Most studies on peripheral nerve injury have focused on repair at the site of injury, but very few have examined the effects of repair strategies on the more proximal neuronal cell bodies. In this study, an approximat...Most studies on peripheral nerve injury have focused on repair at the site of injury, but very few have examined the effects of repair strategies on the more proximal neuronal cell bodies. In this study, an approximately 10-mm-long nerve segment from the ischial tuberosity in the rat was transected and its proximal and distal ends were inverted and sutured. The spinal cord was subjected to pulsed electrical stimulation at T10 and L3, at a current of 6.5 m A and a stimulation frequency of 15 Hz, 15 minutes per session, twice a day for 56 days. After pulsed electrical stimulation, the number of neurons in the dorsal root ganglion and anterior horn was increased in rats with sciatic nerve injury. The number of myelinated nerve fibers was increased in the sciatic nerve. The ultrastructure of neurons in the dorsal root ganglion and spinal cord was noticeably improved. Conduction velocity of the sciatic nerve was also increased. These results show that pulsed electrical stimulation protects sensory neurons in the dorsal root ganglia as well as motor neurons in the anterior horn of the spinal cord after peripheral nerve injury, and that it promotes the regeneration of peripheral nerve fibers.展开更多
Estrogen affects the generation and transmission of neuropathic pain,but the specific regulatory mechanism is still unclear.Activation of the N-methyl-D-aspartate acid receptor 1(NMDAR1) plays an important role in t...Estrogen affects the generation and transmission of neuropathic pain,but the specific regulatory mechanism is still unclear.Activation of the N-methyl-D-aspartate acid receptor 1(NMDAR1) plays an important role in the production and maintenance of hyperalgesia and allodynia.The present study was conducted to determine whether a relationship exists between estrogen and NMDAR1 in peripheral nerve pain.A chronic sciatic nerve constriction injury model of chronic neuropathic pain was established in rats.These rats were then subcutaneously injected with 17β-estradiol,the NMDAR1 antagonist D(-)-2-amino-5-phosphonopentanoic acid(AP-5),or both once daily for 15 days.Compared with injured drug na?ve rats,rats with chronic sciatic nerve injury that were administered estradiol showed a lower paw withdrawal mechanical threshold and a shorter paw withdrawal thermal latency,indicating increased sensitivity to mechanical and thermal pain.Estrogen administration was also associated with increased expression of NMDAR1 immunoreactivity(as assessed by immunohistochemistry) and protein(as determined by western blot assay) in spinal dorsal root ganglia.This 17β-estradiol-induced increase in NMDAR1 expression was blocked by co-administration with AP-5,whereas AP-5 alone did not affect NMDAR1 expression.These results suggest that 17β-estradiol administration significantly reduced mechanical and thermal pain thresholds in rats with chronic constriction of the sciatic nerve,and that the mechanism for this increased sensitivity may be related to the upregulation of NMDAR1 expression in dorsal root ganglia.展开更多
BACKGROUND: Astrocytes are considered to provide nutritional support in the central nervous system. However, recent studies have confirmed that astrocytes also play an important role in chronic pain. OBJECTIVE: To i...BACKGROUND: Astrocytes are considered to provide nutritional support in the central nervous system. However, recent studies have confirmed that astrocytes also play an important role in chronic pain. OBJECTIVE: To investigate the effects of intrathecal injection of fluorocitrate, minocycline or both on astrocyte activation and proliferation in the spinal dorsal horn of compressed dorsal root ganglion in rats. DESIGN, TIME AND SETTING: The neurology randomized controlled animal study was performed at the Jiangsu Institute of Anesthesia Medicine, from September 2006 to April 2007. MATERIALS: A total of 96 male Sprague Dawley rats, aged 6-8 weeks, were selected for this study. Following intrathecal catheterization, 80 rats underwent steel bar insertion into the L4-5 intervertebral foramina to make a stable compression on the L4-5 posterior root ganglion. Thus rat models of ganglion compression were established. Minocycline and fluorocitrate were purchased from Sigma, USA. METHODS: A total of 96 rats were randomly and equally divided into six groups. Rat L4, L5 transverse process and intervertebral foramina were exposed in the sham operation group, but without steel bar insertion. The model group did not receive any manipulations. Rats in the phosphate buffered saline (PBS) group were intrathecally injected with 0.01 mmol/L PBS (20 μL). Rats in the fluorocitrate group were subjected to 1 μmol/L fluorocitrate (20 μL). Rats in the minocycline group were intrathecally injected with 5 g/L minocycline (20 μL). Rats in the minocycline and fluorocitrate group received a mixture (20 μL) of 5 g/L minocycline and 1 μmol/L fluorocitrate. Following model establishment, drugs were administered once a day. MAIN OUTCOME MEASURES: At 7 and 14 days following model induction, glial fibrillary acidic protein expression in the spinal dorsal horn was measured by immunofluorescence microscopy. Six sections with significant glial fibrillary acidic protein -positive expression were obtained to count astrocytes under an inverted microscope. RESULTS: No significant differences in astrocyte count were detected between the fluorocitrate and model groups. Cell bodies were small with a few processes in the fluorocitrate group, compared with the model group. The astrocyte count decreased significantly in the minocycline group and the minocycline and fluorocitrate group compared with the sham operation, model, PBS and fluorocitrate groups (P 〈 0.01). The decrease in astrocyte count was mainly found in layers Ⅲ–Ⅳ of the spinal dorsal horn. Cell body volume was smaller and process numbers were fewer in the minocycline group and the minocycline and fluorocitrate group, compared with the model and PBS groups. CONCLUSION: Fluorocitrate can inhibit astrocyte activation, but does not affect astrocyte proliferation. However, minocycline can inhibit the activation and proliferation of astrocytes.展开更多
Accumulating evidence has demonstrated that the sodium-potassium-chloride co-transporter 1 and potassium-chloride co-transporter 2 have a role in the modulation of pain transmission at the spinal level through chlorid...Accumulating evidence has demonstrated that the sodium-potassium-chloride co-transporter 1 and potassium-chloride co-transporter 2 have a role in the modulation of pain transmission at the spinal level through chloride regulation in the pain pathway and by effecting neuronal excitability and pain sensitization. The present study aimed to investigate the analgesic effect of the speciifc sodium-potassium-chloride co-transporter 1 inhibitor bumetanide, and the change in spinal sodium-potassium-chloride co-transporter 1 and potassium-chloride co-transporter 2 expression in a rat model of incisional pain. Results showed that intrathecal bumetanide could decrease cumulative pain scores, and could increase thermal and mechanical pain thresholds in a rat model of incisional pain. Sodium-potassium-chloride co-transporter 1 expression in-creased in neurons from dorsal root ganglion and the deep laminae of the ipsilateral dorsal horn following incision. By contrast, potassium-chloride co-transporter 2 expression decreased in neurons of the deep laminae from the ipsilateral dorsal horn. These ifndings suggest that spinal sodium-potassium-chloride co-transporter 1 expression was up-regulated and spinal potassi-um-chloride co-transporter 2 expression was down-regulated following incision. Intrathecal bumetanide has analgesic effects on incisional pain through inhibition of sodium-potassi-um-chloride co-transporter 1.展开更多
Tanshinone ⅡA, extracted from Salvia miltiorrhiza Bunge, exerts neuroprotective effects through its anti-inflammatory, anti-oxidative and anti-apoptotic properties. This study intravenously injected tanshinone ⅡA 20...Tanshinone ⅡA, extracted from Salvia miltiorrhiza Bunge, exerts neuroprotective effects through its anti-inflammatory, anti-oxidative and anti-apoptotic properties. This study intravenously injected tanshinone ⅡA 20 mg/kg into rat models of spinal cord injury for 7 consecutive days. Results showed that tanshinone ⅡA could reduce the inflammation, edema as well as compensatory thickening of the bladder tissue, improve urodynamic parameters, attenuate secondary injury, and promote spinal cord regeneration. The number of hypertrophic and apoptotic dorsal root ganglion(L6–S1) cells was less after treatment with tanshinone ⅡA. The effects of tanshinone ⅡA were similar to intravenous injection of 30 mg/kg methylprednisolone. These findings suggested that tanshinone ⅡA improved functional recovery after spinal cord injury-induced lower urinary tract dysfunction by remodeling the spinal pathway involved in lower urinary tract control.展开更多
Paired immunoglobulin-like receptor B(Pir B) is a functional receptor of myelin-associated inhibitors for axonal regeneration and synaptic plasticity in the central nervous system, and thus suppresses nerve regenera...Paired immunoglobulin-like receptor B(Pir B) is a functional receptor of myelin-associated inhibitors for axonal regeneration and synaptic plasticity in the central nervous system, and thus suppresses nerve regeneration. The regulatory effect of Pir B on injured nerves has received a lot of attention. To better understand nerve regeneration inability after spinal cord injury, this study aimed to investigate the distribution of Pir B(via immunofluorescence) in the central nervous system and peripheral nervous system 10 days after injury. Immunoreactivity for Pir B increased in the dorsal root ganglia, sciatic nerves, and spinal cord segments. In the dorsal root ganglia and sciatic nerves, Pir B was mainly distributed along neuronal and axonal membranes. Pir B was found to exhibit a diffuse, intricate distribution in the dorsal and ventral regions. Immunoreactivity for Pir B was enhanced in some cortical neurons located in the bilateral precentral gyri. Overall, the findings suggest a pattern of Pir B immunoreactivity in the nervous system after unilateral spinal transection injury, and also indicate that Pir B may suppress repair after injury.展开更多
The expression of the types of tachykinin receptors in the dorsal root ganglion (DRG) neurons by means of Xenopus oocyte expressing system was studied. Poly(A) +RNAs were extracted from cat cervical and lumbar DRG. Tw...The expression of the types of tachykinin receptors in the dorsal root ganglion (DRG) neurons by means of Xenopus oocyte expressing system was studied. Poly(A) +RNAs were extracted from cat cervical and lumbar DRG. Two days after injection of Poly(A) +RNAs, the oocytes were recorded with the two electrode voltage clamp technique. In the oocytes injected with DRG poly(A) +RNA,[Sar 9,Met(O 2) 11 ] substance P(Sar SP, 1 μmol/L), neurokinin A (NKA,1 μmol/L) or [β Ala 8] neurokinin A (4-10) (Ala NKA, 1 μmol/L) produced an inward current comprising a rapid spike and a long sustained oscillatory component for several minutes. Sar SP induced response was blocked by NK 1 antagonist L 668, 169 (1 μmol/L), but not by NK 2 antagonist L 659,877(1μmol/L). In contrast, Ala NKA and NKA responses were only blocked by L 659,877. The oocytes injected with DH Poly(A) +RNA also responded to Sar SP and NKA with similar inward currents, which were selectively blocked by L 668,169 and L 659,877, respectively. These tachykinins induced responses had a potent desensitization. The present data indicate expression of NK 1 and NK 2 receptors in DRG neurons, suggesting that there may be tachykinin autoreceptors on the nociceptive primary afferent terminals.展开更多
目的:探讨大鼠背根神经节(dorsal root ganglion,DRG)持续受压(chronic compression of right side dorsal root ganglion,CCD)后脊髓背角瞬时感受器电位离子通道4(TRPV4)基因及蛋白变化,明确脊髓背角TRPV4在CCD致神经病理性疼痛中的作...目的:探讨大鼠背根神经节(dorsal root ganglion,DRG)持续受压(chronic compression of right side dorsal root ganglion,CCD)后脊髓背角瞬时感受器电位离子通道4(TRPV4)基因及蛋白变化,明确脊髓背角TRPV4在CCD致神经病理性疼痛中的作用。方法:采用健康成年雄性Wistar大鼠,共36只,随机分为3组,分别为空白对照组、CCD手术组、CCD+钌红组。制备大鼠背根神经节持续受压模型,于术前1天、术后第7天、给药前及给药2h后,测量大鼠机械刺激缩爪反应阈值,观察机械痛阈的变化;利用RT-PCR及Western Blot技术检测各组大鼠手术侧脊髓背角TRPV4基因及蛋白表达的变化。结果:与空白对照组相比,术后第7天,CCD组大鼠术侧机械痛阈值明显下降(P<0.001),同侧脊髓背角TRPV4基因及蛋白表达升高(P<0.05);与给药前相比,给予钌红2h后,术侧机械痛阈值明显升高(P<0.001),同侧脊髓背角TRPV4基因及蛋白表达下降(P<0.05)。结论:CCD后大鼠术侧机械痛阈下降,脊髓背角TRPV4基因及蛋白表达升高;钌红可部分逆转CCD后痛觉过敏,部分降低脊髓背角TRPV4基因及蛋白表达。脊髓背角TRPV4参与CCD后大鼠神经病理性疼痛形成。展开更多
基金supported by the Key Scientific and Technological Program of Linyi City of China,No.201313026
文摘Most studies on peripheral nerve injury have focused on repair at the site of injury, but very few have examined the effects of repair strategies on the more proximal neuronal cell bodies. In this study, an approximately 10-mm-long nerve segment from the ischial tuberosity in the rat was transected and its proximal and distal ends were inverted and sutured. The spinal cord was subjected to pulsed electrical stimulation at T10 and L3, at a current of 6.5 m A and a stimulation frequency of 15 Hz, 15 minutes per session, twice a day for 56 days. After pulsed electrical stimulation, the number of neurons in the dorsal root ganglion and anterior horn was increased in rats with sciatic nerve injury. The number of myelinated nerve fibers was increased in the sciatic nerve. The ultrastructure of neurons in the dorsal root ganglion and spinal cord was noticeably improved. Conduction velocity of the sciatic nerve was also increased. These results show that pulsed electrical stimulation protects sensory neurons in the dorsal root ganglia as well as motor neurons in the anterior horn of the spinal cord after peripheral nerve injury, and that it promotes the regeneration of peripheral nerve fibers.
基金supported by the Youth Shihezi University Applied Basic Research Project of China,No.2015ZRKYQ-LH19
文摘Estrogen affects the generation and transmission of neuropathic pain,but the specific regulatory mechanism is still unclear.Activation of the N-methyl-D-aspartate acid receptor 1(NMDAR1) plays an important role in the production and maintenance of hyperalgesia and allodynia.The present study was conducted to determine whether a relationship exists between estrogen and NMDAR1 in peripheral nerve pain.A chronic sciatic nerve constriction injury model of chronic neuropathic pain was established in rats.These rats were then subcutaneously injected with 17β-estradiol,the NMDAR1 antagonist D(-)-2-amino-5-phosphonopentanoic acid(AP-5),or both once daily for 15 days.Compared with injured drug na?ve rats,rats with chronic sciatic nerve injury that were administered estradiol showed a lower paw withdrawal mechanical threshold and a shorter paw withdrawal thermal latency,indicating increased sensitivity to mechanical and thermal pain.Estrogen administration was also associated with increased expression of NMDAR1 immunoreactivity(as assessed by immunohistochemistry) and protein(as determined by western blot assay) in spinal dorsal root ganglia.This 17β-estradiol-induced increase in NMDAR1 expression was blocked by co-administration with AP-5,whereas AP-5 alone did not affect NMDAR1 expression.These results suggest that 17β-estradiol administration significantly reduced mechanical and thermal pain thresholds in rats with chronic constriction of the sciatic nerve,and that the mechanism for this increased sensitivity may be related to the upregulation of NMDAR1 expression in dorsal root ganglia.
基金the Social Development Science and Technology Plan Program of Jiangsu Province, No. B2004515
文摘BACKGROUND: Astrocytes are considered to provide nutritional support in the central nervous system. However, recent studies have confirmed that astrocytes also play an important role in chronic pain. OBJECTIVE: To investigate the effects of intrathecal injection of fluorocitrate, minocycline or both on astrocyte activation and proliferation in the spinal dorsal horn of compressed dorsal root ganglion in rats. DESIGN, TIME AND SETTING: The neurology randomized controlled animal study was performed at the Jiangsu Institute of Anesthesia Medicine, from September 2006 to April 2007. MATERIALS: A total of 96 male Sprague Dawley rats, aged 6-8 weeks, were selected for this study. Following intrathecal catheterization, 80 rats underwent steel bar insertion into the L4-5 intervertebral foramina to make a stable compression on the L4-5 posterior root ganglion. Thus rat models of ganglion compression were established. Minocycline and fluorocitrate were purchased from Sigma, USA. METHODS: A total of 96 rats were randomly and equally divided into six groups. Rat L4, L5 transverse process and intervertebral foramina were exposed in the sham operation group, but without steel bar insertion. The model group did not receive any manipulations. Rats in the phosphate buffered saline (PBS) group were intrathecally injected with 0.01 mmol/L PBS (20 μL). Rats in the fluorocitrate group were subjected to 1 μmol/L fluorocitrate (20 μL). Rats in the minocycline group were intrathecally injected with 5 g/L minocycline (20 μL). Rats in the minocycline and fluorocitrate group received a mixture (20 μL) of 5 g/L minocycline and 1 μmol/L fluorocitrate. Following model establishment, drugs were administered once a day. MAIN OUTCOME MEASURES: At 7 and 14 days following model induction, glial fibrillary acidic protein expression in the spinal dorsal horn was measured by immunofluorescence microscopy. Six sections with significant glial fibrillary acidic protein -positive expression were obtained to count astrocytes under an inverted microscope. RESULTS: No significant differences in astrocyte count were detected between the fluorocitrate and model groups. Cell bodies were small with a few processes in the fluorocitrate group, compared with the model group. The astrocyte count decreased significantly in the minocycline group and the minocycline and fluorocitrate group compared with the sham operation, model, PBS and fluorocitrate groups (P 〈 0.01). The decrease in astrocyte count was mainly found in layers Ⅲ–Ⅳ of the spinal dorsal horn. Cell body volume was smaller and process numbers were fewer in the minocycline group and the minocycline and fluorocitrate group, compared with the model and PBS groups. CONCLUSION: Fluorocitrate can inhibit astrocyte activation, but does not affect astrocyte proliferation. However, minocycline can inhibit the activation and proliferation of astrocytes.
基金supported by a grant from Guangzhou Medical University,No.2008C24
文摘Accumulating evidence has demonstrated that the sodium-potassium-chloride co-transporter 1 and potassium-chloride co-transporter 2 have a role in the modulation of pain transmission at the spinal level through chloride regulation in the pain pathway and by effecting neuronal excitability and pain sensitization. The present study aimed to investigate the analgesic effect of the speciifc sodium-potassium-chloride co-transporter 1 inhibitor bumetanide, and the change in spinal sodium-potassium-chloride co-transporter 1 and potassium-chloride co-transporter 2 expression in a rat model of incisional pain. Results showed that intrathecal bumetanide could decrease cumulative pain scores, and could increase thermal and mechanical pain thresholds in a rat model of incisional pain. Sodium-potassium-chloride co-transporter 1 expression in-creased in neurons from dorsal root ganglion and the deep laminae of the ipsilateral dorsal horn following incision. By contrast, potassium-chloride co-transporter 2 expression decreased in neurons of the deep laminae from the ipsilateral dorsal horn. These ifndings suggest that spinal sodium-potassium-chloride co-transporter 1 expression was up-regulated and spinal potassi-um-chloride co-transporter 2 expression was down-regulated following incision. Intrathecal bumetanide has analgesic effects on incisional pain through inhibition of sodium-potassi-um-chloride co-transporter 1.
基金supported by the China Postdoctoral Science Foundation,No.2015M581120
文摘Tanshinone ⅡA, extracted from Salvia miltiorrhiza Bunge, exerts neuroprotective effects through its anti-inflammatory, anti-oxidative and anti-apoptotic properties. This study intravenously injected tanshinone ⅡA 20 mg/kg into rat models of spinal cord injury for 7 consecutive days. Results showed that tanshinone ⅡA could reduce the inflammation, edema as well as compensatory thickening of the bladder tissue, improve urodynamic parameters, attenuate secondary injury, and promote spinal cord regeneration. The number of hypertrophic and apoptotic dorsal root ganglion(L6–S1) cells was less after treatment with tanshinone ⅡA. The effects of tanshinone ⅡA were similar to intravenous injection of 30 mg/kg methylprednisolone. These findings suggested that tanshinone ⅡA improved functional recovery after spinal cord injury-induced lower urinary tract dysfunction by remodeling the spinal pathway involved in lower urinary tract control.
基金supported by the National Natural Science Foundation of China,No.81171178the Natural Science Foundation of Shanxi Province in China,No.2012011036-3the Research Project of Shanxi Scholarship Council of China,No.2012-047
文摘Paired immunoglobulin-like receptor B(Pir B) is a functional receptor of myelin-associated inhibitors for axonal regeneration and synaptic plasticity in the central nervous system, and thus suppresses nerve regeneration. The regulatory effect of Pir B on injured nerves has received a lot of attention. To better understand nerve regeneration inability after spinal cord injury, this study aimed to investigate the distribution of Pir B(via immunofluorescence) in the central nervous system and peripheral nervous system 10 days after injury. Immunoreactivity for Pir B increased in the dorsal root ganglia, sciatic nerves, and spinal cord segments. In the dorsal root ganglia and sciatic nerves, Pir B was mainly distributed along neuronal and axonal membranes. Pir B was found to exhibit a diffuse, intricate distribution in the dorsal and ventral regions. Immunoreactivity for Pir B was enhanced in some cortical neurons located in the bilateral precentral gyri. Overall, the findings suggest a pattern of Pir B immunoreactivity in the nervous system after unilateral spinal transection injury, and also indicate that Pir B may suppress repair after injury.
文摘The expression of the types of tachykinin receptors in the dorsal root ganglion (DRG) neurons by means of Xenopus oocyte expressing system was studied. Poly(A) +RNAs were extracted from cat cervical and lumbar DRG. Two days after injection of Poly(A) +RNAs, the oocytes were recorded with the two electrode voltage clamp technique. In the oocytes injected with DRG poly(A) +RNA,[Sar 9,Met(O 2) 11 ] substance P(Sar SP, 1 μmol/L), neurokinin A (NKA,1 μmol/L) or [β Ala 8] neurokinin A (4-10) (Ala NKA, 1 μmol/L) produced an inward current comprising a rapid spike and a long sustained oscillatory component for several minutes. Sar SP induced response was blocked by NK 1 antagonist L 668, 169 (1 μmol/L), but not by NK 2 antagonist L 659,877(1μmol/L). In contrast, Ala NKA and NKA responses were only blocked by L 659,877. The oocytes injected with DH Poly(A) +RNA also responded to Sar SP and NKA with similar inward currents, which were selectively blocked by L 668,169 and L 659,877, respectively. These tachykinins induced responses had a potent desensitization. The present data indicate expression of NK 1 and NK 2 receptors in DRG neurons, suggesting that there may be tachykinin autoreceptors on the nociceptive primary afferent terminals.
文摘目的:探讨大鼠背根神经节(dorsal root ganglion,DRG)持续受压(chronic compression of right side dorsal root ganglion,CCD)后脊髓背角瞬时感受器电位离子通道4(TRPV4)基因及蛋白变化,明确脊髓背角TRPV4在CCD致神经病理性疼痛中的作用。方法:采用健康成年雄性Wistar大鼠,共36只,随机分为3组,分别为空白对照组、CCD手术组、CCD+钌红组。制备大鼠背根神经节持续受压模型,于术前1天、术后第7天、给药前及给药2h后,测量大鼠机械刺激缩爪反应阈值,观察机械痛阈的变化;利用RT-PCR及Western Blot技术检测各组大鼠手术侧脊髓背角TRPV4基因及蛋白表达的变化。结果:与空白对照组相比,术后第7天,CCD组大鼠术侧机械痛阈值明显下降(P<0.001),同侧脊髓背角TRPV4基因及蛋白表达升高(P<0.05);与给药前相比,给予钌红2h后,术侧机械痛阈值明显升高(P<0.001),同侧脊髓背角TRPV4基因及蛋白表达下降(P<0.05)。结论:CCD后大鼠术侧机械痛阈下降,脊髓背角TRPV4基因及蛋白表达升高;钌红可部分逆转CCD后痛觉过敏,部分降低脊髓背角TRPV4基因及蛋白表达。脊髓背角TRPV4参与CCD后大鼠神经病理性疼痛形成。