The densification and microstructure of different spinelized magnesium aluminate spinels(MAS) were studied adding Sc_2O_3 as additive. Sintered products were then characterized in terms of densification, phase analy...The densification and microstructure of different spinelized magnesium aluminate spinels(MAS) were studied adding Sc_2O_3 as additive. Sintered products were then characterized in terms of densification, phase analysis, quantitative elemental analysis and microstructure. The results show that Sc_2O_3 is found to be beneficial for the densification of MAS. Sc_2O_3 has a more significant effect on the densification of partially spinelized MAS batch than that of fully spinelized MAS batch. At the sintering temperature of 1650 °C, the bulk density of sintered products of partially spinelized powders increases by 0.243 g/cm3 as the Sc_2O_3 content increases from 0 to 4%(mass fraction) and that of fully spinelized powder increases by 0.14 g/cm3. Compared with the sintered samples prepared from the fully spinelized powder, the sintered samples using the partially spinelized powders as raw materials have more compact microstructures.展开更多
New types of refractory materials need to be developed for designing the man-made ledge of the Hall-Heroult cell for aluminum electrolysis, which are currently constructed by frozen ledge.Magnesium aluminate spinel (...New types of refractory materials need to be developed for designing the man-made ledge of the Hall-Heroult cell for aluminum electrolysis, which are currently constructed by frozen ledge.Magnesium aluminate spinel (MAS) as potential candidate materials was prepared by two-step sintering. The densification and grain growth of the MAS wereinvestigatedbytheArchimedes drainage method and scanning electron microscope (SEM). All the specimens were corroded in aNa3AlF6-AlF3-CaF2-Al2O3bath to assess the corrosion resistance. The results show that a MAS material with a high relative density of 99.2% and ahomogeneous microstructure is achieved under two-step sintering conditions. The corrosion mechanisms of MAS inNa3AlF6-AlF3-CaF2-Al2O3 bathare mainly proposed by dissolution of MAS, formation of aluminum oxide, and diffusion of fluorides. The MAS prepared by two-step sintering exhibits good corrosion resistance to theNa3AlF6-AlF3-CaF2-Al2O3bath.展开更多
Specimens of magnesium aluminate spinel castable and calcium aluminate cement bonded bauxite based castable were prepared using special bauxite (particle size ≤8 mm ) and sintered magnesia as aggregates, SiO2 micro...Specimens of magnesium aluminate spinel castable and calcium aluminate cement bonded bauxite based castable were prepared using special bauxite (particle size ≤8 mm ) and sintered magnesia as aggregates, SiO2 micropowder, α-alumina micropowder and calcium aluminate cement as binders, drying, firing at 1 350 ℃ and 1 500 ℃ for 3 h, respectively. The bulk density, cold modulus of rupture, cold crushing strength, permanent change in dimensions on heating, thermal shock resistance and slag resistanee were determined. The results show that compared with calcium aluminate cement bonded bauxite based castable, the magnesium aluminate spinel castable has higher cold crushing strength after drying, better slag resistance but worse thermal shock resistance. Magnesium aluminate spinel based roof of EAF with high molten iron charging ratio has a longer service life.展开更多
Unburned magnesium aluminate spinel refractories were prepared using sintered magnesium aluminate spinel as the main raw material,phenolic resin as the binder,aluminum powder(2%,4%,and 6%by mass)and silicon powder(whe...Unburned magnesium aluminate spinel refractories were prepared using sintered magnesium aluminate spinel as the main raw material,phenolic resin as the binder,aluminum powder(2%,4%,and 6%by mass)and silicon powder(when Al powder addition is 4%,Si powder addition varies:1%and 2%,by mass)as additives.The effects of the Al powder and Si powder additions on the properties and microstructure of the refractories heat treated at different temperatures(1000,1400,and 1600℃for 3 h)were studied.The results show that the Al powder addition can greatly enhance the cold modulus of rupture of the samples fired at 1000 or 1400℃,and meanwhile AlN reinforcement phase forms in the matrix,which greatly improves the hot modulus of rupture of the samples at 1400℃;however,the heat treatment at 1600℃has little influence on the strength;the addition of Al powder and Si powder results in the formation of low melting point phases,greatly reducing the hot modulus of rupture.However,the low melting point phases promote sintering,which enhances the density and the cold modulus of rupture,and decreases the volume change during heating.The samples added with Al and Si all have higher cold modulus of rupture than those added with Al powder only.展开更多
1 Scope This standard specifies the terms, definitions, classifications, technical requirements, test methods, inspection rules, packing, marking, transportation, storage, and quality certificate of magnesium aluminat...1 Scope This standard specifies the terms, definitions, classifications, technical requirements, test methods, inspection rules, packing, marking, transportation, storage, and quality certificate of magnesium aluminate spinel. This standard is applicable to the magnesium alu- minate spinel prepared by sintering method or electric mehing method with raw materials of industrial alumina or bauxite, and light burnt magnesia.展开更多
Magnesium aluminate spinel -corundum composite was prepared with waste slide plate and magnesia carbon brick. Microstructure and sintering ability of as-prepared magnesium aluminate spinel -corundum composite were inv...Magnesium aluminate spinel -corundum composite was prepared with waste slide plate and magnesia carbon brick. Microstructure and sintering ability of as-prepared magnesium aluminate spinel -corundum composite were investigated with XRD, SEM, and DSC/TG. With the addition of waste slide plate increasing or synthesis tem- perature rising, the bulk density of the specimen increases and the apparent porosity decreases, but the crystallinity of the specimen decreases and the magnesium alaminate spinel phase increases. The obtained composite contains 72% spinel and 26% corundum. Primary phase and secondary phase are bonded by glass phase. The results show that it is feasible to synthesis magnesium aluminate spinel - corundum material with waste slide plate and magnesia carbon brick.展开更多
Light-weight magnesium -aluminate spinel materi- als were prepared by foaming-gel process with polyalumi- nium chloride (PAC) as gel. Effect of solid loading in initial slurry on microstructure, porosity, pore size ...Light-weight magnesium -aluminate spinel materi- als were prepared by foaming-gel process with polyalumi- nium chloride (PAC) as gel. Effect of solid loading in initial slurry on microstructure, porosity, pore size distri- bution, thermal conductivity and mechanical properties was investigated. The results show that the bulk density of the light-weight magnesium -aluminate spinel mate- rials is in the range of O. 7 1.2 g cm-3 ; pore size distribution curves show single-peak characteristics and the mean pore size is in the range of 30. 83 - 61.37 μm ; with the increase of solid loading, the linear shrinkage of the green body during firing and the permanent change in dimensions on heating at l 600 ℃ for 3 h de- crease, but the bulk density increases, the mechanical properties increase obviously; the maximum compressive strength and bending strength reach 35. 25 MPa and 9. 92 MPa, respectively, while the bulk density is 1. 16 g · cm ; and the thermal conductivity at 1 000 ℃ tea- ches 0. 371 W · m-1 . K-1 while the bulk density is O. 7 -3 g · cm展开更多
The effect of Y2O3 addition on the sintering proper- ties and microstructure of spinel was investigated using alumina-rich spinel as the raw material. The phase con- stitution and microstructure of the specimens were ...The effect of Y2O3 addition on the sintering proper- ties and microstructure of spinel was investigated using alumina-rich spinel as the raw material. The phase con- stitution and microstructure of the specimens were charac- terized by XRD and SEM, and the pore structure of the specimens was measured by a mercury porosimeter. The results indicate that a viscous melt forms wrapping around spinel crystals by adding a little Y2O3 powders (1 mass% ), yttrium alumina garnet will crystallize around spinel crystals by adding more Y2O3 powders ( 3 mass% ) ; the sintering properties of the spinel are sig- nificantly improved by adding Y2O3 powders less than 3 mass%, while they will be relatively weakened by adding Y2O3 powders more than 3 mass%.展开更多
Chrame containing refractories are a kind of traditional material for the lining of alkali recovery furnaces, but the formation of hexavalent chrome compounds will give rise to detrimental effect on environment and hu...Chrame containing refractories are a kind of traditional material for the lining of alkali recovery furnaces, but the formation of hexavalent chrome compounds will give rise to detrimental effect on environment and human's health. With the gradual awakening of people's comciousness about environment protection, it is urgent to prepare environmental-friendly materials for alkali recovery jurnaces with high quality and long life. In this paper, alumina-rich MgAl2O4 spinel ( AR90 ) was used to replace chromite. The physical properties of dried (110 ℃ for 24 h) or fired (1 300 ℃ for 3 h) AR90 and chromite were studied, respectively. The alkali vapor method was used to determine the alkali resistance of the two materials. The results show that: (1) after drying at 110 ℃ for 24 h, AR90 specimens show higher apparent porosity and slightly lower bulk density than chromite specimens; after firing at 1 300 ℃ for 3 h, AR90 has significantly higher apparent porosity as well as higher bulk density; (2) after the alkali attack, the AR90 specimens sintered at 1 300 ℃ exhibit smaller strength change and much higher compressive strength than the chromite specimens; meanwhile, the permeability degree of alkali salt in chromite specimens is more serious than that in AR90 specimens, which indicates that AR90 possesses better alkali resistance.展开更多
With satisfactory high temperature properties,thermal shock resistance and mechanical properties,refractories in the MgO-Al_(2)O_(3) system have become promising alternative to MgO-Cr_(2)O_(3) counterpart used as RH s...With satisfactory high temperature properties,thermal shock resistance and mechanical properties,refractories in the MgO-Al_(2)O_(3) system have become promising alternative to MgO-Cr_(2)O_(3) counterpart used as RH snorkel lining.High purity dead burned magnesia,fused magnesia and sintered spinel were used as raw materials and sulfite pulp waste as the binder,specimens of the refractories in the Mg0-Al_(2)O_(3) system were prepared for the purpose of investigating the influences in terms of the addition of three kinds of spinels,with Al_(2)O_(3) 50%,66% and 78%,by mass,respectively,and the size of MA50 spinel on properties of the specimens.Relatively superior comprehensive properties can be achieved when 16%of MA50 spinel with sizes under 1mm is adopted.展开更多
Fused magnesium aluminate spinel carbon materials were prepared using fused magnesium aluminate spinel and flake graphite as the main raw materials and phenolic resin as the binder.The effects of the Al-Si alloy addit...Fused magnesium aluminate spinel carbon materials were prepared using fused magnesium aluminate spinel and flake graphite as the main raw materials and phenolic resin as the binder.The effects of the Al-Si alloy addition(0,2%,4%,6%,8%and 10%,by mass)on the properties of fused magnesium aluminate spinel carbon materials were studied.The results show that fiber materials are generated in the samples with Al-Si alloy addition,which can significantly improve the cold and hot modulus of rupture,the cold elastic modulus,and the thermal shock resistance of the samples.When the addition of Al-Si alloy is 6%-8%,the comprehensive performance of the sample is the optimum.展开更多
Volume 50,Number 3,2016 Preparation and properties of infrared ceramics with high infrared emissivity/Yang Jinping,Wang Chunmei,Wei Hengyong,Chen Yang//Naihuo Cailiao.-2016,50(4):241Abstract:This work aims at prep...Volume 50,Number 3,2016 Preparation and properties of infrared ceramics with high infrared emissivity/Yang Jinping,Wang Chunmei,Wei Hengyong,Chen Yang//Naihuo Cailiao.-2016,50(4):241Abstract:This work aims at preparing ceramics with high infrared emissivity.Analytically pure Fe_2O_3,Co_2O_3,CuO,MnCO_3,Bi_2O_3,MgCO_3,talcum(≤0.1mm industrially pure),kaolin clays,high temperature solid state synthesized spinel type ferrite.展开更多
Molten salt synthesis of MgAl204 powder from industrial alumina and light calcined MgO in KCl, LiCl, and KCl- LiCl media, and the influence of KF at 500 -1 000℃ were investigated. Synthesized powders were characteri...Molten salt synthesis of MgAl204 powder from industrial alumina and light calcined MgO in KCl, LiCl, and KCl- LiCl media, and the influence of KF at 500 -1 000℃ were investigated. Synthesized powders were characterized by means of XRD, laser particle analyzer, and SEM, and the synthesis mechanism of MgAl2O4 was discussed as well. The results show that (1) the molten salt composite ( KCl - LiCl) is more .[hvorable for the synthesis of MgAl2O4 than single molten salt (LiCl or KCl), and LiCl is more favorable than KCl; (2) KF can accelerate the formation of MgAl2O 4 and decrease its forming temperature ; ( 3 ) synthesis of MgAl204 powder in the molten salts without KF is controlled by "template -growth" mechanism, but in the molten salts with KF , it is controlled by "template - growth" and "dissolution -precipitation" mechanism.展开更多
This scientific paper gives consideration to the information on the structure of the triple component system,in particular MgO-Al_(2)O_(3)-TiO_(2) that serves as a basis for the production of thermal resistance materi...This scientific paper gives consideration to the information on the structure of the triple component system,in particular MgO-Al_(2)O_(3)-TiO_(2) that serves as a basis for the production of thermal resistance materials.The structure of such binary systems as MgO-Al_(2)O_(3),Al_(2)O_(3)-TiO_(2),MgO-TiO_(2) was described and the data available for the MgO-Al_(2)O_(3)-TiO_(2) system were given.Thermodynamic data on all the system compounds were also presented and used for the computation of a change in the free Gibbs energy in the temperature range form 800 K to 1900 K for the basic exchange reactions.It was established that the triangulation of the MgO-Al_(2)O_(3)-TiO_(2) system was changed in the three temperature intervals:in the temperature range lower than 1537 K TiO_(2) existed as the polymorphous modification,i.e.anatase;in the temperature range from 1537 K to 2076 K TiO_(2) existed as a polymorphous modification in form of rutile and tialite was stable;and at the temperatures above 2076 K the availability of stochiometric compound of Al4TiO_(8) was possible.In the temperature range lower than 1537 K the two-phase equilibra of Al_(2)O_(3)-MgTi2O_(5),Mg-MgALCU MgTiO_(3)-MgAl_(2)O_(4),and Mg_(2)TiO_(4)-MgAl_(2)O_(4) were stable;in the temperature range from 1537 K to 2076 K the two-phase equilibria of MgTigO_(5)-AlgTiO_(5),MgTiO_(3)-Al_(2)TiO_(5),MgTiO_(3)-Al_(2)O_(3),MgTiO_(3)-MgAl_(2)O_(4),and Mg_(2)TiO_(4)-MgAl_(2)O_(4) were stable,and above 2076 K the MgTi_(2)O_(5)-Al_(2)TiO_(5),MgTi_(2)O_(5)-Al_(4)TiO_(8),Al_(4)TiO_(8)-MgTiO_(3),Al_(4)TiO_(8)-Mg_(2)TiO_(4),Al_(4)TiO_(8)-Mg0,and Al_(4)TiO_(8)-MgAl_(2)O_(4) systems were stable.展开更多
The service life of refractories in ladle walls is limited by corrosion,abrasion,thermal shock and structural spalling mechanisms. When the ladle is lined with bricks they typically need to be completely removed after...The service life of refractories in ladle walls is limited by corrosion,abrasion,thermal shock and structural spalling mechanisms. When the ladle is lined with bricks they typically need to be completely removed after a certain number of heats to be replaced by new bricks of the same size as the original bricks. Not so for monolithic ladle linings. At the end of their service life the remains of the castable can almost completely be recycled as they can in fact stay in place. Only the worn-out part of the lining has to be replaced by a new castable. 20%-50% of the initial ladle lining can be recycled "insitu". The installation can efficiently be done by shotcreting technics. But it requires a castable that resists slag penetration very well. Castables based on a calcium magnesium aluminate bond provide the required penetration resistance. Pumping and shotcreting is very well adapted for repairs of blast furnace shafts,torpedo cars,hot metal and steel ladle linings[1]. However,very little is published about how a good pumping and shotcreting performance can be achieved when the installation has to be done under extreme weather conditions. At high ambient temperature the challenge is to ensure a good pumping result without early castable stiffening. Blockage of the pump would be the consequence. At low ambient temperature the difficulty is to de-activate the highly efficient deflocculant fast enough with a gelling agent added intothe wet mix at the nozzle to prevent the gunned material slipping off the wall. This paper studies strategies how to achieve good installed properties even at extreme ambient temperatures. The interactions between deflocculants,retarders,gelling agents,and calcium magnesium aluminate binder as a function of temperature are studied for an alumina- spinel ladle castable. Beside a new gelling agent for this castable type also a special stabilizer to reduce the temperature sensitivity has been investigated. It will be highlighted how the use of the new calcium magnesium aluminate binder in ladle castables and shotcretes maximises their service life and minimises material consumption.展开更多
In the present investigation, the nano- and micro-sized powders were synthesized by stoichiometric contents of magnesium and aluminum nitrates using combustion–oxidation method. The study was conducted over a wide ra...In the present investigation, the nano- and micro-sized powders were synthesized by stoichiometric contents of magnesium and aluminum nitrates using combustion–oxidation method. The study was conducted over a wide range of operating conditions, in terms of fuel ratio and calcination temperature. The characteristics of magnesium aluminate powders were studied by differential thermal analysis and thermogravimetry (DTA–TG), Brunauer–Emmett–Teller (BET), X-ray diffraction (XRD), and transmission electron microscopy (TEM) techniques. The thermal stability of powders was evaluated by calcination at different temperatures. Differences of the specific surface areas were related to the composition and crystallite size. The importance of fuel ratio and calcination temperature to achieve the nano- and micro-sized oxide was discussed in detail. The fuel ratio of 0.56 and calcination at 800 ℃ provided the conditions to achieve the nano-scale magnesium aluminate powders, smaller than 20 nm. The application of presented algorithm can be an important tool for control of particle size in the nano- and micro-scale.展开更多
Magnesium aluminate spinel(MgAl2O4)is widely used in steel metallurgy industry.Thermal conductivity at high temperature signifcantly infuences the cooling process of blast furnace and the heat preservation of steel co...Magnesium aluminate spinel(MgAl2O4)is widely used in steel metallurgy industry.Thermal conductivity at high temperature signifcantly infuences the cooling process of blast furnace and the heat preservation of steel converter.The efect of external(temperature)and internal(antisite defect and grain boundary)factors on the thermal conductivity of MgAl2O4 was studied with non-equilibrium molecular dynamics.The main factors afecting the thermal conductivity of MgAl2O4 were summarized.In the temperature range of 100-2000 K,the results showed that the thermal conductivity of MgAl2O4 changed from 11.54 to 4.95 W/(m K)with the increase in temperature and was relatively stable at the temperature above 1000 K.The thermal conductivity of MgAl2O4 declined frst and then rose with the increase in the antisite defects,and the minimum value was 6.95 W/(m K)at the inversion parameter i=0.35.In addition,grain boundaries reduced the thermal conductivity of MgAl2O4 by 20%-30%at temperature below 1000 K comparing with the non-grain boundary system.The grain boundary rotation angle at temperature above 1000 K had less efect on the thermal conductivity than that below 1000 K.Present simulation scheme for thermal conductivity of MgAl2O4 can also be applied to the study of other nonmetallic ceramics.展开更多
基金Project(51374240) supported by the National Natural Science Foundation of ChinaProject(2012BAE08B02) supported by the National Science and Technology Pillar Program of China
文摘The densification and microstructure of different spinelized magnesium aluminate spinels(MAS) were studied adding Sc_2O_3 as additive. Sintered products were then characterized in terms of densification, phase analysis, quantitative elemental analysis and microstructure. The results show that Sc_2O_3 is found to be beneficial for the densification of MAS. Sc_2O_3 has a more significant effect on the densification of partially spinelized MAS batch than that of fully spinelized MAS batch. At the sintering temperature of 1650 °C, the bulk density of sintered products of partially spinelized powders increases by 0.243 g/cm3 as the Sc_2O_3 content increases from 0 to 4%(mass fraction) and that of fully spinelized powder increases by 0.14 g/cm3. Compared with the sintered samples prepared from the fully spinelized powder, the sintered samples using the partially spinelized powders as raw materials have more compact microstructures.
基金Project(51374240)supported by the National Natural Science Foundation of ChinaProject(2012BAE08B02)supported by the National Science and Technology Pillar Program of China
文摘New types of refractory materials need to be developed for designing the man-made ledge of the Hall-Heroult cell for aluminum electrolysis, which are currently constructed by frozen ledge.Magnesium aluminate spinel (MAS) as potential candidate materials was prepared by two-step sintering. The densification and grain growth of the MAS wereinvestigatedbytheArchimedes drainage method and scanning electron microscope (SEM). All the specimens were corroded in aNa3AlF6-AlF3-CaF2-Al2O3bath to assess the corrosion resistance. The results show that a MAS material with a high relative density of 99.2% and ahomogeneous microstructure is achieved under two-step sintering conditions. The corrosion mechanisms of MAS inNa3AlF6-AlF3-CaF2-Al2O3 bathare mainly proposed by dissolution of MAS, formation of aluminum oxide, and diffusion of fluorides. The MAS prepared by two-step sintering exhibits good corrosion resistance to theNa3AlF6-AlF3-CaF2-Al2O3bath.
文摘Specimens of magnesium aluminate spinel castable and calcium aluminate cement bonded bauxite based castable were prepared using special bauxite (particle size ≤8 mm ) and sintered magnesia as aggregates, SiO2 micropowder, α-alumina micropowder and calcium aluminate cement as binders, drying, firing at 1 350 ℃ and 1 500 ℃ for 3 h, respectively. The bulk density, cold modulus of rupture, cold crushing strength, permanent change in dimensions on heating, thermal shock resistance and slag resistanee were determined. The results show that compared with calcium aluminate cement bonded bauxite based castable, the magnesium aluminate spinel castable has higher cold crushing strength after drying, better slag resistance but worse thermal shock resistance. Magnesium aluminate spinel based roof of EAF with high molten iron charging ratio has a longer service life.
文摘Unburned magnesium aluminate spinel refractories were prepared using sintered magnesium aluminate spinel as the main raw material,phenolic resin as the binder,aluminum powder(2%,4%,and 6%by mass)and silicon powder(when Al powder addition is 4%,Si powder addition varies:1%and 2%,by mass)as additives.The effects of the Al powder and Si powder additions on the properties and microstructure of the refractories heat treated at different temperatures(1000,1400,and 1600℃for 3 h)were studied.The results show that the Al powder addition can greatly enhance the cold modulus of rupture of the samples fired at 1000 or 1400℃,and meanwhile AlN reinforcement phase forms in the matrix,which greatly improves the hot modulus of rupture of the samples at 1400℃;however,the heat treatment at 1600℃has little influence on the strength;the addition of Al powder and Si powder results in the formation of low melting point phases,greatly reducing the hot modulus of rupture.However,the low melting point phases promote sintering,which enhances the density and the cold modulus of rupture,and decreases the volume change during heating.The samples added with Al and Si all have higher cold modulus of rupture than those added with Al powder only.
文摘1 Scope This standard specifies the terms, definitions, classifications, technical requirements, test methods, inspection rules, packing, marking, transportation, storage, and quality certificate of magnesium aluminate spinel. This standard is applicable to the magnesium alu- minate spinel prepared by sintering method or electric mehing method with raw materials of industrial alumina or bauxite, and light burnt magnesia.
文摘Magnesium aluminate spinel -corundum composite was prepared with waste slide plate and magnesia carbon brick. Microstructure and sintering ability of as-prepared magnesium aluminate spinel -corundum composite were investigated with XRD, SEM, and DSC/TG. With the addition of waste slide plate increasing or synthesis tem- perature rising, the bulk density of the specimen increases and the apparent porosity decreases, but the crystallinity of the specimen decreases and the magnesium alaminate spinel phase increases. The obtained composite contains 72% spinel and 26% corundum. Primary phase and secondary phase are bonded by glass phase. The results show that it is feasible to synthesis magnesium aluminate spinel - corundum material with waste slide plate and magnesia carbon brick.
基金supported by the National Basic Research Program of China(973 Program,No.2010CB735810)
文摘Light-weight magnesium -aluminate spinel materi- als were prepared by foaming-gel process with polyalumi- nium chloride (PAC) as gel. Effect of solid loading in initial slurry on microstructure, porosity, pore size distri- bution, thermal conductivity and mechanical properties was investigated. The results show that the bulk density of the light-weight magnesium -aluminate spinel mate- rials is in the range of O. 7 1.2 g cm-3 ; pore size distribution curves show single-peak characteristics and the mean pore size is in the range of 30. 83 - 61.37 μm ; with the increase of solid loading, the linear shrinkage of the green body during firing and the permanent change in dimensions on heating at l 600 ℃ for 3 h de- crease, but the bulk density increases, the mechanical properties increase obviously; the maximum compressive strength and bending strength reach 35. 25 MPa and 9. 92 MPa, respectively, while the bulk density is 1. 16 g · cm ; and the thermal conductivity at 1 000 ℃ tea- ches 0. 371 W · m-1 . K-1 while the bulk density is O. 7 -3 g · cm
文摘The effect of Y2O3 addition on the sintering proper- ties and microstructure of spinel was investigated using alumina-rich spinel as the raw material. The phase con- stitution and microstructure of the specimens were charac- terized by XRD and SEM, and the pore structure of the specimens was measured by a mercury porosimeter. The results indicate that a viscous melt forms wrapping around spinel crystals by adding a little Y2O3 powders (1 mass% ), yttrium alumina garnet will crystallize around spinel crystals by adding more Y2O3 powders ( 3 mass% ) ; the sintering properties of the spinel are sig- nificantly improved by adding Y2O3 powders less than 3 mass%, while they will be relatively weakened by adding Y2O3 powders more than 3 mass%.
文摘Chrame containing refractories are a kind of traditional material for the lining of alkali recovery furnaces, but the formation of hexavalent chrome compounds will give rise to detrimental effect on environment and human's health. With the gradual awakening of people's comciousness about environment protection, it is urgent to prepare environmental-friendly materials for alkali recovery jurnaces with high quality and long life. In this paper, alumina-rich MgAl2O4 spinel ( AR90 ) was used to replace chromite. The physical properties of dried (110 ℃ for 24 h) or fired (1 300 ℃ for 3 h) AR90 and chromite were studied, respectively. The alkali vapor method was used to determine the alkali resistance of the two materials. The results show that: (1) after drying at 110 ℃ for 24 h, AR90 specimens show higher apparent porosity and slightly lower bulk density than chromite specimens; after firing at 1 300 ℃ for 3 h, AR90 has significantly higher apparent porosity as well as higher bulk density; (2) after the alkali attack, the AR90 specimens sintered at 1 300 ℃ exhibit smaller strength change and much higher compressive strength than the chromite specimens; meanwhile, the permeability degree of alkali salt in chromite specimens is more serious than that in AR90 specimens, which indicates that AR90 possesses better alkali resistance.
文摘With satisfactory high temperature properties,thermal shock resistance and mechanical properties,refractories in the MgO-Al_(2)O_(3) system have become promising alternative to MgO-Cr_(2)O_(3) counterpart used as RH snorkel lining.High purity dead burned magnesia,fused magnesia and sintered spinel were used as raw materials and sulfite pulp waste as the binder,specimens of the refractories in the Mg0-Al_(2)O_(3) system were prepared for the purpose of investigating the influences in terms of the addition of three kinds of spinels,with Al_(2)O_(3) 50%,66% and 78%,by mass,respectively,and the size of MA50 spinel on properties of the specimens.Relatively superior comprehensive properties can be achieved when 16%of MA50 spinel with sizes under 1mm is adopted.
基金National Key Research and Development Program of China(2021YFB3701404)National Natural Science Foundation of China(51932008)for the support of the work
文摘Fused magnesium aluminate spinel carbon materials were prepared using fused magnesium aluminate spinel and flake graphite as the main raw materials and phenolic resin as the binder.The effects of the Al-Si alloy addition(0,2%,4%,6%,8%and 10%,by mass)on the properties of fused magnesium aluminate spinel carbon materials were studied.The results show that fiber materials are generated in the samples with Al-Si alloy addition,which can significantly improve the cold and hot modulus of rupture,the cold elastic modulus,and the thermal shock resistance of the samples.When the addition of Al-Si alloy is 6%-8%,the comprehensive performance of the sample is the optimum.
文摘Volume 50,Number 3,2016 Preparation and properties of infrared ceramics with high infrared emissivity/Yang Jinping,Wang Chunmei,Wei Hengyong,Chen Yang//Naihuo Cailiao.-2016,50(4):241Abstract:This work aims at preparing ceramics with high infrared emissivity.Analytically pure Fe_2O_3,Co_2O_3,CuO,MnCO_3,Bi_2O_3,MgCO_3,talcum(≤0.1mm industrially pure),kaolin clays,high temperature solid state synthesized spinel type ferrite.
文摘Molten salt synthesis of MgAl204 powder from industrial alumina and light calcined MgO in KCl, LiCl, and KCl- LiCl media, and the influence of KF at 500 -1 000℃ were investigated. Synthesized powders were characterized by means of XRD, laser particle analyzer, and SEM, and the synthesis mechanism of MgAl2O4 was discussed as well. The results show that (1) the molten salt composite ( KCl - LiCl) is more .[hvorable for the synthesis of MgAl2O4 than single molten salt (LiCl or KCl), and LiCl is more favorable than KCl; (2) KF can accelerate the formation of MgAl2O 4 and decrease its forming temperature ; ( 3 ) synthesis of MgAl204 powder in the molten salts without KF is controlled by "template -growth" mechanism, but in the molten salts with KF , it is controlled by "template - growth" and "dissolution -precipitation" mechanism.
文摘This scientific paper gives consideration to the information on the structure of the triple component system,in particular MgO-Al_(2)O_(3)-TiO_(2) that serves as a basis for the production of thermal resistance materials.The structure of such binary systems as MgO-Al_(2)O_(3),Al_(2)O_(3)-TiO_(2),MgO-TiO_(2) was described and the data available for the MgO-Al_(2)O_(3)-TiO_(2) system were given.Thermodynamic data on all the system compounds were also presented and used for the computation of a change in the free Gibbs energy in the temperature range form 800 K to 1900 K for the basic exchange reactions.It was established that the triangulation of the MgO-Al_(2)O_(3)-TiO_(2) system was changed in the three temperature intervals:in the temperature range lower than 1537 K TiO_(2) existed as the polymorphous modification,i.e.anatase;in the temperature range from 1537 K to 2076 K TiO_(2) existed as a polymorphous modification in form of rutile and tialite was stable;and at the temperatures above 2076 K the availability of stochiometric compound of Al4TiO_(8) was possible.In the temperature range lower than 1537 K the two-phase equilibra of Al_(2)O_(3)-MgTi2O_(5),Mg-MgALCU MgTiO_(3)-MgAl_(2)O_(4),and Mg_(2)TiO_(4)-MgAl_(2)O_(4) were stable;in the temperature range from 1537 K to 2076 K the two-phase equilibria of MgTigO_(5)-AlgTiO_(5),MgTiO_(3)-Al_(2)TiO_(5),MgTiO_(3)-Al_(2)O_(3),MgTiO_(3)-MgAl_(2)O_(4),and Mg_(2)TiO_(4)-MgAl_(2)O_(4) were stable,and above 2076 K the MgTi_(2)O_(5)-Al_(2)TiO_(5),MgTi_(2)O_(5)-Al_(4)TiO_(8),Al_(4)TiO_(8)-MgTiO_(3),Al_(4)TiO_(8)-Mg_(2)TiO_(4),Al_(4)TiO_(8)-Mg0,and Al_(4)TiO_(8)-MgAl_(2)O_(4) systems were stable.
基金supporters of this study in the Kerneos Research Centers in France and China and the Blastcrete Equipment Company for supporting this study with their machines
文摘The service life of refractories in ladle walls is limited by corrosion,abrasion,thermal shock and structural spalling mechanisms. When the ladle is lined with bricks they typically need to be completely removed after a certain number of heats to be replaced by new bricks of the same size as the original bricks. Not so for monolithic ladle linings. At the end of their service life the remains of the castable can almost completely be recycled as they can in fact stay in place. Only the worn-out part of the lining has to be replaced by a new castable. 20%-50% of the initial ladle lining can be recycled "insitu". The installation can efficiently be done by shotcreting technics. But it requires a castable that resists slag penetration very well. Castables based on a calcium magnesium aluminate bond provide the required penetration resistance. Pumping and shotcreting is very well adapted for repairs of blast furnace shafts,torpedo cars,hot metal and steel ladle linings[1]. However,very little is published about how a good pumping and shotcreting performance can be achieved when the installation has to be done under extreme weather conditions. At high ambient temperature the challenge is to ensure a good pumping result without early castable stiffening. Blockage of the pump would be the consequence. At low ambient temperature the difficulty is to de-activate the highly efficient deflocculant fast enough with a gelling agent added intothe wet mix at the nozzle to prevent the gunned material slipping off the wall. This paper studies strategies how to achieve good installed properties even at extreme ambient temperatures. The interactions between deflocculants,retarders,gelling agents,and calcium magnesium aluminate binder as a function of temperature are studied for an alumina- spinel ladle castable. Beside a new gelling agent for this castable type also a special stabilizer to reduce the temperature sensitivity has been investigated. It will be highlighted how the use of the new calcium magnesium aluminate binder in ladle castables and shotcretes maximises their service life and minimises material consumption.
文摘In the present investigation, the nano- and micro-sized powders were synthesized by stoichiometric contents of magnesium and aluminum nitrates using combustion–oxidation method. The study was conducted over a wide range of operating conditions, in terms of fuel ratio and calcination temperature. The characteristics of magnesium aluminate powders were studied by differential thermal analysis and thermogravimetry (DTA–TG), Brunauer–Emmett–Teller (BET), X-ray diffraction (XRD), and transmission electron microscopy (TEM) techniques. The thermal stability of powders was evaluated by calcination at different temperatures. Differences of the specific surface areas were related to the composition and crystallite size. The importance of fuel ratio and calcination temperature to achieve the nano- and micro-sized oxide was discussed in detail. The fuel ratio of 0.56 and calcination at 800 ℃ provided the conditions to achieve the nano-scale magnesium aluminate powders, smaller than 20 nm. The application of presented algorithm can be an important tool for control of particle size in the nano- and micro-scale.
基金This work is sponsored by the National Natural Science Foundation of China(Grant Nos.21233010 and 51474047).
文摘Magnesium aluminate spinel(MgAl2O4)is widely used in steel metallurgy industry.Thermal conductivity at high temperature signifcantly infuences the cooling process of blast furnace and the heat preservation of steel converter.The efect of external(temperature)and internal(antisite defect and grain boundary)factors on the thermal conductivity of MgAl2O4 was studied with non-equilibrium molecular dynamics.The main factors afecting the thermal conductivity of MgAl2O4 were summarized.In the temperature range of 100-2000 K,the results showed that the thermal conductivity of MgAl2O4 changed from 11.54 to 4.95 W/(m K)with the increase in temperature and was relatively stable at the temperature above 1000 K.The thermal conductivity of MgAl2O4 declined frst and then rose with the increase in the antisite defects,and the minimum value was 6.95 W/(m K)at the inversion parameter i=0.35.In addition,grain boundaries reduced the thermal conductivity of MgAl2O4 by 20%-30%at temperature below 1000 K comparing with the non-grain boundary system.The grain boundary rotation angle at temperature above 1000 K had less efect on the thermal conductivity than that below 1000 K.Present simulation scheme for thermal conductivity of MgAl2O4 can also be applied to the study of other nonmetallic ceramics.