期刊文献+
共找到465篇文章
< 1 2 24 >
每页显示 20 50 100
Selective Hydrodeoxygenation of Lignin-Derived Vanillin via Hetero-Structured High-Entropy Alloy/Oxide Catalysts
1
作者 Yan Sun Kaili Liang +9 位作者 Ren Tu Xudong Fan Charles Q.Jia Zhiwen Jia Yingnan Li Hui Yang Enchen Jiang Hanwen Liu Yonggang Yao Xiwei Xu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第3期202-210,共9页
The chemoselective hydrodeoxygenation of natural lignocellulosic materials plays a crucial role in converting biomass into value-added chemicals.Yet their complex molecular structures often require multiple active sit... The chemoselective hydrodeoxygenation of natural lignocellulosic materials plays a crucial role in converting biomass into value-added chemicals.Yet their complex molecular structures often require multiple active sites synergy for effective activation and achieving high chemoselectivity.Herein,it is reported that a high-entropy alloy(HEA)on high-entropy oxide(HEO)hetero-structured catalyst for highly active,chemoselective,and robust vanillin hydrodeoxygenation.The heterogenous HEA/HEO catalysts were prepared by thermal reduction of senary HEOs(NiZnCuFeAlZrO_(x)),where exsolvable metals(e.g.,Ni,Zn,Cu)in situ emerged and formed randomly dispersed HEA nanoparticles anchoring on the HEO matrix.This catalyst exhibits excellent catalytic performance:100%conversion of vanillin and 95%selectivity toward high-value 2-methyl-4 methoxy phenol at low temperature of 120℃,which were attributed to the synergistic effect among HEO matrix(with abundant oxygen vacancies),anchored HEA nanoparticles(having excellent hydrogenolysis capability),and their intimate hetero-interfaces(showing strong electron transferring effect).Therefore,our work reported the successful construction of HEA/HEO heterogeneous catalysts and their superior multifunctionality in biomass conversion,which could shed light on catalyst design for many important reactions that are complex and require multifunctional active sites. 展开更多
关键词 biomass conversion heterogeneous catalysts high-entropy oxide high-entropy alloys lignin pyrolysis
下载PDF
Effects of iron oxide on crystallization behavior and spatial distribution of spinel in stainless steel slag
2
作者 Zihang Yan Qing Zhao +3 位作者 Chengzhi Han Xiaohui Mei Chengjun Liu Maofa Jiang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第2期292-300,共9页
Chromium plays a vital role in stainless steel due to its ability to improve the corrosion resistance of the latter.However,the re-lease of chromium from stainless steel slag(SSS)during SSS stockpiling causes detrimen... Chromium plays a vital role in stainless steel due to its ability to improve the corrosion resistance of the latter.However,the re-lease of chromium from stainless steel slag(SSS)during SSS stockpiling causes detrimental environmental issues.To prevent chromium pollution,the effects of iron oxide on crystallization behavior and spatial distribution of spinel were investigated in this work.The results revealed that FeO was more conducive to the growth of spinels compared with Fe2O3 and Fe3O4.Spinels were found to be mainly distrib-uted at the top and bottom of slag.The amount of spinel phase at the bottom decreased with the increasing FeO content,while that at the top increased.The average particle size of spinel in the slag with 18wt%FeO content was 12.8μm.Meanwhile,no notable structural changes were observed with a further increase in FeO content.In other words,the spatial distribution of spinel changed when the content of iron oxide varied in the range of 8wt%to 18wt%.Finally,less spinel was found at the bottom of slag with a FeO content of 23wt%. 展开更多
关键词 stainless steel slag spinel CHROMIUM waste remediation ferrous oxide
下载PDF
Striking Stabilization Effect of Spinel Cobalt Oxide Oxygen Evolution Electrocatalysts in Neutral pH by Dual-Sites Iron Incorporation
3
作者 Shuairu Zhu Xue Wang +4 位作者 Jiabo Le Na An Jianming Li Deyu Liu Yongbo Kuang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第2期152-160,共9页
Developing stable and efficient nonprecious-metal-based oxygen evolution catalysts in the neutral electrolyte is a challenging but essential goal for various electrochemical systems.Particularly,cobalt-based spinels h... Developing stable and efficient nonprecious-metal-based oxygen evolution catalysts in the neutral electrolyte is a challenging but essential goal for various electrochemical systems.Particularly,cobalt-based spinels have drawn a considerable amount of attention but most of them operate in alkali solutions.However,the frequently studied Co-Fe spinel system never exhibits appreciable stability in nonbasic conditions,not to mention attract further investigation on its key structural motif and transition states for activity loss.Herein,we report exceptional stable Co-Fe spinel oxygen evolution catalysts(~30%Fe is optimal)in a neutral electrolyte,owing to its unique metal ion arrangements in the crystal lattice.The introduced iron content enters both the octahedral and tetrahedral sites of the spinel as Fe^(2+)and Fe^(3+)(with Co ions having mixed distribution as well).Combining density functional theory calculations,we find that the introduction of Fe to Co_(3)O_(4)lowers the covalency of metal-oxygen bonds and can help suppress the oxidation of Co^(2+/3+)and 0^(2-).It implies that the Co-Fe spinel will have minor surface reconstruction and less lattice oxygen loss during the oxygen evolution reaction process in comparison with Co_(3)O_(4)and hence show much better stability.These findings suggest that there is still much chance for the spinel structures,especially using reasonable sublattices engineering via multimetal doping to develop advanced oxygen evolution catalysts. 展开更多
关键词 dual-sites iron electrocatalyst stability neutral electrolyte oxygen evolution reaction spinel oxides
下载PDF
High‑Entropy Layered Oxide Cathode Enabling High‑Rate for Solid‑State Sodium‑Ion Batteries 被引量:3
4
作者 Tianxun Cai Mingzhi Cai +5 位作者 Jinxiao Mu Siwei Zhao Hui Bi Wei Zhao Wujie Dong Fuqiang Huang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第1期160-171,共12页
Na-ion O3-type layered oxides are prospective cathodes for Na-ion batteries due to high energy density and low-cost.Nevertheless,such cathodes usually suffer from phase transitions,sluggish kinetics and air instabilit... Na-ion O3-type layered oxides are prospective cathodes for Na-ion batteries due to high energy density and low-cost.Nevertheless,such cathodes usually suffer from phase transitions,sluggish kinetics and air instability,making it difficult to achieve high performance solid-state sodium-ion batteries.Herein,the high-entropy design and Li doping strategy alleviate lattice stress and enhance ionic conductivity,achieving high-rate performance,air stability and electrochemically thermal stability for Na_(0.95)Li_(0.06)Ni_(0.25)Cu_(0.05)Fe_(0.15)Mn_(0.49)O_(2).This cathode delivers a high reversible capacity(141 mAh g^(−1)at 0.2C),excellent rate capability(111 mAh g^(−1)at 8C,85 mAh g^(−1)even at 20C),and long-term stability(over 85%capacity retention after 1000 cycles),which is attributed to a rapid and reversible O3–P3 phase transition in regions of low voltage and suppresses phase transition.Moreover,the compound remains unchanged over seven days and keeps thermal stability until 279℃.Remarkably,the polymer solid-state sodium battery assembled by this cathode provides a capacity of 92 mAh g^(−1)at 5C and keeps retention of 96%after 400 cycles.This strategy inspires more rational designs and could be applied to a series of O3 cathodes to improve the performance of solid-state Na-ion batteries. 展开更多
关键词 high-entropy High-rate performance Li-TM interaction Air stability O3 layered oxide cathode
下载PDF
Microwave-assisted exploration of the electron configuration-dependent electrocatalytic urea oxidation activity of 2D porous NiCo_(2)O_(4) spinel 被引量:1
5
作者 Jun Wan Zhiao Wu +11 位作者 Guangyu Fang Jinglin Xian Jiao Dai Jiayue Guo Qingxiang Li Yongfei You Kaisi Liu Huimin Yu Weilin Xu Huiyu Jiang Minggui Xia Huanyu Jin 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期226-235,共10页
Urea holds promise as an alternative water-oxidation substrate in electrolytic cells.High-valence nickelbased spinel,especially after heteroatom doping,excels in urea oxidation reactions(UOR).However,traditional spine... Urea holds promise as an alternative water-oxidation substrate in electrolytic cells.High-valence nickelbased spinel,especially after heteroatom doping,excels in urea oxidation reactions(UOR).However,traditional spinel synthesis methods with prolonged high-temperature reactions lack kinetic precision,hindering the balance between controlled doping and highly active two-dimensional(2D)porous structures design.This significantly impedes the identification of electron configuration-dependent active sites in doped 2D nickel-based spinels.Herein,we present a microwave shock method for the preparation of 2D porous NiCo_(2)O_(4)spinel.Utilizing the transient on-off property of microwave pulses for precise heteroatom doping and 2D porous structural design,non-metal doping(boron,phosphorus,and sulfur)with distinct extranuclear electron disparities serves as straightforward examples for investigation.Precise tuning of lattice parameter reveals the impact of covalent bond strength on NiCo_(2)O_(4)structural stability.The introduced defect levels induce unpaired d-electrons in transition metals,enhancing the adsorption of electron-donating amino groups in urea molecules.Simultaneously,Bode plots confirm the impact mechanism of rapid electron migration caused by reduced band gaps on UOR activity.The prepared phosphorus-doped 2D porous NiCo_(2)O_(4),with optimal electron configuration control,outperforms most reported spinels.This controlled modification strategy advances understanding theoretical structure-activity mechanisms of high-performance 2D spinels in UOR. 展开更多
关键词 2D materials spinel Microwave ELECTROCATALYSIS Urea oxidation reaction
下载PDF
Novel high-entropy oxides for energy storage and conversion:From fundamentals to practical applications 被引量:6
6
作者 Zi-Yu Liu Yu Liu +4 位作者 Yujie Xu Hualiang Zhang Zongping Shao Zhenbin Wang Haisheng Chen 《Green Energy & Environment》 SCIE EI CAS CSCD 2023年第5期1341-1357,共17页
High-entropy oxides(HEOs)are gaining prominence in the field of electrochemistry due to their distinctive structural characteristics,which give rise to their advanced stable and modifiable functional properties.This r... High-entropy oxides(HEOs)are gaining prominence in the field of electrochemistry due to their distinctive structural characteristics,which give rise to their advanced stable and modifiable functional properties.This review presents fundamental preparations,incidental characterizations,and typical structures of HEOs.The prospective applications of HEOs in various electrochemical aspects of electrocatalysis and energy conversion-storage are also summarized,including recent developments and the general trend of HEO structure design in the catalysis containing oxygen evolution reaction(OER)and oxygen reduction reaction(ORR),supercapacitors(SC),lithium-ion batteries(LIBs),solid oxide fuel cells(SOFCs),and so forth.Moreover,this review notes some apparent challenges and multiple opportunities for the use of HEOs in the wide field of energy to further guide the development of practical applications.The influence of entropy is significant,and high-entropy oxides are expected to drive the improvement of energy science and technology in the near future. 展开更多
关键词 high-entropy oxides ELECTROCHEMISTRY Energy storage and conversion
下载PDF
Cycling performance of layered oxide cathode materials for sodium-ion batteries
7
作者 Jinpin Wu Junhang Tian +1 位作者 Xueyi Sun Weidong Zhuang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第7期1720-1744,共25页
Layered oxide is a promising cathode material for sodium-ion batteries because of its high-capacity,high operating voltage,and simple synthesis.Cycling performance is an important criterion for evaluating the applicat... Layered oxide is a promising cathode material for sodium-ion batteries because of its high-capacity,high operating voltage,and simple synthesis.Cycling performance is an important criterion for evaluating the application prospects of batteries.However,facing challenges,including phase transitions,ambient stability,side reactions,and irreversible anionic oxygen activity,the cycling performance of layered oxide cathode materials still cannot meet the application requirements.Therefore,this review proposes several strategies to address these challenges.First,bulk doping is introduced from three aspects:cationic single doping,anionic single doping,and multi-ion doping.Second,homogeneous surface coating and concentration gradient modification are reviewed.In addition,methods such as mixed structure design,particle engineering,high-entropy material construction,and integrated modification are proposed.Finally,a summary and outlook provide a new horizon for developing and modifying layered oxide cathode materials. 展开更多
关键词 sodium-ion battery layered oxide materials cycling performance bulking doping surface coating concentration gradient mixed structure high-entropy
下载PDF
High-Entropy Spinel Oxide Nanofibers as Catalytic Sulfur Hosts Promise the High Gravimetric and Volumetric Capacities for Lithium–Sulfur Batteries 被引量:5
8
作者 Liyuan Tian Ze Zhang +2 位作者 Sheng Liu Guoran Li Xueping Gao 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2022年第2期645-654,共10页
The exploration of new catalytic hosts is highly important to tackle the sluggish electrochemical kinetics of sulfur redox for achieving high energy density of lithium–sulfur batteries.Herein,for the first time,we pr... The exploration of new catalytic hosts is highly important to tackle the sluggish electrochemical kinetics of sulfur redox for achieving high energy density of lithium–sulfur batteries.Herein,for the first time,we present high-entropy oxide(HEO,(Mg_(0.2)Mn_(0.2)Ni_(0.2)Co_(0.2)Zn_(0.2))Fe_(2)O_(4))nanofibers as catalytic host of sulfur.The HEO nanofibers show a synergistic effect among multiple metal cations in spinel structure that enables strong chemical confinement of soluble polysulfides and fast kinetics for polysulfide conversion.Consequently,the S/HEO composite displays the high gravimetric capacity of 1368.7 mAh g^(−1) at 0.1 C rate,excellent rate capability with the discharge capacity of 632.1 mAh g^(−1) at 5 C rate,and desirable cycle stability.Furthermore,the S/HEO composite shows desirable sulfur utilization and good cycle stability under a harsh operating condition of high sulfur loading(4.6 mg cm^(−2))or low electrolyte/sulfur ratio(5μL mg^(−1)).More impressively,the high volumetric capacity of 2627.9 mAh cm^(−3) is achieved simultaneously for the S/HEO composite due to the high tap density of 1.92 g cm^(−3),nearly 2.5 times of the conventional sulfur/carbon composite.Therefore,based on high-entropy oxide materials,this work affords a fresh concept of elevating the gravimetric/volumetric capacities of sulfur cathodes for lithium–sulfur batteries. 展开更多
关键词 catalytic host high-entropy oxide lithium-sulfur battery polysulfide conversion spinel oxide nanofibers
下载PDF
Solution combustion synthesis of high-entropy metal spinel oxide as oxygen evolution reaction catalyst 被引量:1
9
作者 Tao Lu Yue Zhang +2 位作者 Li Ding Hao-yue Zheng Ye Pan 《China Foundry》 SCIE CAS 2022年第6期551-558,共8页
High-entropy metal spinel oxide(HEO)is proved to be a promising oxygen evolution reaction(OER)catalyst with high catalytic performance and stability.A short routine synthesis process based on solution combustion synth... High-entropy metal spinel oxide(HEO)is proved to be a promising oxygen evolution reaction(OER)catalyst with high catalytic performance and stability.A short routine synthesis process based on solution combustion synthesis was proposed to prepare(Co_(0.25)Ni_(0.25)Mn_(0.25)Zn_(0.25))Fe_(2)O_(4)spinel HEO in this work.During the process,the products were rapidly synthesized and melted due to the high-temperature reaction,and then quickly crystallized on the surface of nickel foam to form a nano-structure coating.With the aid of nano-scale spinel structure,the overpotential of non-activation HEO electrode reaches 276 mV at the current density of 10 mA·cm^(-2),and after 100 h i-t test,it can be further reduced to 230 mV,which proves the high activity of OER catalysis.The promotion of OER catalytic performance can be attributed to the surface reconstruction caused by the selective element leaching and the boost of oxygen vacancy,leading to the formation of nano-scale flocculation around spinel core after the long-term OER process.This work indicates a special casting process for functional materials and explores the application of rapid crystallization. 展开更多
关键词 high-entropy oxide spinel OER catalysis microstructure
下载PDF
Defective high-entropy rocksalt oxide with enhanced metal‒oxygen covalency for electrocatalytic oxygen evolution 被引量:6
10
作者 Fangming Liu Meng Yu +3 位作者 Xiang Chen Jinhan Li Huanhuan Liu Fangyi Cheng 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2022年第1期122-129,共8页
High‐entropy materials are emerging electrocatalysts by integrating five or more elements into one single crystallographic phase to optimize the electronic structures and geometric environments.Here,a rocksalt‐type ... High‐entropy materials are emerging electrocatalysts by integrating five or more elements into one single crystallographic phase to optimize the electronic structures and geometric environments.Here,a rocksalt‐type high‐entropy oxide Mg_(0.2)Co_(0.2)Ni_(0.2)Cu_(0.2)Zn_(0.2)O(HEO)is developed as an electrocatalyst towards the oxygen evolution reaction(OER).The obtained HEO features abundant cation and oxygen vacancies originating from the lattice mismatch of neighboring metal ions,together with enlarged Co/Ni‒O covalency due to the introduction of less electronegative Mg and Zn.As a result,the HEO exhibits superior intrinsic OER activities,delivering a turnover frequency(TOF)15 and 84 folds that of CoO and NiO at 1.65 V,respectively.This study provides a mechanistic understanding of the enhanced OER on HEO and demonstrates the potential of high‐entropy strategy in developing efficient oxygen electrocatalysts by elaborately incorporating low‐cost elements with lower electronegativity. 展开更多
关键词 high-entropy material Rocksalt oxide Oxygen evolution reaction Electrocatalyst Defect Metal-oxygen covalency
下载PDF
Surface density of synthetically tuned spinel oxides of Co^(3+) and Ni^(3+) with enhanced catalytic activity for methane oxidation 被引量:4
11
作者 Zeshu Zhang Jingwei Li +5 位作者 Ting Yi Liwei Sun Yibo Zhang Xuefeng Hu Wenhao Cui Xiangguang Yang 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2018年第7期1228-1239,共12页
Spinel oxides containing Co and Ni are a promising substitute as a noble metal catalyst for methane combustion.Achieving a complete oxidation of methane under 400°C remains challenging,andhydrothermal 60 h NiClit... Spinel oxides containing Co and Ni are a promising substitute as a noble metal catalyst for methane combustion.Achieving a complete oxidation of methane under 400°C remains challenging,andhydrothermal 60 h NiClittle impact on activity,especially at high space velocities due to the long hydrothermal time with less absorbed oxygen species and crystal defects.Overall,these results help clarify methane activa-tion mechanisms and aid the development of more efficient low-cost catalysts. 展开更多
关键词 spinel oxides Catalytic combustion of methane Porous nanosheets Active center Hydrothermal stability
下载PDF
High-Entropy Perovskite Oxide: A New Opportunity for Developing Highly Active and Durable Air Electrode for Reversible Protonic Ceramic Electrochemical Cells 被引量:5
12
作者 Zuoqing Liu Zhengjie Tang +8 位作者 Yufei Song Guangming Yang Wanru Qian Meiting Yang Yinlong Zhu Ran Ran Wei Wang Wei Zhou Zongping Shao 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第12期505-520,共16页
Reversible proton ceramic electrochemical cell(R-PCEC)is regarded as the most promising energy conversion device,which can realize efficient mutual conversion of electrical and chemical energy and to solve the problem... Reversible proton ceramic electrochemical cell(R-PCEC)is regarded as the most promising energy conversion device,which can realize efficient mutual conversion of electrical and chemical energy and to solve the problem of large-scale energy storage.However,the development of robust electrodes with high catalytic activity is the main bottleneck for the commercialization of R-PCECs.Here,a novel type of high-entropy perovskite oxide consisting of six equimolar metals in the A-site,Pr_(1/6)La_(1/6)Nd_(1/6)Ba_(1/6)Sr_(1/6)Ca_(1/6)CoO_(3−δ)(PLN-BSCC),is reported as a high-performance bifunctional air electrode for R-PCEC.By harnessing the unique functionalities of multiple ele-ments,high-entropy perovskite oxide can be anticipated to accelerate reaction rates in both fuel cell and electrolysis modes.Especially,an R-PCEC utilizing the PLNBSCC air electrode achieves exceptional electrochemical performances,demonstrating a peak power density of 1.21 W cm^(−2)for the fuel cell,while simultaneously obtaining an astonishing current density of−1.95 A cm^(−2)at an electrolysis voltage of 1.3 V and a temperature of 600℃.The significantly enhanced electrochemical performance and durability of the PLNBSCC air electrode is attributed mainly to the high electrons/ions conductivity,fast hydration reactivity and high configurational entropy.This research explores to a new avenue to develop optimally active and stable air electrodes for R-PCECs. 展开更多
关键词 Reversible proton ceramic electrochemical cells high-entropy oxide Air electrode Oxygen reduction reaction Oxygen evolution reaction
下载PDF
Molten salt synthesis,morphology modulation,and lithiation mechanism of high entropy oxide for robust lithium storage
13
作者 Xuefeng Liu Honghong Wang +5 位作者 Long Dong Kezhuo Li Haijun Zhang Quanli Jia Shaowei Zhang Wen Lei 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第11期536-545,I0011,共11页
High entropy oxides(HEOs)with ideal element tunability and enticing entropy-driven stability have exhibited unprecedented application potential in electrochemical lithium storage.However,the general control of dimensi... High entropy oxides(HEOs)with ideal element tunability and enticing entropy-driven stability have exhibited unprecedented application potential in electrochemical lithium storage.However,the general control of dimension and morphology remains a major challenge.Here,scalable HEO morphology modulation is implemented through a salt-assisted strategy,which is achieved by regulating the solubility of reactants and the selective adsorption of salt ions on specific crystal planes.The electrochemical properties,lithiation mechanism,and structure evolution of composition-and morphology-dependent HEO anode are examined in detail.More importantly,the potential advantages of HEOs as electrode materials are evaluated from both theoretical and experimental aspects.Benefiting from the high oxygen vacancy concentration,narrow band gap,and structure durability induced by the multi-element synergy,HEO anode delivers desirable reversible capacity and reaction kinetics.In particular,Mg is evidenced to serve as a structural sustainer that significantly inhibits the volume expansion and retains the rock salt lattice.These new perspectives are expected to open a window of opportunity to compositionally/morphologi cally engineer high-performance HEO electrodes. 展开更多
关键词 high-entropy oxide Lithium-ion battery anode Molten salt Morphology modulation Structure stability
下载PDF
Efficient spinel iron‐cobalt oxide/nitrogen‐doped ordered mesoporous carbon catalyst for rechargeable zinc‐air batteries 被引量:4
14
作者 He‐lei Wei Ai‐dong Tan +2 位作者 Shu‐zhi Hu Jin‐hua Piao Zhi‐yong Fu 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2021年第9期1451-1458,共8页
A robust oxygen‐related electrocatalyst,composed of spinel iron‐cobalt oxide and nitrogen‐dopedordered mesoporous carbon(NOMC),was developed for rechargeable metal‐air batteries.Electrochemicaltests revealed that ... A robust oxygen‐related electrocatalyst,composed of spinel iron‐cobalt oxide and nitrogen‐dopedordered mesoporous carbon(NOMC),was developed for rechargeable metal‐air batteries.Electrochemicaltests revealed that the optimal catalyst Fe_(0.5)Co/NOMC exhibits superior activity with ahalf‐wave potential of 0.89 V(vs.reversible hydrogen electrode)for the oxygen reduction reactionand an overpotential of 0.31 V at 10 mA cm^(−2)for the oxygen evolution reaction.For demonstration,the catalyst was used in the assembly of a rechargeable zinc‐air battery,which exhibited an exceptionallyhigh energy density of 820 Wh kg−1 at 100 mA cm^(−2),a high power density of 153 mW cm^(−2)at1.0 V,and superior cycling stability up to 432 cycles(144 h)under ambient air. 展开更多
关键词 Oxygen‐related catalyst Oxygen evolution reaction Oxygen reduction reaction spinel oxide Zinc‐air battery
下载PDF
Unveiling the geometric site dependent activity of spinel Co_(3)O_(4)for electrocatalytic chlorine evolution reaction
15
作者 Linke Cai Yao Liu +5 位作者 Jingfang Zhang Qiqi Jia Jiacheng Guan Hongwei Sun Yu Yu Yi Huang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期95-103,共9页
Spinel cobalt oxide(Co_(3)O_(4)),consisting of tetrahedral Co^(2+)(CoTd)and octahedral Co^(3+)(CoOh),is considered as promising earth-abundant electrocatalyst for chlorine evolution reaction(CER).Identifying the catal... Spinel cobalt oxide(Co_(3)O_(4)),consisting of tetrahedral Co^(2+)(CoTd)and octahedral Co^(3+)(CoOh),is considered as promising earth-abundant electrocatalyst for chlorine evolution reaction(CER).Identifying the catalytic contribution of geometric Co site in the electrocatalytic CER plays a pivotal role to precisely modulate electronic configuration of active Co sites to boost CER.Herein,combining density functional theory calculations and experiment results assisted with operando analysis,we found that the Co_(Oh) site acts as the main active site for CER in spinel Co_(3)O_(4),which shows better Cl^(-)adsorption and more moderate intermediate adsorption toward CER than CoTd site,and does not undergo redox transition under CER condition at applied potentials.Guided by above findings,the oxygen vacancies were further introduced into the Co_(3)O_(4) to precisely manipulate the electronic configuration of Co_(Oh) to boost Cl^(-)adsorption and optimize the reaction path of CER and thus to enhance the intrinsic CER activity significantly.Our work figures out the importance of geometric configuration dependent CER activity,shedding light on the rational design of advanced electrocatalysts from geometric configuration optimization at the atomic level. 展开更多
关键词 Chlorine evolution reaction Geometry effects Active chlorine Electronic configuration optimization spinel oxides
下载PDF
Synthesis and characterization of multidoped lithium manganese oxide spinel LiCo_(0.02)La_(0.01)Mn_(1.97)O_(3.98)Cl_(0.02) 被引量:1
16
作者 张娜 唐致远 +1 位作者 黄庆华 卢星河 《中国有色金属学会会刊:英文版》 EI CSCD 2006年第2期286-289,共4页
Multidoped spinel LiCo0.02La0.01Mn1.97O3.98Cl0.02 was synthesized by solid-state method. The structure and electrochemical performance were characterized by XRD, ESEM, particle size distribution analysis, specific sur... Multidoped spinel LiCo0.02La0.01Mn1.97O3.98Cl0.02 was synthesized by solid-state method. The structure and electrochemical performance were characterized by XRD, ESEM, particle size distribution analysis, specific surface area testing, galvanostatic cycling and electrochemical impedance spectroscopy. The XRD analysis shows that the sample exhibits pure spinel phase. The substitution of Co, La for Mn and Cl for O in the LiMn2O4 stabilizes the structural integrity of the spinel host, which in turn increases the electrochemical cycleability. The electrochemical experiments confirm that the capacity of the LiCo0.02La0.01Mn1.97O3.98Cl0.02 electrode maintains 90.6% of the initial capacity at 180th cycle. 展开更多
关键词 尖晶石 LIMN2O4 锂离子电池 LiCo0.02La0.01Mn1.97O3.98Cl0.02
下载PDF
Boosting high-rate Li-ion storage properties by La(Ⅲ)ion doping in spinel(Co_(0.2)Cr_(0.2)Fe_(0.2)Mn_(0.2)Ni_(0.2))_(3)O_(4)high-entropy oxide anode
17
作者 Shijie Chen Mengfan Bao +5 位作者 Yanggang Jia Pengpeng Wang Dan Wei Yuhuan Guo Jie Tan Aiqin Mao 《Journal of Advanced Ceramics》 SCIE EI CAS CSCD 2024年第6期769-779,共11页
The present work aims to create lattice distortion and optimize the surface oxygen vacancy(OV)concentration in a model spinel(Co_(0.2)Cr_(0.2)Fe_(0.2)Mn_(0.2)Ni_(0.2))_(3)O_(4)high-entropy oxide(HEO)through a heteroat... The present work aims to create lattice distortion and optimize the surface oxygen vacancy(OV)concentration in a model spinel(Co_(0.2)Cr_(0.2)Fe_(0.2)Mn_(0.2)Ni_(0.2))_(3)O_(4)high-entropy oxide(HEO)through a heteroatom La^(3+)doping strategy.As demonstrated,La^(3+)with a large radius can be doped successfully into the spinel lattice of(Co_(0.2)Cr_(0.2)Fe_(0.2)Mn_(0.2)Ni_(0.2))_(3)O_(4),thereby not only causing lattice distortion to increase oxygen vacancies but also refining crystalline grains and improving the specific area.Compared with the(Co_(0.2)Cr_(0.2)Fe_(0.2)Mn_(0.2)Ni_(0.2))_(3)O_(4)anode,the(La_(0.01)CoCrFeMnNi)_(3/5.01)O_(4) anode with moderate doping exhibits excellent cycling performance(1228 mAh·g^(−1)after 400 cycles at 0.2 A·g^(−1))and yields an increase of 75%rate capability at 3 A·g^(−1)(420 mAh·g^(−1)at 3 A·g^(−1)).The desirable kinetic transport of electrons and diffusion of Li+within the moderately La^(3+)-doped anode and the synergistic interfacial pseudocapacitive behavior satisfy the redox reaction at a high rate,thus increasing rate capability. 展开更多
关键词 lithium-ion battery(LIB) ANODE lattice distortion high-entropy oxide(HEO) high-rate performance La^(3+)doping oxygen vacancy(OV)
原文传递
Degenerate antiferromagnetic states in spinel oxide LiV2O4
18
作者 Ben-Chao Gong Huan-Cheng Yang +2 位作者 Kui Jin Kai Liu Zhong-Yi Lu 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第7期542-547,共6页
The magnetic and electronic properties of spinel oxide LiV2O4 have been systematically studied by using the spin-polarized first-principles electronic structure calculations.We find that a series of magnetic states,in... The magnetic and electronic properties of spinel oxide LiV2O4 have been systematically studied by using the spin-polarized first-principles electronic structure calculations.We find that a series of magnetic states,in which the ferromagnetic(FM)V4 tetrahedra are linked together through the corner-sharing antiferromagnetic(AFM)V4 tetrahedra,possess degenerate energies lower than those of other spin configurations.The large number of these energetically degenerated states being the magnetic ground state give rise to strong magnetic frustration as well as large magnetic entropy in LiV2O4.The corresponding band structure and density of states of such a typical magnetic state in this series,i.e.,the ditetrahedron(DT)AFM state,demonstrate that LiV2O4 is in the vicinity of a metal-insulator transition.Further analysis suggests that the t2g and eg orbitals of the V atoms play different roles in the magnetic exchange interactions.Our calculations are consistent with previous experimental measurements and shed light on understanding the exotic magnetism and the heavy-fermion behavior of LiV2O4. 展开更多
关键词 spinel oxide magnetic properties heavy fermion first-principles calculations
下载PDF
Effects of vacuum pre-oxidation process on thermally-grown oxides layer of CoCrAlY high temperature corrosion resistance coating
19
作者 韩玉君 朱志莹 +2 位作者 李晓泉 申赛刚 叶福兴 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第10期3305-3314,共10页
The influence of the certain specific vacuum pre-oxidation process on the phase transformation of thermally-grown oxides(TGO) was studied.The CoCrAlY high temperature corrosion resistance coatings were produced onto... The influence of the certain specific vacuum pre-oxidation process on the phase transformation of thermally-grown oxides(TGO) was studied.The CoCrAlY high temperature corrosion resistance coatings were produced onto the nickel-based superalloy substrate by high velocity oxygen fuel(HVOF).It suggests that the TGO usually consists of a great number of chromium oxides,cobalt oxides and spinel oxides besides alumina during the initial period of the high temperature oxidation if the specimens are not subjected to the appropriate vacuum pre-oxidation process.Furthermore,the amount of alumina is strongly dependent on the partial pressure of oxygen;while the CoCr2O4 spinel oxides are usually formed under the conditions of higher partial pressure of oxygen during the initial period and the lower partial pressure of oxygen during the subsequent period of the isothermal oxidation.After the appropriate vacuum pre-oxidation process,the TGO is mainly composed of alumina that contains lower Y element,while alumina that contains higher Y element sporadically distributes,and the spinel oxides cannot be found.After a longer period of the isothermal oxidation,a small amount of porous CoCr2O4 and the chrome oxide sporadically distribute near the continuous alumina.Additionally,after the appropriate vacuum pre-oxidation process,the TGO growth rate is relatively slow. 展开更多
关键词 vacuum pre-oxidation process thermally-grown oxides(TGO) high velocity oxygen fuel(HVOF) spinel oxides
下载PDF
Discovering the ultralow thermal conductive A_(2)B_(2)O_(7)-type high-entropy oxides through the hybrid knowle dge-assiste d data-driven machine learning 被引量:2
20
作者 Ying Zhang Ke Ren +7 位作者 William Yi Wang Xingyu Gao Ruihao Yuan Jun Wang Yiguang Wang Haifeng Song Xiubing Liang Jinshan Li 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第1期131-142,共12页
Lattice engineering and distortion have been considered one kind of effective strategies for discovering advanced materials.The instinct chemical flexibility of high-entropy oxides(HEOs)motivates/accelerates to tailor... Lattice engineering and distortion have been considered one kind of effective strategies for discovering advanced materials.The instinct chemical flexibility of high-entropy oxides(HEOs)motivates/accelerates to tailor the target properties through phase transformations and lattice distortion.Here,a hybrid knowledge-assisted data-driven machine learning(ML)strategy is utilized to discover the A_(2)B_(2)O_(7)-type HEOs with low thermal conductivity(κ)through 17 rare-earth(RE=Sc,Y,La-Lu)solutes optimized A-site.A designing routine integrating the ML and high throughput first principles has been proposed to predict the key physical parameter(KPPs)correlated to the targetedκof advanced HEOs.Among the smart-designed 6188(5RE_(0.2))_(2)Zr_(2)O_(7)HEOs,the best candidates are addressed and validated by the princi-ples of severe lattice distortion and local phase transformation,which effectively reduceκby the strong multi-phonon scattering and weak interatomic interactions.Particularly,(Sc_(0.2)Y_(0.2)La_(0.2)Ce_(0.2)Pr_(0.2))_(2)Zr_(2)O_(7)with predictedκbelow 1.59 Wm^(−1)K^(−1)is selected to be verified,which matches well with the ex-perimentalκ=1.69 Wm^(−1)K^(−1)at 300 K and could be further decreased to 0.14 Wm^(−1)K^(−1)at 1473 K.Moreover,the coupling effects of lattice vibrations and charges on heat transfer are revealed by the cross-validations of various models,indicating that the weak bonds with low electronegativity and few bond-ing charge density and the lattice distortion(r∗)identified by cation radius ratio(r A/r B)should be the KPPs to decreaseκefficiently.This work supports an intelligent designing strategy with limited atomic and electronic KPPs to accelerate the development of advanced multi-component HEOs with proper-ties/performance at multi-scales. 展开更多
关键词 high-entropy oxides Thermal conductivity PYROCHLORE Key physical parameter FIRST-PRINCIPLES
原文传递
上一页 1 2 24 下一页 到第
使用帮助 返回顶部