期刊文献+
共找到22篇文章
< 1 2 >
每页显示 20 50 100
Protective effect of sodium valproate on motor neurons in the spinal cord following sciatic nerve injury in rats
1
作者 Fei Wu Danmou Xing Zhengren Peng Wusheng Kan 《Neural Regeneration Research》 SCIE CAS CSCD 2006年第9期769-772,共4页
BACKGROUND: Sodium valproate (VPA) is used to be an effective anti-epileptic drug. VPA possesses the characteristics of penetrating rapidly through the blood-brain barrier (BBB) and increasing levels of Bcl-2 and grow... BACKGROUND: Sodium valproate (VPA) is used to be an effective anti-epileptic drug. VPA possesses the characteristics of penetrating rapidly through the blood-brain barrier (BBB) and increasing levels of Bcl-2 and growth cone-associated protein (GAP) 43 in spinal cord. OBJECTIVE: To observe the effect of VPA on Bcl-2 expression and motor neuronal apoptosis in spinal cord of rats following sciatic nerve transection. DESIGN: Randomized controlled experiment. SETTING: Department of Hand Surgery and Microsurgery, Wuhan Puai Hospital. MATERIALS: A total of 30 male healthy SD rats of clean grade and with the body mass of 180-220 g were provided by Experimental Animal Center of Medical College of Wuhan University. Sodium Valproate Tablets were purchases from Hengrui Pharmaceutical Factory, Jiangsu. METHODS: The experiment was performed in the Central Laboratory of Wuhan Puai Hospital and Medical College of Wuhan University from February to May 2006. Totally 30 rats were randomly divided into two groups: treatment group (n =15) and model group (n =15). Longitudinal incision along backside of right hind limbs of rats was made to expose sciatic nerves, which were sharply transected 1 cm distal to the inferior margin of piriform muscle after nerve liberation under operation microscope to establish sciatic nerve injury rat models. Sodium Valproate Tablets were pulverized and diluted into 50 g/L suspension with saline. On the day of operation, the rats in the treatment group received 6 mL/kg VPA suspension by gastric perfusion, once a day, whereas model group received 10 mL/kg saline by gastric perfusion, once a day. L4-6 spinal cords were obtained at days 1, 4, 7, 14 and 28 after operation, respectively. Terminal deoxyribonucleotidyl transferase (TdT)-mediated dUTP-biotin nick end labeling (TUNEL) technique and immunohistochemical method (SP method) were used to detect absorbance (A) of neurons with positive Bcl-2 expression. Apoptotic rate of cells (number of apoptotic cells/total number of cells×100%) was calculated. MAIN OUTCOME MEASURES: A value of neurons with positive Bcl-2 expression and apoptotic rate in spinal cord of rats in the two groups. RESULTS: A total of 30 SD rats were involved in the result analysis. ①expression of positive Bcl-2 neurons: A value of positive Bcl-2 neurons were 0.71±0.02, 0.86±0.04, 1.02±0.06 at days 4, 7 and 14, respectively after operation in the treatment group, which were obviously higher than those in the model group (0.62±0.03, 0.71±0.05, 0.89±0.04, t = 3.10-4.50, P < 0.05). ②apoptotic result of motor neurons: Apoptotic rate of motor neurons in spinal cord was (6.91±0.89)% and (15.12±2.34)% at days 7 and 14 in the treatment group, which was significantly lower than those in the model group [(9.45±1.61)%, (19.35±0.92)%, t = 2.39, 3.03. P < 0.05]. CONCLUSION: VPA can increase expression of Bcl-2 in spinal cord and reduce neuronal apoptosis in rats following sciatic nerve injury, and has protective effect on motor neuron in spinal cord of rats. 展开更多
关键词 VPA Protective effect of sodium valproate on motor neurons in the spinal cord following sciatic nerve injury in rats
下载PDF
The Rho-associated kinase inhibitors Y27632 and fasudil promote microglial migration in the spinal cord via the ERK signaling pathway 被引量:6
2
作者 Pei-Cai Fu Rong-Hua Tang +3 位作者 Zhi-Yuan Yu Min-Jie Xie Wei Wang Xiang Luo 《Neural Regeneration Research》 SCIE CAS CSCD 2018年第4期677-683,共7页
Rho-associated kinase(ROCK) is a key regulatory protein involved in inflammatory secretion in microglia in the central nervous system.Our previous studies showed that ROCK inhibition enhances phagocytic activity in ... Rho-associated kinase(ROCK) is a key regulatory protein involved in inflammatory secretion in microglia in the central nervous system.Our previous studies showed that ROCK inhibition enhances phagocytic activity in microglia through the extracellular signal-regulated kinase(ERK) signaling pathway,but its effect on microglial migration was unknown.Therefore,in this study,we investigated the effects of the ROCK inhibitors Y27632 and fasudil on the migratory activity of primary cultured microglia isolated from the spinal cord,and we examined the underlying mechanisms.The microglia were treated with Y27632,fasudil and/or the ERK inhibitor U0126.Cellular morphology was observed by immunofluorescence.Transwell chambers were used to assess cell migration.ERK levels were measured by incell western blot assay.Y27632 and fasudil increased microglial migration,and the microglia were irregularly shaped and had many small processes.These inhibitors also upregulated the levels of phosphorylated ERK protein.The ERK inhibitor U0126 suppressed these effects of Y27632 and fasudil.These findings suggest that the ROCK inhibitors Y27632 and fasudil promote microglial migration in the spinal cord through the ERK signaling pathway. 展开更多
关键词 nerve regeneration spinal cord injury microglia ROCK Y27632 FASUDIL MIGRATION morphology ERK U0126 in-cell western blot assay Transwell chambers neural regeneration
下载PDF
Panax notoginseng saponins improve recovery after spinal cord transection by upregulating neurotrophic factors 被引量:12
3
作者 Bo Wang Yu Li +1 位作者 Xuan-peng Li Yang Li 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第8期1317-1320,共4页
Saponins extracted from Panax notoginseng are neuroprotective, but the mechanisms underlying this effect remain unclear. In the present study, we established a rat model of thoracic(T10) spinal cord transection, and... Saponins extracted from Panax notoginseng are neuroprotective, but the mechanisms underlying this effect remain unclear. In the present study, we established a rat model of thoracic(T10) spinal cord transection, and injected Panax notoginseng saponins(100 mg/kg) or saline 30 minutes after injury. Locomotor functions were assessed using the Basso, Beattie, and Bresnahan(BBB) scale from 1 to 30 days after injury, and immunohistochemistry was carried out in the ventral horn of the spinal cord at 1 and 7 days to determine expression of nerve growth factor(NGF) and brain-derived neurotrophic factor(BDNF). Our results show that at 7–30 days post injury, the BBB score was higher in rats treated with Panax notoginseng saponins than in those that received saline. Furthermore, at 7 days, more NGF- and BDNF-immunoreactive neurons were observed in the ventral horn of the spinal cord of rats that had received Panax notoginseng saponins than in those that received saline. These results indicate that Panax notoginseng saponins caused an upregulation of NGF and BDNF in rats with spinal cord transection, and improved hindlimb motor function. 展开更多
关键词 nerve regeneration Panax notoginseng saponins spinal cord injury nerve growth factor brain-derived neurotrophic factor traditional Chinese medicine neural regeneration
下载PDF
Effects of decompression joint Governor Vessel electro-acupuncture on rats with acute upper cervical spinal cord injury 被引量:8
4
作者 Yan-Lei Wang Ying-Na Qi +5 位作者 Wei Wang Chun-Ke Dong Ping Yi Feng Yang Xiang-Sheng Tang Ming-Sheng Tan 《Neural Regeneration Research》 SCIE CAS CSCD 2018年第7期1241-1246,共6页
Decompression is the major therapeutic strategy for acute spinal cord injury,but there is some debate about the time window for decompression following spinal cord injury.An important goal and challenge in the treatme... Decompression is the major therapeutic strategy for acute spinal cord injury,but there is some debate about the time window for decompression following spinal cord injury.An important goal and challenge in the treatment of spinal cord injury is inhibiting or reversing secondary injury.Governor Vessel electroacupuncture can improve symptoms of spinal cord injury by inhibiting cell apoptosis and improving the microenvironment of the injured spinal cord.In this study,Governor Vessel electroacupuncture combined with decompression at different time points was used to treat acute spinal cord injury.The rat models were established by inserting a balloon catheter into the atlanto-occipital space.The upper cervical spinal cord was compressed for 12 or 48 hours prior to decompression.Electroacupuncture was conducted at the acupoints Dazhui(GV14) and Baihui(GV 20)(2 Hz,15 minutes) once a day for 14 consecutive days.Compared with decompression alone,hind limb motor function recovery was superior after decompression for 12 and 48 hours combined with electroacupuncture.However,the recovery of motor function was not significantly different at 14 days after treatment in rats receiving decompression for 12 hours.Platelet-activating factor levels and caspase-9 protein expression were significantly reduced in rats receiving electroacupuncture compared with decompression alone.These findings indicate that compared with decompression alone,Governor Vessel electroacupuncture combined with delayed decompression(48 hours) is more effective in the treatment of upper cervical spinal cord injury.Governor Vessel electroacupuncture combined with early decompression(12 hours) can accelerate the recovery of nerve movement in rats with upper cervical spinal cord injury.Nevertheless,further studies are necessary to confirm whether it is possible to obtain additional benefit compared with early decompression alone. 展开更多
关键词 nerve regeneration acute spinal cord injury decompression Governor Vessel electroacupuncture platelet-activating factor apoptosis methylprednisolone caspase family upper cervical spine animal model Basso Beattie and Bresnahan locomotor scale neural regeneration
下载PDF
Outcomes of bowel program in spinal cord injury patients with neurogenic bowel dysfunction 被引量:10
5
作者 Zuhal Ozisler Kurtulus Koklu +1 位作者 Sumru Ozel Sibel Unsal-Delialioglu 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第7期1153-1158,共6页
In this study, we aimed to determine gastrointestinal problems associated with neurogenic bowel dysfunction in spinal cord injury patients and to assess the efficacy of bowel program on gastrointestinal problems and t... In this study, we aimed to determine gastrointestinal problems associated with neurogenic bowel dysfunction in spinal cord injury patients and to assess the efficacy of bowel program on gastrointestinal problems and the severity of neurogenic bowel dysfunction. Fifty-five spinal cord injury patients were included in this study. A bowel program according to the characteristics of neurogenic bowel dysfunction was performed for each patient. Before and after bowel program, gastrointestinal problems(constipation, difficult intestinal evacuation, incontinence, abdominal pain, abdominal distension, loss of appetite, hemorrhoids, rectal bleeding and gastrointestinal induced autonomic dysreflexia) and bowel evacuation methods(digital stimulation, oral medication, suppositories, abdominal massage, Valsalva maneuver and manual evacuation) were determined. Neurogenic bowel dysfunction score was used to assess the severity of neurogenic bowel dysfunction. At least one gastrointestinal problem was identified in 44(80%) of the 55 patients before bowel program. Constipation(56%, 31/55) and incontinence(42%, 23/55) were the most common gastrointestinal problems. Digital rectal stimulation was the most common method for bowel evacuation, both before(76%, 42/55) and after(73%, 40/55) bowel program. Oral medication, enema and manual evacuation application rates were significantly decreased and constipation, difficult intestinal evacuation, abdominal distention, and abdominal pain rates were significantly reduced after bowel program. In addition, mean neurogenic bowel dysfunction score was decreased after bowel program. An effective bowel program decreases the severity of neurogenic bowel dysfunction and reduces associated gastrointestinal problems in patients with spinal cord injury. 展开更多
关键词 nerve regeneration spinal cord injury neurogenic bowel bowel program gastrointestinal problems bowel evacuation neural regeneration
下载PDF
Neuroprotective effects of electroacupuncture on early- and late-stage spinal cord injury 被引量:11
6
作者 Min-fei Wu Shu-quan Zhang +3 位作者 Jia-bei Liu Ye Li Qing-san Zhu Rui Gu 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第10期1628-1634,共7页
Previous studies have shown that the neurite growth inhibitor Nogo-A can cause secondary neural damage by activating Rho A. In the present study, we hypothesized that electroacupuncture promotes neurological functiona... Previous studies have shown that the neurite growth inhibitor Nogo-A can cause secondary neural damage by activating Rho A. In the present study, we hypothesized that electroacupuncture promotes neurological functional recovery after spinal cord injury by inhibiting Rho A expression. We established a rat model of acute spinal cord injury using a modification of Allen's method. The rats were given electroacupuncture treatment at Dazhui(Du14), Mingmen(Du4), Sanyinjiao(SP6), Huantiao(GB30), Zusanli(ST36) and Kunlun(BL60) acupoints with a sparsedense wave at a frequency of 4 Hz for 30 minutes, once a day, for a total of 7 days. Seven days after injury, the Basso, Beattie and Bresnahan(BBB) locomotor scale and inclined plane test scores were significantly increased, the number of apoptotic cells in the spinal cord tissue was significantly reduced, and Rho A and Nogo-A m RNA and protein expression levels were decreased in rats given electroacupuncture compared with rats not given electroacupuncture. Four weeks after injury, pathological tissue damage in the spinal cord at the site of injury was alleviated, the numbers of glial fibrillary acidic protein- and neurofilament 200-positive fibers were increased, the latencies of somatosensory-evoked and motor-evoked potentials were shortened, and their amplitudes were increased in rats given electroacupuncture. These findings suggest that electroacupuncture treatment reduces neuronal apoptosis and decreases Rho A and Nogo-A m RNA and protein expression at the site of spinal cord injury, thereby promoting tissue repair and neurological functional recovery. 展开更多
关键词 nerve regeneration spinal cord injury electroacupuncture locomotion Rho A Nogo-A glial fibrillary acidic protein neurofilament 200 neural regeneration
下载PDF
Salvianolic acid B protects the myelin sheath around injured spinal cord axons 被引量:7
7
作者 Zhe Zhu Lu Ding +2 位作者 Wen-feng Qiu Hong-fu Wu Rui Li 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第3期487-492,共6页
Salvianolic acid B,an active pharmaceutical compound present in Salvia miltiorrhiza,exerts a neuroprotective effect in animal models of brain and spinal cord injury.Salvianolic acid B can promote recovery of neurologi... Salvianolic acid B,an active pharmaceutical compound present in Salvia miltiorrhiza,exerts a neuroprotective effect in animal models of brain and spinal cord injury.Salvianolic acid B can promote recovery of neurological function;however,its protective effect on the myelin sheath after spinal cord injury remains poorly understood.Thus,in this study,in vitro tests showed that salvianolic acid B contributed to oligodendrocyte precursor cell differentiation,and the most effective dose was 20 μg/m L.For in vivo investigation,rats with spinal cord injury were intraperitoneally injected with 20 mg/kg salvianolic acid B for 8 weeks.The amount of myelin sheath and the number of regenerating axons increased,neurological function recovered,and caspase-3 expression was decreased in the spinal cord of salvianolic acid B-treated animals compared with untreated control rats.These results indicate that salvianolic acid B can protect axons and the myelin sheath,and can promote the recovery of neurological function.Its mechanism of action is likely to be associated with inhibiting apoptosis and promoting the differentiation and maturation of oligodendrocyte precursor cells. 展开更多
关键词 nerve regeneration spinal cord injury salvianolic acid B oligodendrocytes myelin sheath neural regeneration
下载PDF
Time representation of mitochondrial morphology and function after acute spinal cord injury 被引量:10
8
作者 Zhi-qiang Jia Gang Li +4 位作者 Zhen-yu Zhang Hao-tian Li Ji-quan Wang Zhong-kai Fan Gang Lv 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第1期137-143,共7页
Changes in mitochondrial morphology and function play an important role in secondary damage after acute spinal cord injury. We recorded the time representation of mitochondrial morphology and function in rats with acu... Changes in mitochondrial morphology and function play an important role in secondary damage after acute spinal cord injury. We recorded the time representation of mitochondrial morphology and function in rats with acute spinal cord injury. Results showed that mitochondria had an irregular shape, and increased in size. Mitochondrial cristae were disordered and mitochondrial membrane rupture was visible at 2–24 hours after injury. Fusion protein mitofusin 1 expression gradually increased, peaked at 8 hours after injury, and then decreased to its lowest level at 24 hours. Expression of dynamin-related protein 1, amitochondrial fission protein, showed the opposite kinetics. At 2–24 hours after acute spinal cord injury, malondialdehyde content, cytochrome c levels and caspase-3 expression were increased, but glutathione content, adenosine triphosphate content, Na+-K+-ATPase activity and mitochondrial membrane potential were gradually reduced. Furthermore, mitochondrial morphology altered during the acute stage of spinal cord injury. Fusion was important within the first 8 hours, but fission played a key role at 24 hours. Oxidative stress was inhibited, biological productivity was diminished, and mitochondrial membrane potential and permeability were reduced in the acute stage of injury. In summary, mitochondrial apoptosis is activated when the time of spinal cord injury is prolonged. 展开更多
关键词 nerve regeneration spinal cord injury mitochondria fusion fission oxidative damage bioenergy mitochondrial permeability cytochrome c Caspase-3 apoptosis NSFC neural regeneration
下载PDF
Electroacupuncture at Dazhui(GV14) and Mingmen(GV4) protects against spinal cord injury:the role of the Wnt/β-catenin signaling pathway 被引量:13
9
作者 Xin Wang Su-hua Shi +7 位作者 Hai-jiang Yao Quan-kai Jing Yu-ping Mo Wei Lv Liang-yu Song Xiao-chen Yuan Zhi-gang Li Li-na Qin 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第12期2004-2011,共8页
Electroacupuncture at Dazhui(GV14) and Mingmen(GV4) on the Governor Vessel has been shown to exhibit curative effects on spinal cord injury; however, the underlying mechanism remains poorly understood. In this stu... Electroacupuncture at Dazhui(GV14) and Mingmen(GV4) on the Governor Vessel has been shown to exhibit curative effects on spinal cord injury; however, the underlying mechanism remains poorly understood. In this study, we established rat models of spinal cord injury using a modified Allen's weight-drop method. Ninety-nine male Sprague-Dawley rats were randomly divided into three equal groups: sham(only laminectomy), SCI(induction of spinal cord injury at T10), and EA(induction of spinal cord injury at T10 and electroacupuncture intervention at GV14 and GV4 for 20 minutes once a day). Rats in the SCI and EA groups were further randomly divided into the following subgroups: 1-day(n = 11), 7-day(n = 11), and 14-day(n = 11). At 1, 7, and 14 days after electroacupuncture treatment, the Basso, Beattie and Bresnahan locomotor rating scale showed obvious improvement in rat hind limb locomotor function, hematoxylin-eosin staining showed that the histological change of injured spinal cord tissue was obviously alleviated, and immunohistochemistry and western blot analysis showed that Wnt1, Wnt3 a, β-catenin immunoreactivity and protein expression in the injured spinal cord tissue were greatly increased compared with the sham and SCI groups. These findings suggest that electroacupuncture at GV14 and GV4 upregulates Wnt1, Wnt3 a, and β-catenin expression in the Wnt/β-catenin signaling pathway, exhibiting neuroprotective effects against spinal cord injury. 展开更多
关键词 nerve regeneration spinal cord injury electroacupuncture Governor Vessel Dazhui(GV14) acupoint Mingmen(GV4) acupoint Wnt/β-cateninsignaling pathway neuroprotection neural regeneration
下载PDF
Tanshinone ⅡA improves functional recovery in spinal cord injury-induced lower urinary tract dysfunction 被引量:9
10
作者 Yong-dong Yang Xing Yu +2 位作者 Xiu-mei Wang Xiao-hong Mu Feng He 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第2期267-275,共9页
Tanshinone ⅡA, extracted from Salvia miltiorrhiza Bunge, exerts neuroprotective effects through its anti-inflammatory, anti-oxidative and anti-apoptotic properties. This study intravenously injected tanshinone ⅡA 20... Tanshinone ⅡA, extracted from Salvia miltiorrhiza Bunge, exerts neuroprotective effects through its anti-inflammatory, anti-oxidative and anti-apoptotic properties. This study intravenously injected tanshinone ⅡA 20 mg/kg into rat models of spinal cord injury for 7 consecutive days. Results showed that tanshinone ⅡA could reduce the inflammation, edema as well as compensatory thickening of the bladder tissue, improve urodynamic parameters, attenuate secondary injury, and promote spinal cord regeneration. The number of hypertrophic and apoptotic dorsal root ganglion(L6–S1) cells was less after treatment with tanshinone ⅡA. The effects of tanshinone ⅡA were similar to intravenous injection of 30 mg/kg methylprednisolone. These findings suggested that tanshinone ⅡA improved functional recovery after spinal cord injury-induced lower urinary tract dysfunction by remodeling the spinal pathway involved in lower urinary tract control. 展开更多
关键词 nerve regeneration spinal cord injury tanshinone IIA spinal pathway lower urinary tract dysfunction neurogenic bladder dorsal root ganglion detrusor-sphincter dyssynergia urodynamics neural regeneration
下载PDF
Effect of glial cells on remyelination after spinal cord injury 被引量:8
11
作者 Hai-feng Wang Xing-kai Liu +10 位作者 Rui Li Ping Zhang Ze Chu Chun-li Wang Hua-rui Liu Jun Qi Guo-yue Lv Guang-yi Wang Bin Liu Yan Li Yuan-yi Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第10期1724-1732,共9页
Remyelination plays a key role in functional recovery of axons after spinal cord injury.Glial cells are the most abundant cells in the central nervous system.When spinal cord injury occurs,many glial cells at the lesi... Remyelination plays a key role in functional recovery of axons after spinal cord injury.Glial cells are the most abundant cells in the central nervous system.When spinal cord injury occurs,many glial cells at the lesion site are immediately activated,and different cells differentially affect inflammatory reactions after injury.In this review,we aim to discuss the core role of oligodendrocyte precursor cells and crosstalk with the rest of glia and their subcategories in the remyelination process.Activated astrocytes influence proliferation,differentiation,and maturation of oligodendrocyte precursor cells,while activated microglia alter remyelination by regulating the inflammatory reaction after spinal cord injury.Understanding the interaction between oligodendrocyte precursor cells and the rest of glia is necessary when designing a therapeutic plan of remyelination after spinal cord injury. 展开更多
关键词 nerve regeneration spinal cord injury remyelination oligodendrocyte precursor cells astrocytes oligodendrocytes microglia glial scar demyelination myelin central nervous system neural regeneration
下载PDF
Fine motor skill training enhances functional plasticity of the corticospinal tract after spinal cord injury 被引量:5
12
作者 Jian Liu Xiao-yu Yang +3 位作者 Wei-wei Xia Jian Dong Mao-guang Yang Jian-hang Jiao 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第12期1990-1996,共7页
Following central nervous system injury, axonal sprouts form distal to the injury site and extend into the denervated area, reconstructing neural circuits through neural plasticity. How to facilitate this plasticity h... Following central nervous system injury, axonal sprouts form distal to the injury site and extend into the denervated area, reconstructing neural circuits through neural plasticity. How to facilitate this plasticity has become the key to the success of central nervous system repair. It remains controversial whether fine motor skill training contributes to the recovery of neurological function after spinal cord injury. Therefore, we established a rat model of unilateral corticospinal tract injury using a pyramidal tract cutting method. Horizontal ladder crawling and food ball grasping training procedures were conducted 2 weeks before injury and 3 days after injury. The neurological function of rat forelimbs was assessed at 1, 2, 3, 4, and 6 weeks after injury. Axon growth was observed with biotinylated dextran amine anterograde tracing in the healthy corticospinal tract of the denervated area at different time periods. Our results demonstrate that compared with untrained rats, functional recovery was better in the forelimbs and forepaws of trained rats. The number of axons and the expression of growth associated protein 43 were increased at the injury site 3 weeks after corticospinal tract injury. These findings confirm that fine motor skill training promotes central nervous system plasticity in spinal cord injury rats. 展开更多
关键词 nerve regeneration spinal cord injury plasticity axons functional training corticospinal tract growth associated protein 43 neural regeneration
下载PDF
Characteristics of mRNA dynamic expression related to spinal cord ischemia/reperfusion injury:a transcriptomics study 被引量:6
13
作者 Zhi-ping Qi Peng Xia +3 位作者 Ting-ting Hou Ding-yang Li Chang-jun Zheng Xiao-yu Yang 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第3期480-486,共7页
Following spinal cord ischemia/reperfusion injury,an endogenous damage system is immediately activated and participates in a cascade reaction.It is difficult to interpret dynamic changes in these pathways,but the exam... Following spinal cord ischemia/reperfusion injury,an endogenous damage system is immediately activated and participates in a cascade reaction.It is difficult to interpret dynamic changes in these pathways,but the examination of the transcriptome may provide some information.The transcriptome reflects highly dynamic genomic and genetic information and can be seen as a precursor for the proteome.We used DNA microarrays to measure the expression levels of dynamic evolution-related m RNA after spinal cord ischemia/reperfusion injury in rats.The abdominal aorta was blocked with a vascular clamp for 90 minutes and underwent reperfusion for 24 and 48 hours.The simple ischemia group and sham group served as controls.After rats had regained consciousness,hindlimbs showed varying degrees of functional impairment,and gradually improved with prolonged reperfusion in spinal cord ischemia/reperfusion injury groups.Hematoxylin-eosin staining demonstrated that neuronal injury and tissue edema were most severe in the 24-hour reperfusion group,and mitigated in the 48-hour reperfusion group.There were 8,242 differentially expressed m RNAs obtained by Multi-Class Dif in the simple ischemia group,24-hour and 48-hour reperfusion groups.Sixteen m RNA dynamic expression patterns were obtained by Serial Test Cluster.Of them,five patterns were significant.In the No.28 pattern,all differential genes were detected in the 24-hour reperfusion group,and their expressions showed a trend in up-regulation.No.11 pattern showed a decreasing trend in m RNA whereas No.40 pattern showed an increasing trend in m RNA from ischemia to 48 hours of reperfusion,and peaked at 48 hours.In the No.25 and No.27 patterns,differential expression appeared only in the 24-hour and 48-hour reperfusion groups.Among the five m RNA dynamic expression patterns,No.11 and No.40 patterns could distinguish normal spinal cord from pathological tissue.No.25 and No.27 patterns could distinguish simple ischemia from ischemia/reperfusion.No.28 pattern could analyze the need for inducing reperfusion injury.The study of specific pathways and functions for different dynamic patterns can provide a theoretical basis for clinical differential diagnosis and treatment of spinal cord ischemia/reperfusion injury. 展开更多
关键词 nerve regeneration spinal cord injury ischemia/reperfusion injury messenger RNA transcription oligonucleotide sequence microarray transcriptome c DNA sequence NADPH oxidase neural regeneration
下载PDF
Loss of micro RNA-124 expression in neurons in the peri-lesion area in mice with spinal cord injury 被引量:7
14
作者 Yu Zhao Hui Zhang +6 位作者 Dan Zhang Cai-yong Yu Xiang-hui Zhao Fang-fang Liu Gan-lan Bian Gong Ju Jian Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第7期1147-1152,共6页
Micro RNA-124(mi R-124) is abundantly expressed in neurons in the mammalian central nervous system, and plays critical roles in the regulation of gene expression during embryonic neurogenesis and postnatal neural di... Micro RNA-124(mi R-124) is abundantly expressed in neurons in the mammalian central nervous system, and plays critical roles in the regulation of gene expression during embryonic neurogenesis and postnatal neural differentiation. However, the expression profile of mi R-124 after spinal cord injury and the underlying regulatory mechanisms are not well understood. In the present study, we examined the expression of mi R-124 in mouse brain and spinal cord after spinal cord injury using in situ hybridization. Furthermore, the expression of mi R-124 was examined with quantitative RT-PCR at 1, 3 and 7 days after spinal cord injury. The mi R-124 expression in neurons at the site of injury was evaluated by in situ hybridization combined with Neu N immunohistochemical staining. The mi R-124 was mainly expressed in neurons throughout the brain and spinal cord. The expression of mi R-124 in neurons significantly decreased within 7 days after spinal cord injury. Some of the neurons in the peri-lesion area were Neu N+/mi R-124-. Moreover, the neurons distal to the peri-lesion site were Neu N+/mi R-124+. These findings indicate that mi R-124 expression in neurons is reduced after spinal cord injury, and may reflect the severity of spinal cord injury. 展开更多
关键词 nerve regeneration spinal cord injury micro RNA spinal cord in situ hybridization immunohistochemistry digoxin Neu N protein brain neural plasticity repair apoptosis NSFC grants neural regeneration
下载PDF
Buyang Huanwu decoction up-regulates Notch1 gene expression in injured spinal cord 被引量:8
15
作者 Zhan-peng Guo Mi-na Huang +3 位作者 An-qi Liu Ya-jiang Yuan Jian-bo Zhao Xi-fan Mei 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第8期1321-1323,共3页
Expression of genes in the Notch signaling pathway is altered in the injured spinal cord, which indicates that Notch participates in repair after spinal cord injury. Buyang Huanwu decoction, a traditional Chinese herb... Expression of genes in the Notch signaling pathway is altered in the injured spinal cord, which indicates that Notch participates in repair after spinal cord injury. Buyang Huanwu decoction, a traditional Chinese herbal preparation, can promote the growth of nerve cells and nerve fibers; however, it is unclear whether Buyang Huanwu decoction affects the Notch signaling pathway in injured spinal cord. In this study, a rat model was established by injuring the T10 spinal cord. At 2 days after injury, rats were intragastrically administered 2 m L of 0.8 g/m L Buyang Huanwu decoction daily until sacrifice. Real-time reverse transcription polymerase chain reaction analysis demonstrated that at 7, 14 and 28 days after injury, the expression of Notch1 was increased in the Buyang Huanwu decoction group compared with controls. These findings confirm that Buyang Huanwu decoction can promote the expression of Notch1 in rats with incomplete spinal cord injury, and may indicate a mechanism to promote the repair of spinal cord injury. 展开更多
关键词 nerve regeneration Buyang Huanwu decoction spinal cord injury Notch1 signaling pathway Chinese medicine neural regeneration
下载PDF
Propofol protects against blood-spinal cord barrier disruption induced by ischemia/reperfusion injury 被引量:14
16
作者 Li-jie Xie Jin-xiu Huang +4 位作者 Jian Yang Fen Yuan Shuang-shuang Zhang Qi-jing Yu Ji Hu 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第1期125-132,共8页
Propofol has been shown to exert neuroprotective effects on the injured spinal cord.However,the effect of propofol on the blood-spinal cord barrier(BSCB) after ischemia/reperfusion injury(IRI) is poorly understood... Propofol has been shown to exert neuroprotective effects on the injured spinal cord.However,the effect of propofol on the blood-spinal cord barrier(BSCB) after ischemia/reperfusion injury(IRI) is poorly understood.Therefore,we investigated whether propofol could maintain the integrity of the BSCB.Spinal cord IRI(SCIRI) was induced in rabbits by infrarenal aortic occlusion for 30 minutes.Propofol,30 mg/kg,was intravenously infused 10 minutes before aortic clamping as well as at the onset of reperfusion.Then,48 hours later,we performed histological and m RNA/protein analyses of the spinal cord.Propofol decreased histological damage to the spinal cord,attenuated the reduction in BSCB permeability,downregulated the m RNA and protein expression levels of matrix metalloprotease-9(MMP-9) and nuclear factor-κB(NF-κB),and upregulated the protein expression levels of occludin and claudin-5.Our findings suggest that propofol helps maintain BSCB integrity after SCIRI by reducing MMP-9 expression,by inhibiting the NF-κB signaling pathway,and by maintaining expression of tight junction proteins. 展开更多
关键词 nerve regeneration spinal cord ischemia reperfusion injury blood–spinal cord barrier propofol matrix metalloprotease-9 nuclear factor-κB tight junction proteins neural regeneration
下载PDF
Electrical stimulation of dog pudendal nerve regulates the excitatory pudendal-to-bladder reflex 被引量:4
17
作者 Yan-he Ju Li-min Liao 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第4期676-681,共6页
Pudendal nerve plays an important role in urine storage and voiding.Our hypothesis is that a neuroprosthetic device placed in the pudendal nerve trunk can modulate bladder function after suprasacral spinal cord injury... Pudendal nerve plays an important role in urine storage and voiding.Our hypothesis is that a neuroprosthetic device placed in the pudendal nerve trunk can modulate bladder function after suprasacral spinal cord injury.We had confirmed the inhibitory pudendal-to-bladder reflex by stimulating either the branch or the trunk of the pudendal nerve.This study explored the excitatory pudendal-to-bladder reflex in beagle dogs,with intact or injured spinal cord,by electrical stimulation of the pudendal nerve trunk.The optimal stimulation frequency was approximately 15–25 Hz.This excitatory effect was dependent to some extent on the bladder volume.We conclude that stimulation of the pudendal nerve trunk is a promising method to modulate bladder function. 展开更多
关键词 nerve regeneration pudendal nerve neurogenic bladder spinal cord injury electrical stimulation urodynamics voiding reflex neuromodulation neural regeneration
下载PDF
Nischarin-siRNA delivered by polyethyleniminealginate nanoparticles accelerates motor function recovery after spinal cord injury 被引量:2
18
作者 Yue-min Ding Yu-ying Li +6 位作者 Chu Wang Hao Huang Chen-chen Zheng Shao-han Huang Yang Xuan Xiao-yi Sun Xiong Zhang 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第10期1687-1694,共8页
A previous study by our group found that inhibition of nischarin promotes neurite outgrowth and neuronal regeneration in Neuro-2 a cells and primary cortical neurons.In recent years,more and more studies have shown th... A previous study by our group found that inhibition of nischarin promotes neurite outgrowth and neuronal regeneration in Neuro-2 a cells and primary cortical neurons.In recent years,more and more studies have shown that nanomaterials have good prospects in treatment of spinal cord injury.We proposed that small interfering RNA targeting nischarin(Nis-si RNA) delivered by polyethyleneimine-alginate(PEIALG) nanoparticles promoted motor function recovery in rats with spinal cord injury.Direct microinjection of 5 μL PEI-ALG/Nis-si RNA into the spinal cord lesion area of spinal cord injury rats was performed.From day 7 after surgery,Basso,Beattie and Bresnahan score was significantly higher in rats from the PEI-ALG/Nis-si RNA group compared with the spinal cord injury group and PEI-ALG/Control-si RNA group.On day 21 after injection,hematoxylin-eosin staining showed that the necrotic area was reduced in the PEI-ALG/Nis-si RNA group.Immunohistochemistry and western blot assay results confirmed successful inhibition of nischarin expression and increased protein expression of growth-associated protein-43 in the PEI-ALG/Nis-si RNA group.These findings suggest that a complex of PEI-ALG nanoparticles and Nis-si RNA effectively suppresses nischarin expression,induces expression of growth-associated protein-43,and accelerates motor function recovery after spinal cord injury. 展开更多
关键词 nerve regeneration spinal cord injury polyethylenimine alginate nanoparticles nischarin small interfering RNA necrotic area growth-associated protein-43 motor function neural regeneration
下载PDF
Application of a paraplegic gait orthosis in thoracolumbar spinal cord injury 被引量:2
19
作者 Lang Shuai Guo-hua Yu +4 位作者 Zhen Feng Wan-song Wang Wei-ming Sun Lu Zhou Yin Yan 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第12期1997-2003,共7页
Paraplegic gait orthosis has been shown to help paraplegic patients stand and walk, although this method cannot be individualized for patients with different spinal cord injuries and functional recovery of the lower e... Paraplegic gait orthosis has been shown to help paraplegic patients stand and walk, although this method cannot be individualized for patients with different spinal cord injuries and functional recovery of the lower extremities. There is, however, a great need to develop individualized paraplegic orthosis to improve overall quality of life for paraplegic patients. In the present study, 36 spinal cord(below T4) injury patients were equally and randomly divided into control and observation groups. The control group received systematic rehabilitation training, including maintenance of joint range of motion, residual muscle strength training, standing training, balance training, and functional electrical stimulation. The observation group received an individualized paraplegic locomotion brace and functional training according to the various spinal cord injury levels and muscle strength based on comprehensive systematic rehabilitation training. After 3 months of rehabilitation training, the observation group achieved therapeutic locomotion in 8 cases, family-based locomotion in 7 cases, and community-based locomotion in 3 cases. However, locomotion was not achieved in any of the control group patients. These findings suggest that individualized paraplegic braces significantly improve activity of daily living and locomotion in patients with thoracolumbar spinal cord injury. 展开更多
关键词 nerve regeneration spinal cord injury paraplegia brace thoracolumbar spine locomotion ability activity of daily living reciprocating gait orthosis hip-knee ankle foot orthosis knee-ankle foot orthosis ankle foot orthosis neural regeneration
下载PDF
Effect of electroacupuncture on the mRNA and protein expression of Rho-A and Rho-associated kinase Ⅱ in spinal cord injury rats 被引量:9
20
作者 You-jiang Min Li-li-qiang Ding +5 位作者 Li-hong Cheng Wei-ping Xiao Xing-wei He Hui Zhang Zhi-yun Min Jia Pei 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第2期276-282,共7页
Electroacupuncture is beneficial for the recovery of spinal cord injury, but the underlying mechanism is unclear. The Rho/Rho-associated kinase(ROCK) signaling pathway regulates the actin cytoskeleton by controlling... Electroacupuncture is beneficial for the recovery of spinal cord injury, but the underlying mechanism is unclear. The Rho/Rho-associated kinase(ROCK) signaling pathway regulates the actin cytoskeleton by controlling the adhesive and migratory behaviors of cells that could inhibit neurite regrowth after neural injury and consequently hinder the recovery from spinal cord injury. Therefore, we hypothesized electroacupuncture could affect the Rho/ROCK signaling pathway to promote the recovery of spinal cord injury. In our experiments, the spinal cord injury in adult Sprague-Dawley rats was caused by an impact device. Those rats were subjected to electroacupuncture at Yaoyangguan(GV3), Dazhui(GV14), Zusanli(ST36) and Ciliao(BL32) and/or monosialoganglioside treatment. Behavioral scores revealed that the hindlimb motor functions improved with those treatments. Real-time quantitative polymerase chain reaction, fluorescence in situ hybridization and western blot assay showed that electroacupuncture suppressed the m RNA and protein expression of Rho-A and Rho-associated kinase Ⅱ(ROCKⅡ) of injured spinal cord. Although monosialoganglioside promoted the recovery of hindlimb motor function, monosialoganglioside did not affect the expression of Rho-A and ROCKⅡ. However, electroacupuncture combined with monosialoganglioside did not further improve the motor function or suppress the expression of Rho-A and ROCKⅡ. Our data suggested that the electroacupuncture could specifically inhibit the activation of the Rho/ROCK signaling pathway thus partially contributing to the repair of injured spinal cord. Monosialoganglioside could promote the motor function but did not suppress expression of Rho A and ROCKⅡ. There was no synergistic effect of electroacupuncture combined with monosialoganglioside. 展开更多
关键词 nerve regeneration spinal cord injury electroacupuncture Rho/Rho-associated kinase signaling pathway monosialoganglioside motor function cytoskeleton real-time quantitative polymerase chain reaction western blot assay hybridization in situ neural regeneration
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部