin》 SCIE CAS CSCD 2006年第1期34-40,共7页
Objective To explore repair of spinal cord injury by neural stem cells (NSCs) modified with brain derived neurotrophic factor (BDNF) gene (BDNF-NSCs) in rats. Methods Neural stem cells modified with BDNF gene we... Objective To explore repair of spinal cord injury by neural stem cells (NSCs) modified with brain derived neurotrophic factor (BDNF) gene (BDNF-NSCs) in rats. Methods Neural stem cells modified with BDNF gene were transplanted into the complete transection site of spinal cord at the lumbar 4 (L4) level in rats. Motor function of rats' hind limbs was observed and HE and X-gal immunoeytochemical staining, in situ hybridization, and retrograde HRP tracing were also performed. Results BDNF-NSCs survived and integrated well with host spinal cord. In the transplant group, some X-gal positive, NF-200 positive, GFAP positive, BDNF positive, and BDNF mRNA positive cells, and many NF-200 positive nerve fibers were observed in the injury site. Retrograde HRP tracing through sciatic nerve showed some HRP positive cells and nerve fibers near the rostral side of the injury one month after transplant and with time, they increased in number. Examinations on rats' motor function and behavior demonstrated that motor function of rats' hind limbs improved better in the transplant group than the injury group. Conclusion BDNF-NSCs can survive, differentiate, and partially integrate with host spinal cord, and they significantly ameliorate rats' motor function of hind limbs, indicating their promising role in repairing spinal cord injury. 展开更多
关键词 genetic modification neural stem cell spinal cord injury REPAIR
下载PDF
Neural stem cell transplantation in a double-layer collagen membrane with unequal pore sizes for spinal cord injury repair 被引量:7
16
作者 Ning Yuan Wei Tian +3 位作者 Lei Sun Runying Yuan Jianfeng Tao Dafu Chen 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第10期1014-1019,共6页
A novel double-layer collagen membrane with unequal pore sizes in each layer was designed and tested in this study. The inner, loose layer has about 100-μm-diameter pores, while the outer, compact layer has about 10-... A novel double-layer collagen membrane with unequal pore sizes in each layer was designed and tested in this study. The inner, loose layer has about 100-μm-diameter pores, while the outer, compact layer has about 10-μm-diameter pores. In a rat model of incomplete spinal cord injury, a large number of neural stem cells were seeded into the loose layer, which was then adhered to the injured side, and the compact layer was placed against the lateral side. The results showed that the transplantation of neural stem cells in a double-layer collagen membrane with unequal pore sizes promoted the differentiation of neural stem cells, attenuated the pathological lesion, and signiifcantly improved the motor function of the rats with incomplete spinal cord injuries. These experimental ifndings suggest that the transplantation of neural stem cells in a double-lay-er collagen membrane with unequal pore sizes is an effective therapeutic strategy to repair an injured spinal cord. 展开更多
关键词 nerve regeneration spinal cord injury COLLAGEN scaffolds neural stem cells cell trans-plantation nerve repair neural regeneration
下载PDF
Effects of microtubule-associated protein tau expression on neural stem cell migration after spinal cord injury 被引量:6
17
作者 Zhi-ping Qi Guo-xiang Wang +4 位作者 Peng Xia Ting-ting Hou Hong-li Zhou Tie-jun Wang Xiao-yu Yang 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第2期332-337,共6页
Our preliminary proteomics analysis suggested that expression of microtubule-associated protein tau is elevated in the spinal cord after injury. Therefore, the first aim of the present study was to examine tau express... Our preliminary proteomics analysis suggested that expression of microtubule-associated protein tau is elevated in the spinal cord after injury. Therefore, the first aim of the present study was to examine tau expression in the injured spinal cord. The second aim was to determine whether tau can regulate neural stem cell migration, a critical factor in the successful treatment of spinal cord injury. We established rat models of spinal cord injury and injected them with mouse hippocampal neural stem cells through the tail vein. We used immunohistochemistry to show that the expression of tau protein and the number of migrated neural stem cells were markedly increased in the injured spinal cord. Furthermore, using a Transwell assay, we showed that neural stem cell migration was not affected by an elevated tau concentration in the outer chamber, but it was decreased by changes in intracellular tau phosphorylation state. These results demonstrate that neural stem cells have targeted migration capability at the site of injury, and that although tau is not a chemokine for targeted migration of neural stem cells, intracellular tau phosphorylation/dephosphorylation can inhibit cell migration. 展开更多
关键词 nerve regeneration spinal cord injury tau protein neural stem cells transwelI chambers phosphatase 2A cell transplantation PHOSPHORYLATION MIGRATION okadaic acid C2-ceramide neural regeneration
下载PDF
Effects of neural stem cell transplantation on the motor function of rats with contusion spinal cord injuries:a meta-analysis 被引量:4
18
作者 Kai Qian Tuo-Ye Xu +7 位作者 Xi Wang Tao Ma Kai-Xin Zhang Kun Yang Teng-Da Qian Jing Shi Li-Xin Li Zheng Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2020年第4期748-758,共11页
Objective:To judge the efficacies of neural stem cell(NSC)transplantation on functional recovery following contusion spinal cord injuries(SCIs).Data sources:Studies in which NSCs were transplanted into a clinically re... Objective:To judge the efficacies of neural stem cell(NSC)transplantation on functional recovery following contusion spinal cord injuries(SCIs).Data sources:Studies in which NSCs were transplanted into a clinically relevant,standardized rat model of contusion SCI were identified by searching the PubMed,Embase and Cochrane databases,and the extracted data were analyzed by Stata 14.0.Data selection:Inclusion criteria were that NSCs were used in in vivo animal studies to treat contusion SCIs and that behavioral assessment of locomotor functional recovery was performed using the Basso,Beattie,and Bresnahan lo-comotor rating scale.Exclusion criteria included a follow-up of less than 4 weeks and the lack of control groups.Outcome measures:The restoration of motor function was assessed by the Basso,Beattie,and Bresnahan locomotor rating scale.Results:We identified 1756 non-duplicated papers by searching the aforementioned electronic databases,and 30 full-text articles met the inclusion criteria.A total of 37 studies reported in the 30 articles were included in the meta-analysis.The meta-analysis results showed that transplanted NSCs could improve the motor function recovery of rats following contusion SCIs,to a moderate extent(pooled standardized mean difference(SMD)=0.73;95%confidence interval(CI):0.47–1.00;P<0.001).NSCs obtained from different donor species(rat:SMD=0.74;95%CI:0.36–1.13;human:SMD=0.78;95%CI:0.31–1.25),at different donor ages(fetal:SMD=0.67;95%CI:0.43–0.92;adult:SMD=0.86;95%CI:0.50–1.22)and from different origins(brain-derived:SMD=0.59;95%CI:0.27–0.91;spinal cord-derived:SMD=0.51;95%CI:0.22–0.79)had similar efficacies on improved functional recovery;however,adult induced pluripotent stem cell-derived NSCs showed no significant efficacies.Furthermore,the use of higher doses of transplanted NSCs or the administration of immunosuppressive agents did not promote better locomotor function recovery(SMD=0.45;95%CI:0.21–0.70).However,shorter periods between the contusion induction and the NSC transplantation showed slightly higher efficacies(acute:SMD=1.22;95%CI:0.81–1.63;subacute:SMD=0.75;95%CI:0.42–1.09).For chronic injuries,NSC implantation did not significantly improve functional recovery(SMD=0.25;95%CI:–0.16 to 0.65).Conclusion:NSC transplantation alone appears to be a positive yet limited method for the treatment of contusion SCIs. 展开更多
关键词 Basso Beattie and Bresnahan locomotor rating scale cell TRANSPLANTATION META-ANALYSIS motor functional recovery neural regeneration neural stem cell neural stem cell TRANSPLANTATION rat model spinal CONTUSION spinal cord injury
下载PDF
Expression change of stem cell-derived neural stem/progenitor cell sup-porting factor gene in injured spinal cord of rats
19
作者 冯毅 高宜录 +1 位作者 丁斐 刘炎 《Neuroscience Bulletin》 SCIE CAS CSCD 2007年第3期165-169,共5页
Objective To explore the expression change of stem cell-derived neural stem/progenitor cell supporting factor (SDNSF) gene in the injuried spinal cord tissues of rats, and the relation between the expressions of SDN... Objective To explore the expression change of stem cell-derived neural stem/progenitor cell supporting factor (SDNSF) gene in the injuried spinal cord tissues of rats, and the relation between the expressions of SDNSF and nestin. Methods The spinal cord contusion model of rat was established according to Allen's falling strike method. The expression of SDNSF was studied by RT-PCR and in situ hybridization (ISH), and the expression of nestin was detected by immunochemistry. Results RT-PCR revealed that SDNSF mRNA was upregulated on day 4 after injury, peaked on day 8-12, and decreased to the sham operation level on day 16. ISH revealed that SDNSF mRNA was mainly expressed in the gray matter cells, probably neurons, of spinal cord. The immunohistochemistry showed that accompanied with SDNSF mRNA upregulation, the nestin-positive cells showed erupted roots, migrated peripherad and proliferation on the 8-day slice. However, the distribution pattern of these new cells was different from that of SDNSF-positive cells. Conclusion (1) SDNSF is expressed in the gray matter of spinal cord. The expression of SDNSF mRNA in the spinal cord varies with injured time. (2) The nestin-positive cells proliferate accompanied with spinal cord injury repair, but do not secrete SDNSF. 展开更多
关键词 stem cell-derived neural stem/progenitor cell supporting factor NESTIN spinal cord injury rat
下载PDF
A multi-channel collagen scaffold loaded with neural stem cells for the repair of spinal cord injury 被引量:8
20
作者 Shuo Liu Yuan-Yuan Xie +5 位作者 Liu-Di Wang Chen-Xu Tai Dong Chen Dan Mu Yan-Yan Cui Bin Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2021年第11期2284-2292,共9页
Collagen scaffolds possess a three-dimensional porous structure that provides sufficient space for cell growth and proliferation,the passage of nutrients and oxygen,and the discharge of metabolites.In this study,a por... Collagen scaffolds possess a three-dimensional porous structure that provides sufficient space for cell growth and proliferation,the passage of nutrients and oxygen,and the discharge of metabolites.In this study,a porous collagen scaffold with axially-aligned luminal conduits was prepared.In vitro biocompatibility analysis of the collagen scaffold revealed that it enhances the activity of neural stem cells and promotes cell extension,without affecting cell differentiation.The collagen scaffold loaded with neural stem cells improved the hindlimb motor function in the rat model of T8 complete transection and promoted nerve regeneration.The collagen scaffold was completely degraded in vivo within 5 weeks of implantation,exhibiting good biodegradability.Rectal temperature,C-reactive protein expression and CD68 staining demonstrated that rats with spinal cord injury that underwent implantation of the collagen scaffold had no notable inflammatory reaction.These findings suggest that this novel collagen scaffold is a good carrier for neural stem cell transplantation,thereby enhancing spinal cord repair following injury.This study was approved by the Animal Ethics Committee of Nanjing Drum Tower Hospital(the Affiliated Hospital of Nanjing University Medical School),China(approval No.2019AE02005)on June 15,2019. 展开更多
关键词 axially-aligned luminal conduits biomaterial cell transplantation collagen complete transection inflammation neural stem cell regeneration scaffold spinal cord injury tissue engineering
下载PDF
上一页 1 2 23 下一页 到第
使用帮助 返回顶部